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Abstract

Two-gene classifiers have attracted a broad interest for their simplicity and practicality. Most
existing two-gene classification algorithms were involved in exhaustive search that led to their low
time-efficiencies. In this study, we proposed two new two-gene classification algorithms which
used simple univariate gene selection strategy and constructed simple classification rules based on
optimal cut-points for two genes selected. We detected the optimal cut-point with the information
entropy principle. We applied the two-gene classification models to eleven cancer gene expression
datasets and compared their classification performance to that of some established two-gene
classification models like the top-scoring pairs model and the greedy pairs model, as well as
standard methods including Diagonal Linear Discriminant Analysis, k-Nearest Neighbor, Support
Vector Machine and Random Forest. These comparisons indicated that the performance of our
two-gene classifiers was comparable to or better than that of compared models.
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1 Introduction

Many studies have made it a growing consensus that to deal with high-dimensional gene
expression data, simple classifiers often have substantial advantages over complicated ones
[1-7]. One advantage is that simple classifiers often have better classification performance
but lower computational cost than complex classifiers. Another advantage is that simple
classifiers are more interpretable and applicable compared to complex classifiers because
they are often involved in a small number of genes and simple classification rules. As a
typical representative of simple classifiers, the two-gene classifier has attracted an
increasing interest [8-17]. Among them, the top-scoring pair(s) (TSP) classifier classifies
phenotypes according to the relative expression of a pair of genes as contributes to its two
advantages: first, it avoids over-fitting by eliminating specific parameter tuning; second, it is
not affected by normalization issues [8-9]. In [17], the authors proposed gene-pair based
methods to select gene sets which well distinguished two classes. In [3], the authors
screened a small number of informative gene pairs on the basis of their depended degrees
proposed in rough sets by which the decision rules were induced to classify phenotypes
classes. These two-gene classification algorithms indicated that gene pairs in combination
might better discriminate different classes than individual genes due to gene interactions.
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Although class prediction might be improved by taking advantage of the gene-interaction
information, the relevant algorithms were often time-consuming. Moreover, these
algorithms were often involved in complex multivariate gene selection approach, which has
been proven not to be more effective than simple univariate gene selection approach in most
cases [7, 18]. In this study, we proposed two new two-gene classification algorithms based
on univariate gene selection strategy. We simply selected two genes with the largest
absolute t-statistic values, and then constructed classification rules based on their optimal
cut-points of expression levels. We detected the optimal cut-point according to the
information entropy principle [19].

We compared the performance of the two-gene classification models to that of the TSP [8]
and the greedy pairs (GP) based classification models [17]. We also compared the
performance of our classifiers with the popularly-used standard models including Diagonal
Linear Discriminant Analysis (DLDA), k-Nearest Neighbor (k-NN), Support Vector
Machines (SVM) and Random Forest (RF). The materials studied involved eleven publicly
available gene expression datasets (http:/linus.nci.nih.gov/~brb/DataArchive_New.html)
[20].

2.1 Construction of Two-gene Classifiers

Within each training set, we calculated the value of the t-statistic (t-score) for each gene, and
then selected the two genes with the highest absolute values of t-score to build classification
rules. Here we obtained the t-score based on the Welch’s t-test which supposes two groups
of samples have possibly unequal variances.

We built the classification rules based on the optimal cut-points for the expression levels of
the genes selected. We found the optimal cut-point by using the entropy-based discretization
method [19]. In [21], we have given the description of the method for detection of the
optimal cut-point. Here we simply repeated the essential procedure.

To obtain the optimal cut-point for gene g, we first sorted the training sample set S as s, Sy,
..., Sp, based on the expression levels of g, and then constructed the candidate cut-point set P
which was composed of the mean values of E(g, sx) and E(g, Sk+1) provided that sy and Sk+1
were labeled with two different classes. Here E(g, sj) denotes the expression level of gene g
in the sample s;. Each element t of P separated S into two equivalence classes Sy(t, g) and
So(t, ), where Sq(t, g)={S€ES | E(g, s) <t} and S,(t, g)={SES | E(g, s) > t}. Let C; denote the
subset of samples whose class label is ¢1, and C the subset of samples whose class label is
Cy. Define the four sets: P11, P12, P21 and Pyy, where P11=S;(t, g)NC1, P1o=S1(t, g)NCy,
P21=S,(t, g)NC4q, and Pyy=S,(t, g)NC,. We calculated the class information entropy of the
partition induced by t, denoted E(g, t, S), as follows:

111 P11l [P11]  |P1al [P1al. IS2l P21l [P21]  |Paol [P
E(g,t,S)=———(——log + log, )— ( 0g, + log, ).
ISTUISTL 2080l ISal 2ISal” IS ISal o7 USal  ISal SFISal

We selected the t which minimized E(g, t, S) as the optimal cut-point T(g) for g. If the
candidate cut-point set P was empty (very rare), we took the mean expression level of g in
all training samples as the optimal cut-point.

Once we obtained the optimal cut-point T(g) for the gene g, we built the single-gene
classification rule based on g. Let Q11(9)=S1(T(g), 9)NCy, Q12(9)=S1(T(g), g)NC,,
Q21(9)=S2(T(9), 9)NC1, Q22(9)=S2(T(g), g)NC,, and C(s) denote the class label assigned to
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the sample s. If |Q11(g)| + |Q22(9)| > |Q12(9)| + |Q21(9)|, the classification rule would be
“E(g, s) <T(g) => C(s)=cq; E(g, s) > T(g) => C(s)=c,”; otherwise, the classification rule
would be “E(g, s) <T(g) => C(s)=cy; E(g, s) > T(g) => C(s)=c1”.

We have used the above classification rule to construct single-gene classifiers by which we
achieved ideal classification effect in most cases [21]. However, the single-gene classifiers’
performance would degrade if one noise gene was selected. The present two-gene classifiers
were expected to attain more stable performance through combination of the classification
rules induced by two genes. Here we constructed two types of two-gene classifiers termed as
TGC-1 and TGC-2, respectively.

Suppose we selected another gene h with the second largest absolute t-score, apart from the
gene g which had the largest absolute t-score. We denoted max(x, y) as the larger one
between x and y. We constructed TGC-1’s classification rule as follows: if max(|Q11(9)|+|
Q22(9)1, [Q12(9)1+1Q21(9)]) = max(|Q11(h)[+|Q22(h)l, [Q12(h)[+/Q21(h)]), then the classification
rule is the single-gene classification rule based on g; otherwise, the classification rule is the
single-gene classification rule based on h.

Here max(|Q11(9)I+|Q22(9), [Q12(9)[+Q21(0)l) and max(|Q11()I+/Q22(h)l, [Q12(n)[+1Q21(h)))

indicate the number of samples correctly classified with gene g and h, respectively.
Therefore, TGC-1 utilized the classification rule constructed merely based on one of the two
selected genes which led to the optimal classification result (Fig. 1).

In contrast, we constructed TGC-2’s classification rule by taking into account the
classification rules based on both genes selected simultaneously. As for a single gene x, we
will encounter two cases: [Q11(X)| + [Q22(X)| > [Q12(X)[ + [Q21(X)| and |Q11(X)] + [Q22(X)| =
Q12¥)| +|Q21(X)|, we will have four different combinations for two genes. On the other
hand, relative to the optimal cut-point, the expression level of gene x in a sample s can be
divided into two cases: E(x, s) <T(x) and E(x, s) > T(x). Thus, the expression levels of two
genes in the same sample s will have four different possibilities. Suppose we classify s into
class c1 and c2 by the classification rules based on gene x and y, respectively. If c1 is
identical to c2, we will certainly classify s into class c1 (or c2); otherwise, we need to
consider additional factors to determine the class label of s. One significant factor is the
distance between the expression level of one gene and its optimal cut-point. If the distance
regarding gene X is greater than that regarding gene y, we think that x has higher weight than
y in determining the class attribute of s, and therefore adopt its classification rule to classify
s. Because different genes possibly have very different average expression levels across
samples, we normalized the distance via dividing it by the average expression level of each
gene across all training samples. Fig. 2 illuminates the basic procedure of TGC-2.

In detail, we constructed TGC-2’s classification rule as follows:

1. ifQu(9)] +1Q22(9)| > [Q12(9)] + Q21(9)| and [Qa(h)[ + [Q22(N)| > [Q12(h)[ + |
Q21(h)|, then

1. E(g,s) =<T(g) and E(h, s) <T(h) => C(s)=cq;
2. E(g,s) >T(g) and E(h, s) > T(h) => C(s)=cy;
3. ifE(g, s) > T(g) and E(h, s) <T(h), then

a.  (E(g, ) — T(g))/Imean(g)| < (T(h) — E(h, s))/|mean(h)| =>
C(s)=cy;

b. (E(9,s) — T(g))/|mean(g)| = (T(h) — E(h, s))/[mean(h)| =>
C(s)=cz;
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4. ifE(g, s) <T(g) and E(h, s) > T(h), then

a.  (T(9) — E(9, s))/Imean(g)| = (E(h, s) — T(h))/|mean(h)| =>
C(s)=cy;

b. (T(g) — E(g, s))/Imean(g)| < (E(h, s) — T(h))/|mean(h)| =>
C(s)=cz;

2. if]Q112(9) + 1Q22(9)] > [Q12(9)| + |Q21(9)| and |Q11(h)| + [Q22(h)| <[Q12(h)[ + |
Q21(h)|, then

1. E(g,s) =<T(g) and E(h, s) > T(h) => C(s)=cy;
2. E(g,s)>T(g) and E(h, s) <T(h) => C(s)=cyp;
3. ifE(g, s) > T(g) and E(h, s) > T(h), then

a. (E(g, ) — T(9))/Imean(g)| < (E(h, s) — T(h) )/|mean(h)| =>
C(s)=cy;

b. (E(9,s) — T(g))/Imean(g)| = (E(h, s) — T(h) )/imean(h)| =>
C(s)=cz;

4. ifE(g, s) <T(g) and E(h, s) <T(h), then

a. (T(9) — E(9, s))/Imean(g)| = (T(h) — E(h, s))/|mean(h)| =>
C(s)=cy;

b. (T(g) — E(g, s))/Imean(g)| < (T(h) — E(h, s))/|mean(h)| =>
C(s)=cz;

3. if]Q11(9) + 1Q22(9)] <[Q12(9)[ + [Q21(9) and [Q11(h)| + [Q22(h)[ > [Q12(h)[ + |
Q21(h)|, then

1. E(g,s)>T(g) and E(h, s) <T(h) => C(s)=cy;
2. E(g,s) =T(g) and E(h, s) > T(h) => C(s)=cyp;
3. ifE(g, s) > T(g) and E(h, s) > T(h), then

a.  (E(g, ) — T(9))/Imean(g)| = (E(h, s) — T(h))/|mean(h)| =>
C(s)=cy;

b. (E(9,s) — T(g))/Imean(g)| < (E(h, s) — T(h))/|mean(h)| =>
C(s)=cz;

4. ifE(g, s) <T(g) and E(h, s) <T(h), then

a. (T(9) — E(9, s))/Imean(g)| < (T(h) — E(h, s))/|mean(h)| =>
C(s)=cy;

b. (T(g) — E(g, s))/Imean(g)| = (T(h) — E(h, s))/[mean(h)| =>
C(s)=cz;

4. 1f]1Q11(9)l +1Q22(9)] <1Q12(9)| + [Q21(9)| and [Q11(h)[ + [Q22(h)| < [Q12()| + |
Q21(h)|, then

1. E(g9,s)>T(g) and E(h, s) > T(h) => C(s)=cy;
2. E(g,s) =T(g) and E(h, s) <T(h) => C(s)=cy;
3. ifE(g, s) > T(g) and E(h, s) <T(h), then

a.  (E(g, s) — T(9))/Imean(g)| = (T(h) — E(h, s))/|mean(h)| =>
C(s)=cy;
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b. (E(9, s) — T(g))/Imean(g)| < (T(h) — E(h, s))/|mean(h)| =>
C(s)=c2;
4. ifE(g, s) <T(g) and E(h, s) > T(h), then

a. (T(9) — E(9, s))/Imean(g)| < (E(h, s) — T(h))/|mean(h)| =>
C(s)=cy;

b. (T(g) — E(g, s))/Imean(g)| = (E(h, s) — T(h))/|mean(h)| =>
C(s)=cz;

Here mean(i) indicates the average expression levels of gene i across all training samples.

2.2 Evaluation of Classifier Performance

2.3 Materials

3 Results

We evaluated classifier performance by leave-one-out cross validation (LOOCV). In each
leave-one-out training set, we selected two genes based on which the classification rule was
constructed to classify the omitted sample. We used TGC-1 and TGC-2 to classify each
dataset, respectively, and thus we obtained two sets of classification accuracy results.

We compared the performance of our models to that of the gene pairs based classification
models TSP and GP, as well as four standard classifiers: DLDA, k-NN, SVM and RF. For
the TSP classifier, the number of gene pairs selected was set as one. For the GP model, we
first selected one pair of genes based on the greedy-pairs approach proposed in [17], and
then used DLDA, k-NN and SVM algorithms to perform classification with the two genes
selected, respectively. For k-NN, we set the parameter k as 3. The SVM was based on the
linear inner product kernel function (cost=1). For RF, we set the number of trees and genes
randomly sampled as candidates at each split as 100 and the squared root of the total number
of genes, respectively. For the four standard classifiers, the genes significantly different
between the classes at 0.001 significance level were used for class prediction. We carried
out all the compared classification algorithms in BRB-ArrayTools, an integrated package for
the visualization and statistical analysis of DNA microarray gene expression data
(http://linus.nci.nih.gov/BRB-ArrayTools.html) [22].

We selected eleven gene expression datasets to evaluate classifier performance. These
datasets have different scale of sample size and gene number. For the Melanoma, Breast
Cancer 2, Gastric Tumor, Lung Cancer 2 and Myeloma datasets, we performed pre-filtering
of gene due to computational cost. Thus, the gene numbers presented in the five datasets are
post-filtering gene numbers, while the gene numbers shown in the other datasets are the
original gene numbers published (Table 1).

3.1 Comparison with the TSP classifier

Table 2 lists the LOOCYV results for TSP, TGC-1 and TGC-2. From Table 2, we can see that
in the Melanoma, Brain Cancer, Lung Cancer 1, Lung Cancer 2 and Lymphoma datasets, the
classification accuracy obtained by our methods matches that obtained by TSP. In the Breast
Cancer 1, Myeloma and Pancreatic Cancer datasets, TSP shows higher accuracy than our
methods, while in the Breast Cancer 2, Gastric Tumor and Prostate Cancer datasets, our
methods exhibit higher accuracy than TSP. Generally speaking, for the datasets examined,
our two-gene classifiers show comparable performance with TSP.
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3.2 Comparison with the GP model

Table 3 compares the classification accuracy by our models to that by DLDA, k-NN, and
SVM with the GP gene selection approach. Here we term the classification models based on
the GP gene selection approach the GP model regardless of what classification rule is used.

From Table 3, we can see that in the Melanoma, Brain Cancer, Breast Cancer 2 and Gastric
Tumor datasets, the classification accuracy obtained by our methods are higher than that
obtained by GP. In Breast Cancer 1, Lung Cancer 1, Lung Cancer 2, Pancreatic Cancer and
Prostate Cancer datasets, our methods and GP achieved close accuracy. In the Lymphoma
and Myeloma datasets, our methods exhibit a bit poorer accuracy than GP. Overall, our two-
gene classification models surpassed GP in prediction performance for the datasets
examined.

3.3 Comparison with the standard classifiers

Table 4 compares the classification accuracy between the two-gene classifiers and the
standard classifiers. From Table 4, we can see that in the Breast Cancer 1, Brain Cancer,
Breast Cancer 2 and Pancreatic Cancer datasets, our methods consistently achieved higher
accuracy than all the standard classifiers. In Melanoma, Gastric Tumor, Lung Cancer 1,
Lung Cancer 2, Lymphoma and Prostate Cancer datasets, our methods show comparable
performance with the standard classifiers. Only in the Myeloma dataset, our methods exhibit
poorer accuracy than the standard classifiers. All together, these results indicate that our
two-gene classifiers have better performance than the standard classifiers for the datasets
examined, lending a support to the notion that simple models outstrip complicated ones in
molecular prediction of cancer based on gene expression profiling.

Indeed, the average number of genes used for building the standard classifiers ranged from
tens to thousands, whereas their performance was not superior to the two-gene classifiers.
One sensible explanation is that for the gene expression data involving high-dimensional
attributes (p) and low-dimensional instances (n), if too many attributes are selected for
construction of classifiers, over-fitting is likely to occur.

4 Discussion and Conclusions

For the p>n problem such as microarray classification, good performance can often be
achieved with a small number of genes, even a pair of genes. Indeed, in some cases, accurate
classification can be achieved with one single gene [3, 21]. Previously, we developed the
single-gene models which were frequently of commensurate accuracy as more complex
classifiers, whereas in some cases, the single-gene models performed poorly because of the
selection of noise genes [21]. The present two-gene classification models to a large extent
overcame the unstability drawback of the single-gene models because it is highly
improbable to select two noise genes simultaneously.

We can’t evaluate the complexity of a classification model simply based on the number of
genes in the model. Complexity also depends on gene selection criteria and classification
rules employed. Simple models typically involve a simple feature selection scheme and
simple classification rule. In contrast, complex models often involve sophisticated feature
selection procedures and/or complicated classification rules [21]. Although TSP, GP and our
models were all involved in gene pairs, TSP and GP were actually more complex than our
models. The TSP algorithm performed gene pair selection by searching for all gene pair
combinations that is computationally expensive. The GP algorithm evaluated a subset of all
gene pair combinations by first ranking all genes based on individual t-score, which was less
computationally expensive than the TSP algorithm but more computationally expensive than
our algorithm. Indeed, neither of TSP and GP was a genuine two-gene classification
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algorithm in that they actually embraced multiple gene pairs in construction of classification
rules.

Our algorithm selected two genes on the basis of their individual t-score. Therefore, gene
interaction information was not considered by our strategy. In fact, the detection of
interaction between genes among thousands or tens of thousands candidates is very time-
consuming. That was why the TSP and GP algorithms had lower time efficiency than our
algorithm. In fact, gene interaction information might not exert a significant influence on
classification performance [7, 18].

The classification accuracies obtained by TGC-1 and TGC-2 were very close to each other
except for in the Myeloma dataset. Both classifiers utilized the identical two genes but
different classification rules. Actually, the classification rule used by TGC-1 was the single-
gene classification rule. Its excellent performance manifested that the single-gene
classification rule was a reasonable choice if the single gene selected was not a noise gene.
In contrast, TGC-2 indeed used the two gene selected to construct the classification rule
which was more complex than that of TGC-1. Thus, the performance of TGC-2 relied on
both genes while the performance of TGC-1 depended upon only one of both genes. That
means TGC-1 is a more robust classifier than TGC-2 in that any one noise gene in the gene
pair selected will comprise the performance of TGC-2 but not affect that of TGC-1 if the
other gene is informative. The great gap between the classification accuracies produced by
TGC-1 and TGC-2 in the Myeloma dataset may exemplify this point.

Here we selected two genes with the largest absolute values of t-score. An alternative
approach is to select two genes with one gene having the largest positive value of t-score
and another gene having the smallest negative value of t-score. This approach seems to be a
sensible choice in that based on it, we may select one gene with much higher expression
levels in one class and another gene with much higher expression levels in another class. In
fact, many two-gene classifiers select gene pairs based on similar criteria including the TSP
classifier, and our method has 50% chance of meeting this selection. Table 5 compares the
performance between TGC-1, TGC-2 and the two-gene classifier constructed based on the
alternative gene selection approach and the same classification rule as that used by TGC-2
(TGC-Mm). Apparently, in most cases, the alternative two-gene classifier has comparable
performance with TGC-1 and TGC-2, whereas in a few cases, it shows poorer performance
than TGC-1 and TGC-2 such as in the Lymphoma, Myeloma and Pancreatic Cancer
datasets. One possible explanation for the performance gap in these datasets is that there
may are much more genes having obviously higher expression levels in one class (class 1)
than in another class (class 2) in these datasets so that the selection of two genes with higher
expression levels in class 1 is more reasonable than the selection of two genes with higher
expression levels in class 1 and class 2, respectively.

In this study, we developed genuine two-gene classification models. Through experimental
test on several gene expression datasets, we found that although our two-gene classification
algorithms were simpler than existing two-gene classification algorithms like TSP and GP,
our classifiers’ performance was comparable to or better than that of TSP and GP.
Moreover, our classifiers exhibited better performance than the standard classifiers DLDA,
k-NN, SVM and RF, even though they used much more genes for classification. This study
strengthens the consensus that simple classifiers have essential advantages over complicated
ones, and therefore should be preferable for cancerous prediction based on gene expression
profiling.
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Fig. 1.

Construction of TGC-1’s classification rule.

TGC-1’s classification rule is built based on a single gene’s classification rule by
comparison of the number of samples correctly classified with gene g and h.
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Fig. 2.

Construction of TGC-2’s classification rule.

TGC-2’s classification rule is built by the weighted consideration of two single genes’
classification rules.
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Table 1
Summary of the eleven gene expression datasets
Dataset # Genes Class # Samples*
Melanoma [23] 18256 malignant/nonmalignant 70(45/25)
Breast Cancer 1 [24] 7650 relapse/no-relapse 99 (45/54)
Brain Cancer [25] 7129 classic/desmoplastic 60 (46/14)
Breast Cancer 2 [15] 17985 disease-free/cancer recurred 60 (32/28)
Gastric Tumor [26] 7195 normal/tumor 132 (29/103)
Lung Cancer 1 [27] 12600  squamous cell lung carcinoma/pulmonary carcinoid 41 (21/20)
Lung Cancer 2 [28] 6321 mesothelioma/adenocarcinoma 181 (31/150)
Lymphoma [29] 7129 cured/fatal 58 (32/26)
Myeloma [30] 6451 without bone lytic lesion/with bone lytic lesion 173 (36/137)
Pancreatic Cancer [31] 22283 Normal/pancreatic ductal carcinoma 49 (25/24)
Prostate Cancer [32] 12600 normal/tumor 102 (50/52)

*
Note: The sample size of each class is given in parenthesis.
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Table 2

Comparison of classification accuracy (%) with the TSP classifier

Method TSP TGC-1 TGC-2
Dataset

Melanoma 99 97 96
Breast Cancer 1 75 64 64
Brain Cancer 7 77 75
Breast Cancer 2 70 82 78
Gastric Tumor 66 89 88
Lung Cancer 1 95 98 100
Lung Cancer 2 94 93 93
Lymphoma 57 59 60
Myeloma 79 68 54
Pancreatic Cancer 90 71 73
Prostate Cancer 81 89 90
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Table 5

Comparison of classification accuracy (%) with the alternative two-gene classifier

Method TGC-Mm TGC-1 TGC-2
Dataset

Melanoma 97 97 96
Breast Cancer 1 64 64 64
Brain Cancer 75 77 75
Breast Cancer 2 78 82 78
Gastric Tumor 89 89 88
Lung Cancer 1 98 98 100
Lung Cancer 2 95 93 93
Lymphoma 52 59 60
Myeloma 47 68 54
Pancreatic Cancer 63 71 73
Prostate Cancer 88 89 90
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