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ABSTRACT

A cloned fragment of spinach chloroplast DNA carrying the gene for the
large subunit of ribulose bisphosphate (RuBP) carboxylase has been analysed
by electron microscopy of R-loops, by hybridization to Northern blots of
chloroplast RNA, by S1 nuclease mapping and by DNA sequencing. The trans-
cribed region of the geme is 1690 + 3 nucleotides long and co-linear with
its mRNA. It comprises a 178-179 bp 5' untranslated sequence, a 1425 bp
coding region and an 85-88 bp 3' untranslated region. The deduced sequence
of the 475 amino acids of the spinach large subunit protein shows 10%
divergence from that of the maize large subunit protein (1). The nucleotide
sequence divergence between spinach and maize over the same coding region
is 16% but in the transcribed flanking regions it is 35%. Features of the
spinach chloroplast gene which resemble those of bacterial genes include a
5-base Shine-Dalgarno sequence complementary to a sequence near the 3' end
of chloroplast and bacterial 16S rRNA, a promoter region partially homologous
to a consensus sequence of bacterial promoters, and a transcription termination
region capable of forming a typical stem and loop structure.

INTRODUCTION

Ribulose 1,5-bisphosphate carboxylase, the major protein of chloroplasts,
is composed of two types of subunits which together catalyse the fixation
of atmospheric C02. One, the 55 kd large subunit, is chloroplast-DNA coded
(2) and contains the catalytic site (3, 4). The other, the 12-15 kd small
subunit, is nuclear coded (5) and is of unknown function. Thus, synthesis
of this holoprotein depends on the expression of genes from two clearly
differentiated genetic systems located in separate compartments within the
one cell, Furthermore, the small subunit is synthesised on cytoplasmic
ribosomes (6) and thus is the product of a typical eukaryotic system,
whereas the large subunit is synthesised in the chloroplast (7) which is
more analogous to a prokaryotic system., The extent to which the expression
of these genes is coordinated and the nature of the mechanism whereby such

coordination might be effected is far from clear. One approach to this
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problem is to characterize the genes for the two protein subunits and to
develop in vitro systems for their transcription and translation so that
the role of possible regulatory molecules can be studied.

Synthesis of the large subunit by in vitro transcription-translation
of chloroplast DNA as well as of cloned fragments of chloroplast DNA has
been reported (8-12). The position of the gene on the restriction map of
maize, Chlamydomonas and spinach chloroplast DNAs has been determined and
clones carrying the gene from these DNAs have been constructed (8, 11, 12).

In spinach the large subunit gene lies within a 2 kb region of the
11.5 kb BamHI fragment of the chloroplast DNA (12). 1In this paper we
describe the analysis of the 2 kb fragment by hybridization to chloroplast
RNA. We also present the nucleotide sequence for 1800 bp from this region
and define the coding region for the large subunit protein and the flanking
transcribed regions. The nucleotide sequence and the deduced amino acid
sequence for the protein are compared with the recently published correspond-

ing sequences for the large subunit from maize chloroplasts (1).

METHODS

Plasmids were purified from cleared lysates by centrifugation in
ethidium bromide CsCl gradients (13). The procedures used for the isolation
of spinach chloroplast RNA, restriction enzyme digestions and agarose gel
electrophoresis of DNA fragments have been described previously (14). DNA
fragments were recovered from agarose gels by electroelution (15) and from
acrylamide gels by diffusion into a salt buffer (16). DNA sequencing and
the denaturation of fragments and separation of strands were done according
to Maxam and Gilbert (16, 17). Conditions for RNA/DNA annealing and S1
nuclease digestion (18) are given in the various Figure legends.

Hybridization to Filter Bound RNA

Chloroplast RNA was electrophoresed in 1.5% agarose gels containing 5
mM methylmercuric hydroxide (19) at 5V/ecm for 4-5 h and transferred to
diazotized aminothiophenol paper (prepared according to the procedure
developed by B. Seed, California Institute of Technology) using 0.2 M Na
acetate, pH 4.0. Other conditions including those of pre- and post-hybrid-
ization washes were as described by Alwine, Kemp and Stark (20). Labeled DNA
prcbes were hybridized to the Northern blots in 507% formamide, 0.6 M NaCl,
0.06 M Na3 citrate, 0.2% Na dodecyl sulfate, 0.2% each of polyvinyl pyroli-
done, Ficoll and bovine serum albumin and 100 ug/ml denatured sonicated
calf thymus DNA, for 18 h at 45°C.
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Plasmids

The preparation of pSocBl49 has been described (12). The orientation
of the chloroplast DNA BamHl fragment in pBR322 is such that the right-hand
BamH1 site (Figure 1) is close (377 bp) to the EcoRI site in the vector.
EcoRI fragments of pSocBl49 were subcloned into pBR325 and the desired
clones selected from the tetr, ampr, caps transformants on the basis of the
size of the insert. For sequencing studies pSocB149 was modified by deleting
approximately 8.8 kb of the insert from the SacI site to the Sall site in
PBR322 (see Figure 1). The ends of the shortened plasmid were blunt-end
ligated after filling-in the Sall site and trimming the SacI site, thereby
regenerating a Sall site.
Labeling of DNA

Plasmids and DNA fragments were nick-translated as described by Maniatis
et al., (21). Fragments were 5' end-labeled using 32P Y-ATP and T4 poly-
nucleotide kinase after dephosphorylation with calf alkaline phosphatase
(17). 3' end-labeling of restriction fragments was carried out by filling-

in the single-stranded termini using 32

P-adNTPs and the Klenow fragment of
E. coli DNA polymerase (22). Labeled fragments were purified by gel filtra-
tion on Sephadex G75 and ethanol precipitated prior to use as hybridization
probes.
R-loop Analysis

R-loop hybridization reactions (23) contained 1.5 ug/ml DNA, 17 or 34
ug/ml chloroplast RNA, 70% formamide, 0.3 M NaCl, 0.1 M PIPES, pH 8.5, 10
mM EDTA. Aliquots of 25 ul were sealed in microcapillary tubes and incub-
ated at 54°C for 16 h. Samples were prepared for electron microscopy by
dilution of 10 ul of the hybridization sample with 10 ul of spreading
solution containing 70% formamide. Spreading, staining and shadowing
conditions were as described by Davis, Simon and Davidson (24). Molecules
were visualized and photographed with a Philips 200 electron microscope.
The magnification was calibrated with a grating replica (2160 lines per
mm) ., Length measurements were made with a Summagraphics digitizer on
photographs enlarged to a print magnification of approximately 100 000 x.
Measurements were converted to numbers of base pairs using ColEI plasmid
(6320 bp) as a length standard.

RESULTS
Characterization of Spinach Chloroplast Large Subunit mRNA
Plasmid pSocBl49, which has the 11.5 kb BamHI fragment of spinach
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chloroplast DNA inserted into the BamHI site of the vector pBR322, directs
the synthesis of large subunit protein in the E. coli S30 in vitro transcrip-
tion-translation system (12)., The susceptibility of this synthesis to
prior cleavage of pSocBl49 DNA by certain restriction enzymes revealed that
the region coding for the large subunit protein probably lies within the 2
kb BamHI-Aval interval (12) indicated in Figure 1. Localization of the
gene entirely to this site has been confirmed by examining the R-loops
formed when total chloroplast RNA is hybridized to pSocBl149 linearized with
SacI or Smal. A single loop of about 1400 bp was observed (Figure 2). By
measuring the distance from the loop to the ends of the linearized molecule
and from a knowledge of the location of the SacI and Smal sites in the 11.5
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Figure 1. A Restriction Map of the 11.5 kb BamHI Fragment of Spinach
Chloroplast DNA and a 2 kb Sub-fragment Containing the Large Subunit Gene.
(A) The approximate locations on the 11.5 kb fragment of restriction sites
for the enzymes EcoRI, SacI, Smal and PstI are shown (distances are in base
pairs) together with one relevant Aval site. The 1750 bp and 1950 bp EcoRI
fragments are those containing the PstI and SacIl sites respectively. The
location and direction of transcription of the large subunit gene coding
region is indicated by the dashed line above the map. (B) Locations on the
2 kb EcoRI-BamHI fragment of restriction sites for the enzymes EcoRI,
BamHI, HindIII, PstI, Taql, HinfI, HpaIl and one relevant HaeIII site are
shown. The symbols 5', 3', N and C denote respectively the regions coding
for the 5' end and the 3' end of large subunit mRNA, and the N- and C-
termini of the large subunit protein. Restriction sites used for DNA
sequence analysis are indicated by dots under the map; filled dots represent
3' end-labeled sites, empty dots represent 5' end-labeled sites. The
arrows show the direction and extent of each sequencing run. Except for
the 66 bp adjacent to the terminal EcoRI site, all 2000 bp were sequenced
on both strands; sequencing was carried through all restriction sites
except the terminal BamHI and the internal HindIII sites. The 3 subfragments
drawn at the bottom of the diagram were used in the experiments to locate
the 5' and 3' ends of the large subunit mRNA.
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Figure 2., Electron Micrographs of R-loops Formed Between Spinach Chloroplast
RNA and the Recombinant Plasmid pSocB149., The DNA was linearized by digestion
with SacI (A) and Smal (B). Line drawings show measurements in base pairs
determined from 16 (A) and 22 (B) molecules. The bar is equivalent to 0.5 um.

kb BamHI fragment (there are no sites for these two enzymes in pBR322) the
R-loop was shown to coincide approximately with the 1750 bp EcoRI fragment
(See Figure 1), There was no evidence of unhybridized segments in the 1400
bp R-loop, indicating that no large introns are present in the coding
sequence for the large subunit protein. This result also confirmed that
there is only one copy of the gene on the 11,5 kb BamHI fragment of spinach
chloroplast DNA. Under the conditions used, no other R-loops were detected
on pSocBl49, This would suggest that transcripts of any other genes which
might be present on the 11.5 kb BamHI fragment are not as abundant as those
of the large subunit gene and that if R-loops for such genes are to be
demonstrated then it will be necessary to use chloroplast RNA enriched for
specific mRNAs,

The size of the mRNA for the large subunit as indicated by the R-loop
(1400 nucleotides) is somewhat smaller than expected for a 55 kd-protein,
An independent measure of its size was obtained by hybridizing the 1750 bp
EcoRI fragment of pSocBl49 to total chloroplast RNA which had been electro-
phoresed under denaturing conditions and transferred to diazotized amino-
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thiophenol paper (Northern blots). The labeled probe hybridized strongly
to an RNA of approximately 1700 nucleotides and faintly to smaller, yet
discrete, RNAs (track 1, Figure 3). The latter are too small to code for
the large subunit and presumably are breakdown products of the major 1700-
nucleotide species. No RNAs larger than 1700 nucleotides hybridized to the
1750 bp EcoRI fragment and it was concluded that if the 1700-nucleotide
large subunit mRNA is processed from a larger tramscript then the pool size
of the precursor is very small.

The same pattern of hybridization to chloroplast RNA was also obtained
when the 600 bp EcoRI fragment which lies between the 1750 bp EcoRI fragment
and the EcoRI site in the pBR322 vector was used as a probe (track 2,
Figure 3) indicating that the transcribed region of the large subunit gene
extends beyond the end of the 1750 bp EcoRI fragment (see Figure 1). No
hybridization to the 1700-nucleotide RNA species was detected, however,
when the 1950 bp EcoRI fragment from the other side of the 1750 bp EcoRI
fragment (see Figure 1) was used as a probe, although a larger RNA species
(approx. 2700 nucleotides, track 3, Figure 3) did hybridize. Compared to
the large subunit mRNA, the 2700-nucleotide RNA species was present in only
minor amounts.

The direction of transcription of the large subunit mRNA was determined

- e - Figure 3. Determination of the Size
of the mRNA for the Large Subunit
Protein and the Direction of Trans-
cription, Spinach chloroplast RNA
(30 ug/slot) was electrophoresed,
transferred to diazotized aminothio-
phenol papgs, hybridized with the
following ~“P-labeled probes and
’ autoradiographed. (1) nick-trans-
~ lated 1750 bp EcoRI fragment derived
‘@i& from pSocBl49 and recloned in pBR325
. (called pSocE48); (2) nick-trans-
bt lated 600 bp EcoRI fragment derived
from pSocBl49 and recloned in pBR325;
(3) nick-translated 1950 bp EcoRI
fragment derived from pSocBl49 and
recloned in pBR325; (4) the 1200 bp
EcoRI-PstI fragment of pSocE48, 3'
end-labeled at the EcoRI site; (5)
120 . o the 550 bp EcoRI-PstI fragment of
. pSocE48, 3' end-labeled at the EcoRI
site, The size of the RNAs was
1 2 3 4 5 calculated by reference to the
mobility of E. coli ribosomal RNAs.

2900

1500
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by probing Northern blots of chloroplast RNA with subfragments cut from

3' end-labeled 1750 bp EcoRI fragment with Pst 1. The 3' end-labeled

strand of the 550 bp EcoRI-Pstl fragment, but not the 3' end-labeled strand
of the 1200 bp EcoRI-Pstl fragment (see Figure 1), hybridized to the 1700-
nucleotide large subunit mRNA (tracks 4 and 5, Figure 3). This result
established that the direction of transcription of the gene is from the
Aval site towards the PstI site (from left to right in Figure 1), that is,
towards the closer of the two inverted repeat regions on the spinach chloro-
plast DNA restriction map (see 12).

Sequence Analysis of the Large Subunit Gene

From the above results it seemed likely that the 1750 bp EcoRI fragment
and the 250 bp EcoRI-BamHI fragment together would encompass the large
subunit gene and its flanking sequences. These two fragments were therefore
sequenced (16) according to the strategy diagrammed in Figure 1. The
correct reading phase and the region coding for the large subunit protein
were determined within this sequence by comparison of predicted translation
products with known partially sequenced cyanogen bromide and tryptic peptides
from barley and spinach large subunit protein (25, 26). The nucleotide
sequence and the deduced amino acid sequence of the spinach large subunit
protein are presented in Figure 4, The sequence is numbered from the
methionine ATG triplet which precedes by 14 codons the GCT triplet that
encodes the N-terminal alanine of barley (25) and wheat (Martin, personal
communication) large subunit protein. For reasons discussed below, we
consider translation of the large subunit of spinach starts at this methionine
residue rather than at the alanine residue. The protein coding region
terminates at the TAG amber codon immediately following codon number 475
for valine. Valine is known to be the C-terminal amino acid of spinach
large subunit protein (3). A second stop-codon, TAA, is situated 3 codons
further on.

On the basis of the nucleotide sequence data, spinach large subunit
protein contains 461 amino acid residues (MW 51200), or 475 residues (MW
52760) if the N-terminal leader sequence from methionine to alanine is
included. The predicted protein sequence immediately distal to the N-
terminal alanine matches, except for 2 amino acid substitutions, the 46
known N-terminal residues of the barley large subunit protein (25). Also
22 of the 24 known N-terminal residues from the wheat large subunit protein
(Martin, personal communication) match the predicted spinach large subunit
N-terminal sequence. Of the 475 predicted residues, 216 are confirmed by
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Figure 5. Determination of the 5' engzof Spinach Large Subunit mRNA by S1
Nuclease Mapping and cDNA Synthesis. ““P 5' end-labeled Taql-226S fragment
(15 ng) and spinach chloroplast total RNA (48 ug) in 10 ul of 10 mM Tris-
HC1 (pH 7.4), 10 mM MgCl,, 50 mM NaCl were denatured at 90°C for 2 min and

annealed by cooling slowly to room temperature over 30 min.

20 ul of 45

mM Na Acetate (pH 4.6), 75 mM NaCl, 1,5 mM ZnSO,, 7.5% glycerol containing
nuclease S1 (Miles) were added and the reaction was incubated for 15 min at
37°C. The reaction was stopped by the addition of 70 ul of TE (10 mM Tris-

HC1, pH 8.4, 1 mM EDTA) and 100 ul of TE-saturated phenol.

The reaction
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was re-extracted with TE-saturated phenol, twice ethanol precipitated,
ethanol washed, dried and taken up in 4 ul formamide-dyes (28). The samples
were electrophoresed on a 8% acrylamide-7M urea thin gel (28),, Tracks C +
T, C, A+ G, G are Maxam and Gilbert sequencing reactions of “"P 5' end-
labeled TaqI-226S DNA. Tracks l-4 are reactions with respectively 1000,
500, 200, 100 units of Sl nuclease. Track 5 is a reaction with E. coli
ribosomal RNA used in place of spinach RNA (1000 units of3§1 were added).

In tracks 6 and 7 the HaeIII-TaqI-14 bp fragment (0.5 ng ~“P 5' end-labeled
at the Taql site) was amnealed with 6 ug of E. coli ribosomal RNA (Track 6)
or 12 pg of spinach chloroplast RNA (Track 7) as described above. 40 ul of
62.5 mM Tris HC1 (pH 8.3), 175 mM KC1, 12.5 mM MgCl,, 37.5 mM R-mercapto-
ethanol, 625 uM deoxyribonucleotides with 10 units of reverse transcriptase
were added and the reaction incubated for 1 h at 42°C. The reaction was
stopped and samples were prepared for gel electrophoresis as described above.
Because this gel shows the sequence of the complementary DNA strand, the
numbers against the G residues correspond to C residues in the sequences
shown in Figures 4 and 7. The nucleotides corresponding to the 5' end of
spinach large subunit mRNA are indicated in Figure 7.

Figure 6. Determination of the 3' end of Spinach Large3§ubunit mRNA by S1
Nuclease Mapping. EcoRI-BamHI-244 bp fragment (60 ng), ~“P 3' end-labeled
at the EcoRI site, was annealed to 12 ug of spinach chloroplast total RNA
as described in Figure 5. Tracks 2-5 show the products of treatment with
respectively 1000, 500, 200 and 100 units of Sl nuclease separated on a 8%
acrylamide-7M urea thin gel. Track 1 shows the product of treatment with
1000 units of S1 of a reaction with E. coli ribosomal RNA replacing the
spinach RNA. Conditions for Sl treatment and sample preparation are as
described in Figure 5. Tracks A+ C, G, A+ G, C, C + T are the products
gEPMaxam and Gilbert sequencing reactions of the EcoRI-BamHI-244 bp fragment

3' end-labeled at the EcoRI site. Because this gel shows the sequence
of the complementary DNA strand, the numbers against the G residues corres-
pond to C residues in the sequences shown in Figures 4 and 8. The nucleo-
tides corresponding to the ends of the major Sl-resistant products are
indicated in Figure 8.

protein sequence analysis of peptides from barley and spinach large subunit
protein (Figure 4; Ref. 25, 26).

For comparative purposes, the nucleotide sequence of the gene for
maize large subunit protein (1) is also shown in Figure 4. The similarity
of the two sequences provides additional confirmation of the proposed
structure of the spinach large subunit protein. The sequence data also
verifies the earlier tentative conclusion that there are no introns in the
large subunit gene.

The 5' End of the Large Subunit mRNA

The region coding for the 5' end of large subunit mRNA was located
using the S1 nuclease mapping procedure of Berk and Sharp (18). The TaqI-
226 bp fragment, lying between base pairs 286 and 60 proximal to the N-
terminal methionine codon (Figure 1), was labeled at the 5' ends and strand
separated. Approximately 120 residues of the slow strand (TaqI-226s) were
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protected from Sl nuclease digestion by prior annealing of the DNA to
spinach chloroplast RNA (Figure 5). DNA sequence analysis confirmed that
TaqI-226s corresponded to the transcribed strand of the large subunit gene
(Figure 5). The precise length of the Sl-spared Taql- 226s fragment was
determined by electrophoresis on a DNA sequencing gel using a DNA sequence
ladder generated from Taql-226s as a marker (Figure 5). Based on this
analysis, the region coding for the 5' end of large subunit mRNA is 178-179
nucleotides upstream from the ATG triplet at which translation is presumed
to initiate (Figure 7).

This result was confirmed by reverse transcriptase extension of a DNA
fragment annealed to spinach chloroplast RNA, A 14 bp HaeIII-Taql fragment
(Figure 1; - 71 to -58, Figure 7) primed cDNA synthesis on the chloroplast
RNA template to.a length of 119 and 120 residues (Figure 5). Thus this
method also shows the length of the 5' untranslated region of spinach large
subunit mRNA to be 178-179 nucleotides (58 + 119 or 120).

The 3' End of the Large Subunit mRNA

The 244 bp BamHI-EcoRI fragment (Figure 1) which overlaps the region
coding for the C-terminal amino acid of large subunit protein, was 3' end-
labeled at the EcoRI site, denatured, annealed to spinach chloroplast RNA,
and treated with S1 nuclease., The products, which were analysed on a DNA
sequencing gel using as a marker a sequencing ladder generated from the
same labeled restriction fragment (Figure 6), indicated that the region
coding for the 3' end of the large subunit mRNA was between nucleotides
1510 and 1513 (Figure 4). Thus the 3' untranslated region of large subunit
mRNA is 85-88 residues, giving a total length for the mRNA of 1688-1692
residues, a value agreeing well with the size determined above by hybridiz-

ation to Northern blots.

DISCUSSION
Large Subunit Protein

Although the determined N-terminus of large subunit protein of barley
(25) and wheat (Martin, personal communication) is alanine, there is strong
evidence to suggest that translation of the spinach large subunit protein
initiates 14 codons prior to the alanine codon. There is a methionine
codon at this point in both the spinach and maize genes (Figure 4) and
protein synthesis is usually presumed to start with formylmethionine. Two
nucleotide changes occur in the 13 codons between the methionine and alanine

codons of spinach and maize; one results in an amino acid substitution and
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the other in a neutral change (Figure 4). This modest degree (5%) of
divergence is closer to that found in the protein coding portion of the
genes (16% divergence) and far less than the extensive divergence (35%)
found in the untranslated parts of the genes (see below). The sequence
5'GGAGG3"' occurs at positions -10 to -6 upstream from the methionine codon
(Figure 4) of both the spinach and maize large subunit genes. This sequence
is complementary to part of the sequence 3'AUUCCUCCAS' which is found at

the 3' end of maize chloroplast 16S RNA (29). Such complementarity occurs
frequently at a comparable position in the ribosome binding site of prokary-
otic mRNAs and is thought to play a crucial role in the initiation of protein
synthesis (30, 31), No sequence showing such extensive complementarity to
the 3' end of 16S chloroplast RNA occurs immediately prior to the N-terminal
alanine residue (Figure 4). Since no relevant protein sequence data is
available for spinach or maize large subunit proteins it is possible that
the N-terminus of these proteins is methionine while alanine is found at

the N-terminus of barley and wheat. However, Langridge (32) has found that
the spinach large subunit protein synthesized in an E. coli cell-free

system is 1000-2000 daltons larger than the purified spinach protein.
Furthermore, treatment of this larger protein with soluble extracts from
chloroplasts converts it to the same size as the purified large subunit
protein. On this basis we think that translation of the spinach and maize
large subunit proteins is initiated at the methionine codon, but that a
post-translational processing event cleaves the protein adjacent to the
alanine residue.

The small subunit of ribulose bisphosphate carboxylase is synthesized
in a precursor form, the function of which may be ensure that the cytoplasm-
ically synthesized protein is transported into the chloroplast (33-35). It is
unlikely that the role of a precursor form of the large subunit protein
would be concerned with the transport of the protein across a membrane, but
other possible functions, including that of maintaining the subunit in an
appropriate conformation until it is assembled into the holoprotein, can be
suggested (see Ref. 32). Comparison of the leader sequence of the large
subunit from spinach with that of the small subunit from pea (36) does not
reveal any homology.

Comparison of the deduced sequence for the spinach protein with the
published sequences determined for parts of the barley protein and with the
complete deduced sequence for the maize protein shows the protein to be

strongly conserved. Of the 475 amino acid residues in the spinach large
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subunit 49 are changed (10% divergence) in maize (Figure 4). Of these
changes, 45 are amino acid substitutions and 4 are deletions/ additions.
These changes are not randomly distributed throughout the molecule. In
particular, 32 of the 33 amino acids comprising two of the three tryptic
peptides known to be located at or near the catalytic site of the spinach
large subunit protein (27) are conserved in spinach and maize (Figure 4).
The C-terminal 35 residues, which encompass the third tryptic peptide known
to be located at or near the catalytic site, are, however, particularly
variable with 12 changes (347 divergence). As sequence information from
other species becomes available a more complete picture of the regions of
the molecule that cannot tolerate changes will emerge. One expected feature
of the changes observed between the spinach and maize large subunit genes
is that, while the amino acid sequences show only 10% divergence, the
nucleotide sequences have diverged by 16% (Figure 4). This discrepancy
results from the large number of neutral (usually in the third codon
position) nucleotide changes.

Analysis of the codons used in translating the spinach large subunit
protein shows that only 6 of the possible 61 are not used at all. Three of
these correspond to the 3 not used in the maize gene : ACG (thr), CGG (arg)
and AGC (ser). In addition, CTC (leu), ATA (ile) and TCG (ser) do not
appear in the large subunit gene from spinach. As might be expected for
chloroplast DNA with an overall composition of 38% G+C (37) there is a
marked bias towards the use of codons having A or T in the third position
(71%) . Within the protein coding region the base composition is 447% G+C.
Twenty-seven tRNAs have been identified in spinach chloroplasts and a
further 8 possible tRNAs have been detected (38). This number is sufficient
to translate all 55 codons used, allowing for G-U base-pairing invoked in
the wobble hypothesis (39).

5' Untranslated Region of the Large Subunit Gene

Transcription of the mRNA for the spinach large subunit gene is initiated
178-179 nucleotides upstream from the ATG codon at which translation of the
large subunit protein presumably starts (Figure 7). The size of the 5'
untranslated region of the mRNA is surprising, particularly since trans-
cription of the maize large subunit gene initiates only 61 + 2 nucleotides
prior to the methionine start codon (1). The lack of 117 of these nucleotides
from the maize large subunit mRNA indicates that at least this part of the
spinach leader region has little effect on the translatability of the mRNA.

It is possible that sequences in this region are involved in the regulation
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-229 tg'l'l'GACA e attt_itTATAATg ‘i -140
Spinach  CGGTTACGGTTGGGTTGCGCC ATAT ATATGAAAGAGTATACAATAATG ATGTA'I'I‘T TCAAATACATGGTCTA‘H‘AACG MC

Maize GMTTCCTATAGTAMAITCCTATAGGATA GAAC G'I‘ACACAGGG TGTATACATAAAT M CATA'].TAC TAACT!‘MG

-220 -150
-130 -7
Spinach CAT I'l'l‘GATTrGTTGATqAT ATrAqITGAGAAchTGAAAGAT'lI‘GCTATAlAAAGGT'H ATTAAGGCCTAATTTA
Maize CATACTCCTHTH‘TATTTAATGAGTTGATAHMTATCATTTHTTI AGATTTTTGC & QT'I'I‘C GCCTAA’ CC
140 -60
-60 . -10 Met Ser Pro Gln Thr

Spinach TGICGAGTAGACCTTGTIGCTHGTTGTAMAA TTAAAATTTGAAGTTGTAGGGAGGGACTT ATG TCA CCA CAA ACA

Maize TATCGAGTTGTCCCTGT GCT TGT GTGAATTCTTAATTCATGA GTTGTAGGGAGGGACTT ATG TCA CCA CAA ACA
-50 -10 10

Figure 7. Comparison between Sequences 5' to the Coding Region of the
Large Subunit Genes of Spinach and Maize (1) Chloroplasts DNAs.

The numbering of the spinach sequence (top) and the maize sequence (bottom)
is relative to the ATG triplet at which translation of the large subunit
protein is initiated. The sequences are aligned to give maximal homology
with boxes indicating regions of extensive homology and lines indicating
regions of lesser homology. The arrows at -63 and -64 of the maize sequence
and ~178 and -179 of the spinach sequence indicate the respective large
subunit mRNA transcription start sites. The most common E. coli promoter
sequence deduced by Siebenlist (41) is indicated between nucleotides -214
and -182 of the spinach sequence. Higher case letters in this common
sequence indicate that a base appears more frequently in that position of
promoters than bases indicated by lower case letters (see Ref. 41).

of transcription and it is interesting to note that in maize, in contrast
to spinach, the large subunit mRNA is differentially expressed in mesophyll
and bundle sheath cells (40).

Comparison of the 20 nucleotides preceeding the ATG initiation codons
of the spinach and maize gene reveals about 95% homology (Figure 7), a
reflection of the importance of this region as a probable ribosome binding
site (see above). Further upstream the homology is markedly reduced and,
if the comparison is made over the 227 nucleotides in spinach and maize
which have so far been sequenced in this region only 65% of them match.

The comparable figure for homology over the first 227 nucleotides of the
coding region of the maize and spinach genes is 857%.

In Figure 7 the untranslated sequences preceding the coding regions of
the two genes have been aligned to maximize the extent of the homology and
reveal stretches of perfect matching up to 9 nucleotides in length. The
changes that have occurred through evolution of this region include extensive
(up to 13 nucleotides) deletions (or additions) as well as base substitutions.

Because one consequence of these changes has been the relocation of the
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. promoter for the large subunit gene, the comparison shown in Figure 7 can
be viewed as part of a mutational analysis of the respective promoter
regions.

Does_the Promoter for the Large Subunit Gene have Features

in Common with Bacterial Promoters?

Nucleotide sequence studies of the 16S rRNA gene from maize chloroplast
DNA have indicated a probable prokaryote origin for at least that part of
‘the DNA (42). The retention of homology between the 3' end of 16S rRNA and
the ribosome binding site of the maize and spinach large subunit mRNA is a
further indication of the prokaryote-like nature of genes on chloroplast
DNA. The question arises then as to whether the promoters for chloroplast
DNA genes have features in common with bacterial promoters.

Extensive studies of promoters from the bacterium Escherichia coli

show that two regions immediately preceding transcription initiation sites
are generally conserved (41). The sequence TATAAT is often found about 5
nucleotides prior to the transcription start site. The other region to
show considerable conservation occurs approximately 35 nucleotides upstream
from the same site. It should however be emphasized that examples of
promoters with nucleotide changes in either of these conserved regions
exist.

A comparison between the spinach large subunit promoter region and the
E. coli consensus promoter sequence reveals homology with both conserved
regions (Figure 7). In this context it may be significant that substantial
amounts of large subunit protein are synthesized in an E. coli cell-free
transcription-translation system directed by the EcoRI 1750 bp fragment
(unpublished observations). This result shows that E. coli RNA polymerase
must be capable of initiating transcription somewhere in the 350 bp region
prior to the large subunit gene translation start codon. It will be of
interest to determine whether the promoter utilized by E. coli RNA poly-
merase corresponds to the promoter used in vivo by spinach chloroplast RNA
polymerase.

The maize large subunit gene promoter, however, shows no obvious
homology to E. coli promoters (1). Sequence analysis of further chloroplast
DNA promoter regions will help to elucidate their evolutionary origin.

3' Untranslated Region of the Large Subunit Gene

The spinach large subunit mRNA has 82-85 untranslated nucleotides at
the 3' end (Figure 8). The region immediately preceding the 3' end of the
mRNA is capable of forming a stem and loop secondary structure (Figure 9).
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Phe Pro Ala Met Asp Thr Val Stop
Spinach TTC CCA GCA ATG GAT ACA GTC TAG GCTAA

Maize TTC AAA GCG ATG GAT ACC ATA TAA AATAAAAAAAAAGCAAAATATGAAGTGAAAAAATAAGTTATGAAATGAAATGAAATGAC
Lys Ile 10 50
10 . . A _—— - — — g ¥
Spinach  FTAATTAATGTCCGGTETC KKTATAZTT?I?KT?AIZCTEEE%CCArxu;;AWA. GGATTGAGCCGAATACAATTATTGTA
Maize CTAATICTTTATIC CTCT AAT TGAIIQCAAISCAAT&EEESTC ATCTTTT CTAAAAAAAAAAAAGACTGAGCCGAAAAGAAAAAGATCT
65 . 3 7 3 ¢ . 2 iy

Figure 8. Comparison between Sequences 3' to the Coding Region of the
Large Subunit Genes of Spinach and Maize (1) Chloroplast DNAs.

The spinach sequence (top) and the maize sequence (bottom) are numbered
relative to the translation stop codons. The sequences are aligned to show
maximal homology with boxes and lines indicating the regions of homology as
for Figure 7. The arrows at nucleotides 82, 84, 85 of the spinach sequence
indicate the positions at which transcription of the spinach large subunit
mRNA terminates. The thick bars indicate those nucleotides which base-pair
to form the structures shown in Figure 9,

Analogous secondary structures occur at prokaryotic transcription termination
sites and have been shown by mutational analysis to be required for efficient
transcription termination (43). Such structures have not been implicated
in transcription termination of most eukaryote genes, although stem and
loop structures exist at the 3' ends of some genes transcribed by RNA
polymerase III (44, 45).

Comparison of the nucleotide sequences of spinach and maize chloroplast
DNAs immediately following the large subunit gene translation stop codon
reveals little homology (Figure 4). However, if the spinach sequence is
displaced downstream by 54 nucleotides the next 80 nucleotides can be
aligned with the maize sequence with extensive homology (Figure 8). Of
these nucleotides, 41 include the region capable of forming the stem and
loop structure and the site of transcription termination for the spinach
mRNA (Figure 9). Thus the maize chloroplast DNA 3' to the large subunit
gene coding region is also capable of forming a stem and loop structure
(Figure 9). In pea chloroplast DNA this same 4l-nucleotide region is
completely homologous to the spinach sequence while the adjacent regions
show extensive divergence (unpublished observations). If it is assumed
that these stem and loop structures do have a role in transcription termin-_
ation then the variation in the sequence of the stem and in the size of the
loop between spinach and maize suggests that these aspects of the structure
can tolerate this variation. Extensive studies of stem and loop structures

which function as transcription terminators in E. coli show that neither
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A A Figure 9. The Proposed Stem and
A A Loop Secondary Structure at the 3'
A A end of Spinach Large Subunit mRNA
and the Analogous Structure in
cu U A Maize. The heavy arrows indicate
A A 110=C A the positions at which transcription
60—>U-A U-A<—120 of the spinach large subunit gene
U-A U-A terminates. The nucleotide numbers
UA U-A correspond to those given in Figure
Ue U-A —»G 8. The nucleotide changes required
C+G to convert the stem region of the
¢-¢ U-A proposed maize secondary structure
U-A=—70 Ae— C—>U to the stem region of the spinach
AU AU secondary structure are indicated.
AU cc The estimated free energies (AG) of
C+G C=—TU-A formation of the stem and loop
CA 100—C*G=—130 structures calculated according to
50—+CG G+C Tinoco et al, (46) and Borer et al.
G+C G+C (47) are -16 kcal for spinach and
GeC CG -20 kcal for maize.
c-G U-A
uea /80 Cwyes 140
AAAC  AUACAA CAA  AAGAAAAA
Spinach Maize

the sequence of the stem nor the size of the loop are as important as is
the ability to form a stable stem region (42). Mutants relieving trans-
cription termination almost always destabilize the stem regions (45).
However, confirmation that the stem and loop structures which can be formed
at the 3' ends of the pea and maize large subunit genes are in fact present
at the 3' end of the respective mRNAs, and therefore are probably involved
in transcription termination, must await the determination of the 3' end of
the pea and maize large subunit mRNA.
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