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Abstract
The current standard for monitoring sleep in rats requires labor intensive surgical procedures and
the implantation of chronic electrodes which have the potential to impact behavior and sleep. With
the goal of developing a non-invasive method to determine sleep and wakefulness, we constructed
a non-contact monitoring system to measure movement and respiratory activity using signals
acquired with pulse Doppler radar and from digitized video analysis. A set of 23 frequency and
time-domain features were derived from these signals and were calculated in 10 s epochs. Based
on these features, a classification method for automated scoring of wakefulness, non-rapid eye
movement sleep (NREM) and REM in rats was developed using a support vector machine (SVM).
We then assessed the utility of the automated scoring system in discriminating wakefulness and
sleep by comparing the results to standard scoring of wakefulness and sleep based on concurrently
recorded EEG and EMG. Agreement between SVM automated scoring based on selected features
and visual scores based on EEG and EMG were approximately 91% for wakefulness, 84% for
NREM and 70% for REM. The results indicate that automated scoring based on non-invasively
acquired movement and respiratory activity will be useful for studies requiring discrimination of
wakefulness and sleep. However, additional information or signals will be needed to improve
discrimination of NREM and REM episodes within sleep.
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1. Introduction
Accurate assessment and analysis of sleep stages is a fundamental requirement in sleep
research. Rodents are often used as models in the sleep field due to their ready availability
and the similarities of their sleep to human sleep (Bergmann et al., 1987). Three basic states
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of arousal and sleep are typically distinguished in basic sleep research: wakefulness, non-
rapid eye movement sleep (NREM) and rapid eye movement sleep (REM). Determining
these three arousal states in rats and other animals typically relies on recordings of the
electroencephalogram (EEG) and electromyogram (EMG) and assessments of state-related
changes using well-established scoring conventions.

While conventional scoring techniques yield accurate results in discriminating arousal and
sleep states through the examination of electrophysiological signals obtained from animals,
they also have a number of inherent limitations. These include the need for labor-intensive
surgery to implant electrodes and the need to provide extensive post-surgical care to
recovering animals. There is also the possibility that the recording technique (e.g., cable
recording) can affect the parameter being measured and/or may limit the animal’s behavior
(Tang and Sanford, 2002). Scoring the resultant EEG and EMG recordings to determine
wakefulness and sleep states can also be time-consuming. These limitations indicate the
need for non-invasive techniques that can record physiological parameters and that are
amenable to rapid assessment of behavioral states.

A number of non-invasive approaches for assessment of behavioral state have been
attempted. These include measurements of activity resulting from infrared beam breaks,
frame-by-frame analysis of digital video (Pack et al., 2007) and from a pressure sensor
located on the cage floor (Donohue et al., 2008; Flores et al., 2007). Each of these methods
reportedly provides reasonable accuracy in distinguishing sleep from wakefulness. However,
work in both humans and animals indicate that analysis of movements is not sufficient for
discriminating sleep and wakefulness in all situations. In humans, actigraphy can fail during
periods of low activity in wakefulness (Karlen et al., 2008) and its accuracy may decline as
sleep efficiency decreases (Ancoli-Israel et al., 2003; Morgenthaler et al., 2007a;
Morgenthaler et al., 2007b). In animals, our lab has shown that movement may be less
discriminating of sleep for less active strains of mice (Tang et al., 2002). In addition, while
detection of wakefulness and sleep is adequate for many purposes, methods need to be
developed that will enable NREM and REM to be distinguished to provide broader utility
and improved data across situations.

In humans, respiratory rates show state-related differences with slower, steady rates in
NREM, whereas one of the hallmark signs of REM is irregular respiratory activity, in
particular, during phasic REM (Pack et al., 1988). Heart rate also slows from relaxed
wakefulness to NREM. It is also low during tonic REM, but there can be wide swings in
heart rate during phasic REM (Pack et al., 1988). Changes in respiratory and heart rates, by
themselves, may not be sufficient to clearly distinguish sleep and wakefulness. However, in
combination with a measure of movement, the validity and reliability of state determination
based on these parameters may be improved considerably (Karlen et al., 2008).

Doppler radar has been used to record movement in rodents (Kjellstrand et al., 1985;
Marsden and King, 1979; Rose et al., 1985) and has the potential for monitoring physiologic
signals including respiratory rate (Gordon and Ali, 1984; Lin, 1992; Lin, 1975) and heart
rate (Lin, 1992). Doppler radar has been applied to human respiratory and heart monitoring
(Staderini, 2002) and Doppler measurements of movement and respiratory activity have
been used in humans to determine sleep-wake states (de Chazal et al., 2008).

In this paper, we describe a method using pulse Doppler radar for non-invasive assessment
of sleep and wakefulness in rats. We utilized a 5800 MHz pulse Doppler radar sensor to
non-invasively detect movement and respiratory activity, and then based on these signals,
we developed an automated computer program to classify wakefulness, NREM and REM
method using support vector machines (SVMs). Parallel measures of activity using digital
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video analysis were also obtained. The accuracy of the of non-invasively detected changes
in state was determined by comparing results to those obtained by concurrent recording and
scoring of sleep states based on EEG and EMG parameters. Our goal was to devise a non-
invasive sleep and arousal monitoring system suitable for high-throughput screening and for
assessing sleep in experimental situations (e.g., stress paradigms) that may be susceptible to
confounds produced by cabling or other recording devices. The results suggest that this
approach can provide a useful complementary research method for sleep research.

2. Methods
2.1. Subjects

The subjects were 7 male Wistar rats of approximately 10 weeks of age at the time of
surgery. The rats were individually housed in polycarbonate cages and given ad libtitum
access to food and water. The colony rooms were kept on a 12/12 light/dark cycle with
lights on 07:00 to 19:00, EST. Ambient room temperature was maintained at 24.5±0.5 °C.

2.2 Surgery
The rats were implanted with two screw electrodes in the skull for recording the
electroencephalogram (EEG). An additional screw electrode was placed in the skull for use
as a ground. Two stainless steel wire electrodes were sutured to the dorsal neck musculature
for recording the electromyogram (EMG). Two additional steel wires were implanted in the
diaphragm (0.5–1 cm apart) for recording diaphragm EMG (DiaEMG) activity as a measure
of respiration and to record the electrocardiogram (EKG). Leads from the recording
electrodes were routed to a 9-pin miniature plug that was affixed to the skull with dental
acrylic and stainless steel anchor screws.

For surgery, the rats were anesthetized with isoflurane (5% induction; 2% maintenance).
Ibuprofen (15 mg/kg weight) for the relief of postoperative pain was provided in their water
supply for two to three days prior to surgery and for three or more days post-surgery. The
rats were allowed a minimum of 14 days to recover from surgery prior to beginning the
experiment. All procedures were conducted in accordance with the National Institutes of
Health Guide for the Care and Use of Experimental Animals and were approved by Eastern
Virginia Medical School’s Animal Care and Use Committee (Protocols #07-013 and #
09-019).

2.3 Instruments and data collection
For recording, rats in their home cages were placed in a chamber outfitted for
electrophysiological recording and a lightweight, shielded cable was attached to the
miniature plug on the rat’s head. The cable was connected through a swivel commutator
(Model SLC12; Plastics One, Inc. Roanoke, VA), which permitted relatively free movement
of the animal. The EEG, EMG and DiaEMG signals were routed to a Grass (West Warwick,
RI) Model 12 polygraph equipped with model 12A5 amplifiers. High-pass filters were set at
1 Hz and low-pass filters were set at 100 Hz for the EEG and DiaEMG and at 300Hz for the
EMG. Approximately 8 h recordings were obtained from each rat beginning two h after
lights on.

The biomotion sensor used was a 5800 MHz 4-channel pulse Doppler “bubble” radar unit
(Model BBL; McEwan Technologies, Las Vegas, NV) with a patented modulation system
that limits both the maximum and minimum detection range for distances from subjects. The
output 4 channels are composed of 2 pairs of in-phase (I) and quadrature (Q) signals
designed to eliminate range dependent sensing nulls. Analog filters with bandwidth of 1–22
Hz and 0.5–6 Hz were applied to 2 pairs of I/Q channels for the detection of heart beats and
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respiratory movement, respectively. The biomotion sensor was placed 70 cm above rat cage
with its antenna pointing perpendicularly toward the cage.

Electrophysiological and biomotion signals were routed to a National Instruments 16-bit
data acquisition board (NI PCI-6221) and processed at a sampling rate of 250 Hz per
channel using a custom software program developed in MATLAB 7.0 (The Mathworks,
Natick, MA). This program concurrently recorded both invasively derived physiological
signals (EEG, EMG, DiaEMG, EKG) and non-invasively obtained signals from the
biomotion sensor for subsequent comparisons of sleep-stage scoring accuracy.

Video recording was accomplished with an infrared non-contact thermal imager (Flir
Systems, ThermoVision A320). This camera was used in an attempt to measure body
surface temperature, but was unable to reliably detect temperature changes associated with
changes in arousal state. Thus, we were limited to analysis of movement in the video.

2.4 Visual scoring
Wakefulness, NREM and REM were visually scored in 10 s epochs by two trained observers
using standard EEG and EMG criteria. Wakefulness was scored based on the presence of
low-voltage, fast EEG and high amplitude, tonic EMG levels, and phasic EMG bursts that
could be associated with gross body movements. NREM was characterized by the presence
of spindles interspersed with slow waves, lower muscle tone and no gross body movements
or EEG desynchronization. REM was scored continuously during the presence of low
voltage, fast EEG, theta rhythm and muscle atonia with the onset of REM occurring
immediately following the last sleep spindle. All scoring was performed using SleepSign
program (KISSEI COMTEC CO., LTD. Nagano 390–1293, Japan).

2.5 Doppler Radar signal processing
The I and Q channels of the quadrature radar sensor are phased 90° apart to insure that at
least one of outputs is not in a null point. To avoid a phase demodulation null point and to
accurately recover the bio-motion signals, output from I and Q channels must be combined.
We used principal component analysis (PCA) to combine channels. PCA is a statistical
method for dimensionality reduction which is commonly used to replace attributes with
smaller numbers of new attributes called principal components. It computes linear
combinations of the original attributes to maximally explain the variance. In this case, we
reduced two dimensional data (from I and Q channels) into one. A covariance matrix
between I and Q channels was calculated, and I and Q data were then projected onto an
eigenvector of the covariance matrix with largest eigenvalue. Thus, the principal
components resulting from the combination of I and Q channels accounted for as much of
the variability within I and Q data as possible. A band pass (0.1– 12 Hz) finite impulse
response (FIR) filter (Hamming windowed impulse response) with order 1024 was then
applied to the PCA processed data.

2.6 Critical properties and feature extraction
The primary question for this project was whether wakefulness, NREM and REM states
could be distinguished based on movement and respiratory patterns detected by Doppler
radar. In the radar recordings, active wakefulness was characterized by high amplitude
signals with random transient shifts. There also was increased power at low frequencies
generated by large movements as a rat moved within its cage. During sleep, respiration was
the major detectable movement and both NREM and REM sleep exhibited a quasi-periodic
breathing pattern. Respiratory rates show slower, steady rates in NREM whereas respiration
is irregular in REM, in particular, during phasic REM (Pack et al., 1988). Respiratory
signals can vary in amplitude and scale with variations in sleep position and subject size. To
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minimize the potential effects of animal size and position, the features were extracted from
normalized raw signals for each animal and were linearly scaled over all testing epochs from
−1.0 to 1.0 prior to analysis.

A set of 23 frequency and time-domain features were derived from the radar sensor signal
and camera (Table 1). These were calculated for successive 10 s epochs using software
developed in Matlab. Features for spectral density estimates of frequency were generated
using the Thompson multitaper method with a time-bandwidth product of 4 (Thomson,
1982).

Respiration during quiet wakefulness and sleep produces signals with consistent amplitudes
and periodic waveforms. By comparison, movement of an animal during wakefulness
increases the power of the signal at low frequencies and produces irregular waveforms. The
autocorrelation (AC) function, and its frequency domain equivalent, the power spectrum,
significantly reduce stationary noise, and thus, can increase efficiency in detecting periodic
signals (Donohue et al., 2008). Hence, the AC was computed to characterize the periodic
radar signal on each 10 sec epoch and was used for subsequent feature extraction. The signal
to noise ratio (SNR), peak frequency within 1.0 – 2.1 Hz (respiratory frequency for rat,
RFQ), mean power spectral density (MP) in various bands and total power spectral density
(TPSD) were computed as critical features followed by obtaining additional features of the
spectral shape (mean, standard deviation, skewness and kurtosis).

Large movements of the rats were also detected by video analysis. Differences in sequential
images were computed by subtracting pixel to pixel changes in consecutive images. The
resultant difference image was then calculated by its standard deviation among pixels.

Discriminatory power for each of the 23 features was determined using F-scores calculated
using procedures outlined in (Chen and Lin, 2003). Larger F-scores indicate better
discrimination.

2.7 Support vector machine
SVM is a classification tool that uses statistical learning theory (Vapnik, 2002) to maximize
predictive accuracy while minimizing the problem of over-fitting to the data. Conventional
neural networks based on Empirical Risk Minimization principle (ERM), which minimizes
error in training data, can generalize poorly. By comparison, the SVM usually performs
better in generalization due to its formulation of Structural Risk Minimization (SRM)
principle which minimizes an upper bound on the expected risk (Burges, 1998). The main
objective of a binary SVM is to separate data with an optimized hyperplane which
maximizes the margin between two classes. SVMs are being used in a variety of biomedical
and research applications including sleep-stage scoring based on EEG and EMG (Crisler et
al., 2008), protein function classification (Cai et al., 2003), and the design of a brain
computer interface (BCI) system (Lal et al., 2004). In this study, a soft-margin SVM was
designed to automate the sleep scoring process on the features extracted from Doppler radar
signals as described in Section 2.6.

2.8 Implementation and assessment of classifier
The SVM was implemented using the LIBSVM package in Matlab (Chang and Lin, 2001).
A sequential minimal optimization (Platt, 1999; Zanni et al., 2006) method was used to
break the optimization problem down into sub-problems thereby eliminating the need for
numerical optimization at each step. All features described in Section 2.6 were scaled to
within the range of −1 to 1, and were used in the SVM to automatically classify arousal
states. Three binary SVM classifiers (wakefulness vs. not-wakefulness, REM vs. not-REM,
NREM vs. not-NREM) were constructed and trained with selected features using one-
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versus-all approach for multi-classification (Abe, 2010), the final binary classification were
generated according to soft scores which represent the signed distance to the decision
boundary of the SVMs. The test features were presented to all three SVMs and the decision
regarding state was made according to the maximum soft scores among the three classifiers.

To assess the overall performance of the SVM classifier, we used a K-fold (k=10) cross-
validation approach (McLachlan et al., 2004). Accordingly, a dataset consisting of roughly
56 hours of recording in 7 rats was randomly partitioned into 10 approximately equal and
balanced sub-samples. In each run, one sub-sample was used as the training set and the
remaining samples were used as test sets across the 7 individual rats. Visually scored sleep
stages for each sample were used as the validation data for training and testing. The results
of the 10 repetitions were then averaged for each rat. Based on visual scoring, the total data
set contained 38.4% wakefulness, 50% NREM and 11.6% REM. A diagram of the
classification procedure is shown in Figure 1.

To assess the performance of the SVM classifiers for automated determination of sleep and
wakefulness, overall accuracy, positive predictive value (PPV), sensitivity (Se), and Cohen’s
kappa index (CKI) were utilized.

Overall accuracy was calculated as: A=100(1-Nr/Np) where A is the percentage of overall
classification accuracy, Nr denotes number of misclassified epochs, and Np denotes total
number of testing epochs.

The PPV and Se were calculated by: PPV = TP/(TP+FP) and Se=TP/(TP+FN),
respectively. CKI was computed as: 2*(TP*TN-FP*FN)/((TP+FN)(FN+TN)+(FP+TN)(TP
+FP)). TP indicates true positives, FP indicates false positives, TN indicates true negatives,
and FN indicates false negatives. N refers to the total number of 10s epochs.

The PPV measures how exclusively it classifies a certain class, e.g., a PPV of 100% means
that all predicted positives are true positives. Se is a measure of the percentage of epochs
which are correctly identified by the binary classifier, a Se of 100% means that the classifier
recognizes all true positives. CKI (Cohen, 1960) is an index of inter-rater reliability that is
commonly used to measure the level of agreement between two sets of ratings or scores.
CKI values greater than 0.80 represent almost perfect agreement, whereas CKI values
between 0.61 and 0.80, 0.41 and 0.60, 0.21 and 0.40, 0 and 0.20 represent substantial,
moderate, fair, and slight agreement, respectively (Landis and Koch, 1977).

3. Results
3.1 Detection of Activity and Respiration

Figure 2 presents sample waveforms of signals obtained by the radar sensor in wakefulness
(A), NREM (D) and REM (G). Output of the Doppler radar sensor during wakefulness was
characterized by large movements and corresponding greater power in the FFT at low
frequencies (Figure 2B). Output of the sensor during sleep showed cyclic oscillations that
corresponded to rat chest wall motion due to respiration during NREM (Figure 2D) and
REM (Figure 2G). The waveform of the respiratory signal during NREM was periodic
(Figure 2D) whereas the signal during REM was irregular (Figure 2G). Mean respiratory
rate during REM (2.06±0.26 Hz) was significantly higher (p<0.001) than that observed
during NREM (1.59±0.1 Hz). The FFT of the respiratory signal in NREM found a
prominent peak at 1.35 (Fig 3E). By comparison, the FFT of the respiratory signal in REM
revealed peaks at 1.77 Hz and at 2.0 Hz (Figure 2H).
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Respiratory rates derived from the Doppler radar sensor were significantly correlated with
concurrently determined respiratory rates obtained from the DiaEMG using FFT peak
finding methods for both NREM (Figure 3A) and REM (Figure 3B).

3.2 Sleep State Discrimination
A total of 20174 10 sec epochs (approximately 56 hours of recording; 8 hours of data in 7
rats) were visually scored by two experienced scorers based on standard EEG and EMG
criteria. Overall agreement between the two scorers for all three stages was 90.36%.
Agreement for each state are presented in Table 2. Some of discrepancy between scorers
was due to classification bias. For example, scorer 1 assigned fewer epochs as W (7295) and
REM (2132) than did scorer 2 (W: 7588; REM: 2395).

For automated scoring of wakefulness and sleep states based on the radar signal, a K-fold
(k=10) cross-validation approach was utilized to evaluate the performance of SVMs in our
study described as in Section 2.8. The resulting classifications were compared to the visually
scored data in order to assess the performance of the automated wake-sleep stages classifier.
This process is illustrated in Figure 4 which shows sleep stage classification for 500 10 sec
epochs of radar sensor data made by three soft scores of the binary SVMs and the
corresponding final SVM determined scores and visually determined scores. The final
scores were determined by the largest soft scores among three binary SVMs.

Figure 5 shows the effect of adding features to the SVMs on state discrimination. We began
with the feature with the greatest state discrimination based on F-score and subsequently
added features with less discriminatory power until all 23 features were used. The PPV
(Figure 5A) for NREM (ANOVA, F(22,138)=3.10, p<0.001) and REM (ANOVA,
F(22,138)=2.06, p=0.008) increased significantly as features were added. PPV for
wakefulness decreased slightly and did not significantly change as the number of features
increased. By comparison, sensitivity (Figure 5B) for NREM did not vary as features were
added whereas sensitivity for REM showed a steady increase as features were added
(ANOVA, F(22,138)=5.41, p<0.001). Agreement increased significantly as features were
added for REM (ANOVA, F(22,138)=5.72, p<0.001), NREM (ANOVA, F(22,138)=8.43,
p<0.001), wakefulness (ANOVA, F(22,138)=3.22, p<0.001) and overall all-stage accuracy
(ANOVA, F(22,138)=7.10, p<0.001) (Figure 5C).

Table 3 presents indices of performance (PPV, sensitivity, CKI and accuracy) calculated for
the SVMs for discriminating wakefulness, NREM and REM for all 7 rats. Agreement of the
SVM automated scores to the visually scored results of the human scorers is presented in
Table 4. The SVMs were trained based on Scorer 1’s results, but had similar agreement for
both scorers. For each field in Table 4, we also examined the mean EEG spectral power in
the 0–20 Hz range, in 1 Hz bins, across all epochs represented in individual cells (Figure 6).
For instance, Figure 6A and B each have 9 panels oriented to match the cells of Table 4
showing the agreement between the SVMs and Scorer 1 and 2, respectively. One obvious
observation from this figure is that visually scored epochs more closely followed the EEG
spectra associated with each state than did SVM scoring which relied on variations in the
respiratory signal.

To further assess the accuracy of the SVMs, we also examined the agreement between
automated scoring and each visual scorer on transitional epochs that were immediately
preceded or immediately followed by an epoch scored as a distinct state (Table 5).
Transitional epochs comprised 6.16% of the record and agreement between the SVMs and
visual scoring on transitional epochs was considerably less than on non-transitional epochs.
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Lastly, we examined bout length and episode numbers as measures of sleep consolidation
for the SVMs and visual scoring (Table 6). For this comparison, we also calculated bout
length and episode number for the SVMs determined from scores of single 10 sec epochs as
well as from scoring based on the average soft score of the current and immediately
preceding and following epochs. This table demonstrates that using the average soft scores
produced measures of sleep consolidation that were more similar to visual scoring though
REM episode duration was significantly less with both types of SVM scoring than with
visual scoring.

3.3 Main Discriminating Features of the SVM
Figure 7 plots the F-scores for the top 12 discriminating features used in the SVMs for
wakefulness, NREM and REM. All features selected for the binary SVMs differed
significantly for discriminations between wakefulness from not-wakefulness, REM from
not-REM, and NREM from not-NREM (t-test, p<0.01). The features that had the largest F-
scores and contributed the most to discriminating wakefulness were MPL1 and MPT. The
features that contributed the most to discriminating NREM were MPL1, MPT, MP3-5, and
SNR_L whereas those that contributed most to discriminating REM were RFQ and K_L,
MPL1, and MP.

Using only the first two top features (MPL1 and MPT), the binary SVM for discriminating
wakefulness from not-wakefulness (NREM and REM) reached an 89.1% accuracy (see
Figure 5C). Adding features did not noticeably improve discrimination. By comparison,
using only the image data acquired from the camera (SID), yielded an accuracy of 85%
discrimination of wakefulness from sleep.

The combination of three binary SVMs achieved an 81.9% agreement for all stages using
only 4 features with the highest F-scores.

4. Discussion
The aim of this study was to investigate the possibility of establishing a novel, non-invasive
automated sleep scoring system in rats based on gross motor activity and respiration. The
results suggest that measures of activity and respiration obtained by pulse Doppler radar and
analyzed using SVM procedures can provide useful estimates of the three main behavioral
states of interest in sleep research.

The bio-motion radar sensor used in this study was a quadrature pulse Doppler radar which
has two 90 degree phase-shifted output channels (I and Q) designed to overcome detection
sensitivity to target position (Droitcour et al., 2004). In this study, PCA was used to combine
signals from the I and Q channels due to superior performance over other methods
(Droitcour, 2006). While the combination of the two channels improved the recovery of the
bio-motion signal, periods with weak signal to noise ratio (SNR) signals were also observed,
though the exact cause is unknown. Thus, despite high correlations between radar obtained
signals and DiaEMG (Figure 3), some properties of the bio-motion signal, e.g., such as
KAC, SAC and MAC, may not always accurately reflect the real respiratory signal with
respect to breathing regularity. This was confirmed by replacing the radar derived signal
with the DiaEMG signal as the source for features extraction. The result for SVMs was then
improved. A more sensitive bio-motion sensor therefore could potentially provide better
classification results.

Visual scoring of sleep stages based on invasively acquired physiological signals can
provide reliable data regarding changes in sleep and wakefulness. Drawbacks are that visual
scoring is a time-consuming process and that the results can vary depending on scorer’s
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training, experience and tendency. Reported agreement between scorers in published studies
can range widely, e.g., from 83% to 95% (Benington et al., 1994; Louis et al., 2004;
Neckelmann et al., 1994). By comparison, scorers in the current study showed an overall
inter-rater agreement of 90% for all 10 sec epochs that were examined.

There has also been significant interest in the development of computer based automated
scoring systems to replace visual scoring. Efforts have used a wide range of algorithms
based on pattern recognition and machine learning. Most commonly used classification
methods include artificial neural networks, hidden Markov models, statistic learning, and
logic based methods. Reported concordance between visual and automated scoring also has
a wide range, e.g., from 71% (Neckelmann et al., 1994) to 95% (Karasinski et al., 1994).
However, the various methods used to determine accuracy make comparisons across studies
difficult.

Relative to computer based algorithms which use invasively acquired physiological signals,
our non-invasive automated system yielded high agreement with human raters in scoring for
W (91.6±5.7%), NREM (85.1±7.3%), and for overall agreement for all stages (83.8± 1.87).
The agreement for REM was lower (69.7±13.6%), with higher variation across the seven
animals. REM accuracy may have been impacted by a number of factors including the lower
number of REM epochs available in the training set and fewer distinguishing features found
for REM in the radar signal.

In visual scoring, sleep and wake states are typically assigned based on characteristics that
occupy the greatest percentage of a given epoch. In our automated system, some frequency
and time-domain features may be applied to non stationary signals, thereby producing
irregular values during mixed epochs that could present challenges to the SVM
classification. Note, however, that the SVM does not rely on a strict statistical interpretation
of the features, it is just looking for differentiating patterns, so it’s not a problem per se that
an assumption of stationarity is violated. Indeed, the soft scoring SVM method makes a
decision based on principles similar to that used in human scoring during mixed epochs and
scores state based on the greatest degree of evidence during the epoch. Thus, even though
mixed epochs may be more likely to be misclassified since there are some features that are
based on stationary analysis, we still expect reasonable performance.

In our dataset, transitional epochs that were primarily W and were misclassified by SVMS
were almost evenly distributed as REM or NREM (Table 5). By comparison, transitional
epochs that were primarily NREM or REM were more likely to be misclassified by SVMs as
W than as to REM from NREM or to NREM from REM (Table 5). However, given the
small percentage of transitional epochs (6.16%) in our recordings, efforts made to improve
the accuracy in transitional epochs will likely have a relatively smaller effect with respect to
an overall improvement in performance.

Measurement of state duration and numbers of episodes are important parameters of sleep
consolidation in sleep research. Based strictly on epoch to epoch evaluation, the SVMs
produced more sleep episodes and shorter state durations and resulted in a record that was
more fragmented than that seen with visually based scores. With visual scoring, observers
may utilize information in adjacent epochs to provide context for given epoch, which may
result in less fragmented records. Thus, to address this inconsistency with human scoring,
we adapted the SVMs by substituting soft scores of the current epoch with average soft
scores of the current and the immediately preceding and following epochs as a basis for the
final score of the current epoch (Figure 1). Although this approach did not yield significant
improvement in overall agreement for SVMs, there was improvement in characterizing
distribution of episodes and state duration in W and NREM compared to visual scores
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(Table 6). However, REM duration was not significantly improved with respect to visual
scoring which likely reflects the greater level of inaccuracy in detecting REM.

In future efforts, improvements to mixed epoch classification accuracy and sleep state
episode consolidation could potentially be achieved by incorporating Markov model sleep-
state transition likelihoods (Basner and Siebert, 2010; Kemp and Kamphuisen, 1986) into
the classification decision or by identifying conditions in which there may be a mixed epoch
and flagging it for subsequent manual review.

Visually scored REM epochs were consistent with the hallmark sign of greater EEG spectral
power in the 5–8Hz theta wave band (see Figure 6). By comparison, automated scoring of
REM epochs relied primarily on irregular respiration. Unfortunately, this parameter, as
detected by the radar, was less reliable than the increase in EEG theta power during REM
sleep and resulted in less accuracy for scoring REM by SVMs in comparison with visual
scores. Movements produced good agreement for discriminating wakefulness; thus, the
larger problem for state discrimination was related to inadequacies of the radar in
discriminating sleep states when the animal was inactive.

One of the primary benefits of automated scoring is that it frees human scorers from a
tedious and time consuming task. This is exemplified in the current data set; each human
scorer needed approximately 8 h to visually score the 56 hours of recording. By comparison,
our automated system reduced the time needed to 25–30 minutes. This consisted of 20–25
min for expert scoring to provide a training set, followed by computer processing including
290±10s for features extraction and 11.35±0.79s for SVM training and scoring. Time
savings should be proportionally larger for longer recording periods.

Our initial intent was to use a Doppler radar sensor and far infrared camera to acquire heart
rate, respiratory rate, movement, body surface temperature of rats. Unfortunately, a
heartbeat signal was not reliably detectable using the radar sensor and potential state-related
changes in surface temperature were not detectable by the infrared camera. Therefore, we
were limited to using the respiratory signal and whole body movements in our efforts to
develop a non-invasive automated sleep stage scoring system. However, a more sensitive
radar sensor capable of detecting a heartbeat signal could further increase the accuracy of
our automated scoring system. This is indicated by our finding of a 3–4% increase in the
sensitivity for REM by simply by adding a heart rate feature derived from concurrently
recorded EKG (data not shown).

Features extracted from time and frequency domains were chosen based on their ability to
distinguish wakefulness from sleep. Large movements as a rat actively moves within its
cage readily distinguish active waking and quiet periods when such activity is not present.
Major features indicating large movements that we found useful included SID, MSL1, and
KAC, corresponding to the sequential image difference of infrared camera, power increase
in lower frequencies and decrease in the autocorrelation of radar signal, respectively.

Regularity of respiration has been used to distinguish active and quiet sleep (Sazonova et al.,
2008) and was one of the primary indices used in our study. For instance, a hallmark sign of
REM is irregular respiratory activity, in particular, during phasic REM (Pack et al., 1988).
Autocorrelation sequences of an irregular signal have peaks at point 0 on the X axis with
other signal components showing rapidly decreasing amplitudes as values on the X axis
increase (see Figure 2C). By comparison, the amplitude of autocorrelation sequences for
regular signals decrease more gradually (see Figure 2F). Important measures were the mean
(MAC) and standard deviation (SAC) of the autocorrelation sequence, and kurtosis
(K_PSD) and skewness (S_PSD) of the power spectral density which gave indices of
respiratory irregularity. However, we also found an increase in respiration during REM, and
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the feature RFQ (respiratory frequency) provided the best discriminative power for
distinguishing REM. By comparison, MAC, SAC, K_PSD and S_PSD were less
discriminative between REM and other states. Since respiration in phasic REM is known to
be more irregular than in tonic REM, REM epochs with our system may have been
determined largely on phasic REM features.

One of the strengths of rat and mouse models is the ability to identify and utilize strains that
differ on physiological and behavioral parameters. For example, Sprague-Dawley, Fischer
344, and Lewis rats differ significantly in sleep amounts (Opp and Imeri, 2001; Tang et al.,
2005), activity levels (Tang et al., 2005) and Fischer and Lewis rats differ in heart rates
(Baudrie et al., 2001). Breathing rates also vary among rat strains (Strohl et al., 1997).
Mouse strains also differ in sleep amounts (Tang and Sanford, 2002; Veasey et al., 2000),
activity levels (Tang et al., 2002), respiration (Friedman et al., 2004; Tankersley et al., 1994;
Tankersley et al., 1997), and heart rates (Blizard and Welty, 1971). Being able to non-
invasively measure some or all of these variables in rats and mice would provide a
tremendous savings in labor. With the current Doppler radar based system, this would likely
require SVMs specifically trained for each strain; however, the accuracy for comparisons
across strains would need to be evaluated.

There have been a variety of attempts to non-invasively record physiological variables and
use them to discriminate sleep and wake states. Recording and analyses of activity and
respiration based on pressure sensing using a piezoelectric sensor has been reported to
achieve 94 to 95% agreement with visual scoring of the EEG and EMG to determine
wakefulness and sleep in mice (Donohue et al., 2008; Flores et al., 2007). Results with
pressure sensors are in line with, or are potentially slightly better, than the 92% agreement
we obtained for rats between SVM determined wake and sleep states and those determined
on visually scored EEG and EMG. Periods of inactive wakefulness can be rarer in mice than
in rats, which may improve sleep and wakefulness discrimination based on measures of
activity. However, activity level can vary with strain and the correlation between inactivity
and sleep is better for high active BALB/cJ mice than in low active DBA/2J mice (Tang and
Sanford, 2002).

Pressure sensing and Doppler radar system are able to record subtle movement such as
grooming and breathing movement in animals and can produce acceptable levels of
discrimination of wakefulness and sleep. However, both methods have lower ability to
distinguish REM from NREM, suggesting that additional signals or parameters are needed
to improve the detection of REM. We were able to achieve improved distinguishing REM
from NREM by adding heartbeat features. This suggests that a modification that could
improve the radar’s ability to detect heartbeat provide a significant improvement in
distinguishing REM from NREM as non-invasive sleep scoring system. Doppler methods
have been developed to detect heart rate in humans (Lin, 1992) suggesting that applications
in larger animals that utilize heart movement to improve REM detection would be possible.

The present work was based on a prototype Doppler radar sensor from a company that
licenses radar technology (http://www.getradar.com/Prices2.htm) and there does not appear
to currently be an off-the shelf radar product that operates similarly. Those interested in
pursuing Doppler sensing in rodents could contact the company that supplied ours. Others
have built their own radar circuits to perform similar sensing tasks (Fletcher and Kulkarni,
2010; Jang et al., 2008; Zito et al., 2008). In general, the technology is not expensive, so the
primary costs for a system similar to the one described here would be for development plus
any patent licensing fees. These costs would scale down substantially with increased volume
with the result that the core technology could be quite economical.
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In conclusion, our results indicate that automated scoring based on non-invasively acquired
movement and respiratory activity can reliably discriminate wakefulness and sleep.
However, additional information or signals will be needed to improve discrimination of
NREM and REM episodes within sleep.
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Highlights

We constructed a non-contact monitoring system to measure movement and respiratory
activity.

• Based on these signals, we developed a method for automated scoring of
wakefulness, and sleep using a support vector machine.

• Agreement between automated and visual scored sleep was 91% for
wakefulness, 84% for non-rapid eye movement sleep and 70% for rapid eye
movement sleep.

• Automated scoring based on movement and respiratory activity can discriminate
wakefulness and sleep.
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Figure 1.
Diagram illustrating the process by which non-invasively obtained data were acquired using
pulse Doppler radar and video, automatically scored and compared to visually scored
records of wakefulness and sleep based on EEG and EMG.
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Figure 2.
Example signals obtained from the radar sensor for A. wakefulness (W) D. non-rapid eye
movement sleep (NREM), and G. rapid eye movement sleep (REM). Corresponding FFTs
(B, E, H) and autocorrelations (C, F, I) are shown for W, NREM, and REM, respectively.
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Figure 3.
Scatterplots demonstrating correlations between respiratory rates derived from the Doppler
radar sensor and those obtained from the diaphragm EMG (DiaEMG). A. non-rapid eye
movement sleep (NREM). B. rapid eye movement sleep (REM).
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Figure 4.
Plots of (A) visual scores and (B) SVMS final scores plotted over 500 consecutive epochs.
Corresponding soft scores for the three binary SVMs ((C) wakefulness vs. not-wakefulness;
(D) REM vs. not-REM; and (E) NREM vs. not-NREM) are plotted below.
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Figure 5.
Demonstration of how adding features can alter the ability of the SVMs to classify
wakefulness (W), non-rapid eye movement sleep (NREM) and rapid eye movement sleep
(REM). Sequential runs of the SVM began with the feature with the greatest discrimination
for a given state (based on F-scores) and subsequently added features with less
discriminatory power until all 23 features were used. A. Positive predictive value (PPV), B.
sensitivity and C. percentage of agreement between human rater and SVM classification are
shown. W: wakefulness; NREM: non-rapid eye movement sleep; REM: rapid eye movement
sleep.
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Figure 6.
Average EEG power spectral density for scored epochs corresponding to Table 4, v
represents SVM score, s represents human scorer. vX-sY indicate epochs scored as X by
SVMs and scored as Y by Scorer. A. SVMs vs Scorer 1, B. SVMs vs Scorer 2.
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Figure 7.
F-scores for the top 12 features for discriminating Wakefulness (A), NREM (B), and REM
(C). Description of the features are provided in Table 1.
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Table 1

Labels and description of the 23 features used for SVMs and automated scoring of wakefulness and sleep.

Label Description

SID Standard deviation of consecutive image difference

SNR _(L/H) Respiratory signal to noise ratio

K_(L/H) Kurtosis of raw signal

RFQ_(L/H) Respiratory frequency

SAC_(L/H) Standard deviation for autocorrelation of signal

KAC_(L/H) Kurtosis for autocorrelation of signal

MAC_(L/H) Mean autocorrelation of signal

K_PSD Kurtosis of power spectral density

S_PSD Skewness of power spectral density

MPL1 Mean power spectral density (0.1–1HZ)

MP1-3 Mean power spectral density (1–3HZ)

MP3-5 Mean power spectral density (3–5HZ)

MP5-8 Mean power spectral density (3–5HZ)

MP8-15 Mean power spectral density (8–15HZ)

TPSD Total Power spectral density

DP2AR_(L/H) Distance from power spectral density peak in the 1–3 Hz range to the average respiratory peak position (2.1 Hz)

(L/H): denotes whether the raw signal was from the lower analog band pass filter channel (L) or from the higher filter channels (H). Thus, labels
with the L/H designation indicate two separate features. Power spectral densities (MPL1, MP1-3, MP5-8, MP8-15, TPSD), kurtosis for power
spectral density (K_PSD), and skewness of power spectral density (S_PSD) were derived only from the L channel. SID was obtained from the
infrared camera. All other features were obtained from the radar sensor.
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