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Abstract
The vast number of microbial sequences resulting from sequencing efforts using new technologies
require us to re-assess currently available analysis methodologies and tools. Here we describe
trends in the development and distribution of software for analyzing microbial sequence data. We
then focus on one widely used set of methods, dimensionality reduction techniques, which allow
users to summarize and compare these vast datasets. We conclude by emphasizing the utility of
formal software engineering methods for development of computational biology tools, and the
need for new algorithms for comparing microbial communities. Such large-scale comparisons will
allow us to fulfill the dream of rapid integration and comparison of microbial sequence data sets,
in a replicable analytical environment, in order to describe the microbial world we inhabit.

Introduction
Recent innovations in sequencing technologies allowed microbial ecologists to advance
from analyzing a few hundred sequences per study to hundreds of millions (••1, ••2). These
quantitative differences in the amount of sequence data produce qualitative differences in
the types of studies that can be performed. For example, ten years ago, characterization of a
single clone library from a single body site in one subject represented a substantial advance
in knowledge about the human body. A few years ago, quantifying interpersonal differences
in one body site, e.g. the gut, represented a major advance (3, 4). Three years ago,
performing a multi-site microbial scan of the body, showing how the microbial communities
that live on the same person’s body are clearly separated by body site, primarily skin, mouth
and stool (5). Now, with higher-throughput sequencing technologies, we can observe the
dynamics of the human microbiota across multiple sites and individuals through time,
demonstrating that our microbial guests are highly volatile day-to-day even in healthy adults
(••6). These examples also illustrate the daunting analytical challenges that microbial
researchers face to handle datasets that are ever increasing in size. These challenges range
from simply finding the right hypotheses to test, to finding the correct analytical tools and
computational power to test them, to finding the methods for visualizing the key results.
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Here we review computational tools developed in the last three years and algorithms
conceived over the last few decades, but only recently applied in microbial ecology; we
conclude with suggestions for computational tool developers who wish to help the field
continue its rapid pace of development over the next few years.

Microbial Diversity Analysis Tools
As 16S rRNA and shotgun metagenomic datasets grow dramatically, the need for easily
accessible, well-documented and well-tested tools in the form of a pipeline becomes
increasingly critical. In particular, the complexity of what is considered a “standard”
analysis has increased rapidly, from small trees and pie chart to advanced analyses
incorporating multivariate statistics, machine learning, and, increasingly, explicitly spatial
and/or temporal analysis, Figure 1. These new challenges, and especially the need to
integrate multiple tools, have forced researchers to move from ad hoc scripts developed in
numerical computing environments like R (7) or MATLAB (8) to more general libraries that
provide solutions to a specific research niche. Examples include vegan, which provides
statistical functions for vegetation (and other) ecologists (9); ade4, which allows exploratory
analyses for environmental sciences (10); and ape, which provides methods for
phylogenetics and evolution (11); see Table 1. However, developing expertise in,
appropriately formatting data, loading large datasets and transferring datasets among
multiple packages can be time-consuming: for example, see the methods section and
reference list of (12).

A more recent approach has been to develop pipelines that provide complete analysis
solutions, combining many steps. For example, if a researcher is interested in analyzing
microbial community data generated via high-throughput amplicon sequencing data (such as
SSU rRNA), starting with files containing a hundred million sequences to a set of
meaningful statistics and visualizations, one tactic is to create a single workflow solution
like mothur (13), which provides one program for analysis (for a use case see (•14)); an
inherent downside of this approach is increased development time and support burden for a
larger codebase, and errors arising from reimplementation of each specialized analysis step
into a single tool. Another strategy is to wrap the original different applications in one single
package; for example, Quantitative Insights Into Microbial Ecology (QIIME) (••15)
provides workflows by splitting the steps into fully transparent scripts (for a use case see
(6)); the cost is that the user must track down and install the individual tools, but the user has
substantially more control over the analysis and knows they are using “name-brand”
software. Another solution is to create analytical web servers, like Visualization and
Analysis of Microbial Population Structures (VAMPS) (16), which allows researchers to
upload their 16S rRNA data for analysis and visualization (for a use case see (••17)), or the
Metagenomics RAST (MG-RAST) server (18) for studies based on shotgun metagenomic
sequence. However, web servers usually limit the control users have over their analyses,
some analysis steps and methods are hidden when source code is not available, and the user
must fully commit to these tools rather than inserting data at later stages or retrieving partial
results. A recent comparison of pipelines for metagenomic annotation and analysis pipelines,
can be found in the supplementary material of SmashCommunity (•19), which is an open-
source, local solution to some of these problems; see Table 1. Open source software, where
the source code is available for download, is critical for research software in general as
investigators can then check the correctness of the algorithms and make improvements.

The newest approach is to use virtual instances, either by virtualizing in a single computer
(e.g. VirtualBox (https://www.virtualbox.org/) or VMWare (http://www.vmware.com/)),
where resources are shared within a local machine (which can be a processing bottleneck),
or virtualizing in the “cloud” (e.g. EC2 (http://aws.amazon.com/ec2) or Magellan (http://
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magellan.alcf.anl.gov)), where external resources are used, sometimes at cost. Both
virtualization scenarios provide an environment to run virtual machines with preloaded
operating systems and programs. For example, CLoVR (••20) can run several metagenomic
analysis pipelines, and parallelizes some of these steps across virtual machines to speed up
the analysis. Similarly, Galaxy (http://galaxy.psu.edu/) provides a web interface to create
analysis pipelines, share them, and share data and results; see Table 1. Both resources are
open source.

The QIIME pipeline in particular exemplifies several key software engineering
methodologies. First, it is developed using agile software development techniques (21),
which require constant interaction with end-users, rapid iterative development and updates,
simplicity of implementations and interfaces, etc. QIIME also relies heavily on test-driven
development (22), which is similar to the concept of positive and negative controls in lab
research and reduces errors considerably. Furthermore, it is open source and distributes its
software dependences for a range of computational options, such as direct personal
computer installation, virtual machines images for single computer access via VirtualBox,
and powerful cloud computing options such as EC2 and Magellan.

Summarizing and Understanding Microbial Diversity
The democratization of sequencing technology allows researchers to sequence large
numbers of samples from diverse environments (1, 2). Large-scale collaborative projects
have taken advantage of this possibility. For example, the Human Microbiome Project (23)
sampled 250 individuals 2–3 times, in 5 main sites (the GI tract, the mouth, the vagina, the
skin, and the nasal cavity), and the Earth Microbiome Project (24) will sequence up to
200,000 diverse environmental samples. A new challenge generated by these types of
projects is to compare not only large numbers of sequences but also large numbers of
samples, and to relate the variation in these samples to key clinical or environmental
parameters. Although, as outlined above, many ways of examining the data can be valuable,
we focus here on dimensionality reduction, an especially useful technique for examining
these multidimensional matrices that have more variables than samples. Dimensionality
reduction often yields easily interpretable results, while reducing computational costs,
relative to trying to understand large taxon tables (25, 26).

Dimensionality reduction techniques help us simplify data represented by a large number of
features compared to the number of samples (25, 26). There are two general strategies:
feature transformation, which calculates a lower-dimension projection of the original
features while retaining as much information as possible, and feature selection, which
minimizes the number of variables by locating the “best” minimum subset of the original
features (25). The two strategies can also be combined (27). In general, feature
transformation has been more widely applied in microbial ecology, even though the
transformed features may have no biological meaning (25, •28); feature selection has
primarily been applied, often informally, in source tracking and biomarkers (29, 30). Feature
transformation can be performed using unsupervised methods (that use only the data matrix
itself), including metric and non-metric multidimensional scaling (MDS), or by supervised
approaches (that use information about the samples, e.g. clinical or environmental
categories) such as Linear Discriminant Analysis (LDA) (25, 31); see Table 2. Both
supervised and unsupervised techniques are susceptible to noise in the category labels, e.g.
due to mislabeling of samples or contamination. As these issues are a fact of life in projects
covering thousands of samples, tools such as SourceTracker (30), which can detect
contamination and mislabeling, are increasingly useful.
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One of the most commonly used dimensionality reduction techniques in microbial ecology
is PCoA, also known as MDS. PCA, or principal coordinates analysis, is a special case of
PCoA using Euclidean distance as a dissimilarity measure (32). PCoA takes as input an n ×
n matrix of distances, generally the results of beta diversity comparisons between n samples
in p-dimensional space (traits) although phylogenetic distances such as UniFrac (33) can
also be used. It produces a k-dimensional, k ≤ p, representation of the items such that the
distances among the points in the new space preserve as closely as possible the distances in
the original data (26). In other words, points that are close in the original space are also close
in the new space. Results of MDS are indeterminate with respect to translation, rotation, and
reflection; in other words, the direction of each axis is arbitrary, although typically the axes
are chosen to maximize the variation in the data. PCoA can be used with any dissimilarity
metric (beta diversity): for current best practices for non-phylogenetic metrics see (28), and
for phylogenetic metrics see (34).

PCA and PCoA rely on solving the eigenvalue equation to find a linear representation of our
samples by combining the original variables to generate the resulting k-dimensional
representation of the data (32). Another approach that can reduce certain artifacts, such as
the horseshoe effect (a pattern in which the two ends of an axis attract each other due to a
shared lack of the taxa in the middle, thus obscuring the gradient pattern), is to use nonlinear
methods (35). NMDS can better preserve the high-dimensional structure with few axes in
some cases, although cannot fully avoid the arch effect in realistic microbial datasets (28).
The main differences between PCoA and NMDS are that the former is based on distances,
where the final configuration should match the original distances as close as possible, and
the latter is based on ranks, which is robust to distribution effects, similar to the difference
between Pearson and Spearman correlations (36). One drawback to MDS is that it is not
based on an eigenvalue solution but on numerical optimization: for larger datasets, the
calculations become time-consuming; see Table 2.

Because even PCoA is slow on large datasets, integrating new samples rapidly into large
existing datasets poses a major algorithmic challenge. Such techniques are critical for
integrating results from new studies, e.g. new environments or patient populations, into
large-scale datasets such as those provided by the Human Microbiome Project (23) or Earth
Microbiome Project (24). There has been substantial recent improvement in the performance
of some of these approximate algorithms for PCoA. For example, Nystrom techniques such
as FastMap, which uses a mapping technique to derive the k-dimension representation, are
linear-time algorithms rather than quadratic like PCoA (i.e. the time increases in proportion
to the number of samples rather than to the square of the number of samples) (37).
MetricMap expands FastMap to assess many projections at once, whereas FastMap
calculates one dimension at the time (38). Landmark MDS (LMDS) uses a small number
landmark points, either manually or randomly selected, to derive new coordinates (39); see
Table 2. For a performance comparison of these methods see (40). The accuracy of these
techniques have been assessed by methods that determine how much of the variance is
explained by the new set of axes (R2) or how much the distances change in the low-
dimensional projection (Kruskal stress). The inherent problem of these methods for
determining accuracy, however, is that they do not relate well to clustering quality or ability
to interpret the patterns in the data (as has been previously observed for different distance
metrics, where the metric that explains most of the variance may produce results that have
no biological meaning (28)). Thus improved, and biologically informed, evaluations of these
methods are a key area of current interest.
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Conclusions
We are currently faced with daunting bioinformatics and computational challenges because
of the large numbers of sequences and samples now examined in microbial ecology studies,
which require the use of defined software engineering methods to create pipelines that are
user-driven and well-tested. Although these pipelines integrate many different techniques for
visualizing and understanding data, dimensionality reduction techniques such as PCoA have
proven especially valuable for understanding patterns in the data. However, these techniques
are reaching their limits as very large numbers of samples are analyzed in large-scale, and
ongoing studies could potentially reach a processing bottleneck as these methods do not
scale linearly to the number of samples; approximate algorithms, which can be much faster,
provide a way out of this conundrum, but could also create a complication if research do not
focus in exact approximations. Thus, substantial additional work will be required in order to
realize the dream of rapid integration of new samples into large existing frameworks that
cover our bodies or our planet.
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Highlights

• New technologies permit dramatic increases in number of sequences/sites per
study.

• Multisite spatial/temporal studies with hundreds of millions of sequences
possible.

• New software pipelines are required to analyze these vast datasets.

• Field is increasingly moving from ad hoc scripts towards integrated pipelines.

• Multivariate techniques often introduce computational bottlenecks.

• Cloud computing and improved approximation methods needed to avoid
bottlenecks.
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Figure 1. Moving away from pie charts and trees, current analytical methods
With a few sequences from a small number of samples, pie charts and trees was sufficient
for comparing microbial community samples. In contrast, with modern technologies that
allow sequencing large number of samples with millions of reads, the new analysis “gold-
standard” has moved towards deploying new tools. Here we show data from ref. (6)
analyzed with several methods: TopiaryExplorer (41) allows visualization of large trees in
the context of per-sample data, , in this example visualizing the GreenGenes reference tree
colored by body site matches (red-stool, blue-oral, orange-skin), showing pie charts of most
abundant sequences and zooming into the different clades; QIIME PCoA plot comparing all
samples color by body site (same colors than in TopiaryExplorer), PCoA with explicit time
axis and tracing to follow individuals over time in each body site, allowing visually
inspection the changes over time (female: red-gut, blue-oral, orange-skin; male: green-gut,
purple-oral, yellow-skin); and semivariograms to assess temporal correlation of observations
in the stool samples separated by sex (red-female, blue-male).
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