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Abstract Capacitance is a fundamental neuronal prop-
erty. One common way to measure capacitance is to
deliver a small voltage-clamp step that is long enough
for the clamp current to come to steady state, and then
to divide the integrated transient charge by the voltage-
clamp step size. In an isopotential neuron, this method
is known to measure the total cell capacitance. How-
ever, in a cell that is not isopotential, this measures only
a fraction of the total capacitance. This has generally
been thought of as measuring the capacitance of the
“well-clamped” part of the membrane, but the exact
meaning of this has been unclear. Here, we show that
the capacitance measured in this way is a weighted sum
of the total capacitance, where the weight for a given
small patch of membrane is determined by the voltage
deflection at that patch, as a fraction of the voltage-
clamp step size. This quantifies precisely what it means
to measure the capacitance of the “well-clamped” part
of the neuron. Furthermore, it reveals that the voltage-
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clamp step method measures a well-defined quantity,
one that may be more useful than the total cell ca-
pacitance for normalizing conductances measured in
voltage-clamp in nonisopotential cells.
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1 Introduction

Capacitance is a fundamental neuronal property. In an
isopotential neuron, the capacitance times the input
resistance yields the cell’s time constant, which deter-
mines how quickly the neuron’s membrane potential
responds to inputs (Rall 1957). In nonisopotential cells,
the specific capacitance and the specific membrane
resistance play similar roles in determining the time
constant at which the cell as a whole (i.e. averaged over
space) responds to inputs (Rall 1969). Additionally, a
measurement of capacitance is often useful as a stand-
in for a measurement of cell surface area, because the
capacitance scales with the surface area (Koch 1999,
p. 8). Thus measurements of cellular capacitance have
been used to normalize for variability in cell size, both
in isopotential (Turrigiano et al. 1995; Swensen and
Bean 2005) and nonisopotential neurons (Schulz et al.
2006; Khorkova and Golowasch 2007).

Several methods are in widespread use for measuring
cell capacitance. One common method is to voltage
clamp the cell near its resting membrane potential,
and to deliver a small (generally ≤10 mV) voltage-
clamp step, long enough for the resulting current to
come to steady state. One then subtracts off the steady-
state current to determine the transient current, and
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Fig. 1 Illustration of Cvc measurement, using data from the
LP neuron of the crab Cancer borealis, measured using two-
electrode voltage clamp. A small voltage-clamp step is delivered,
of size �v (top panel). The clamp current required to bring this
about is measured (bottom panel). The steady-state current is
subtracted off (dashed line). The area under the transient current
is then calculated (shaded area, denoted Q). The voltage-clamp
capacitance is then given by Cvc = Q/�v

this is then integrated to calculate the transient charge
delivered during the voltage-clamp step. The transient
charge is then divided by the size of the voltage-
clamp step to yield an estimate of the cell capacitance
(Hodgkin et al. 1952; Golowasch et al. 2009, see also
Gillis 2009, p. 160). I will call this the voltage-clamp step
estimate of capacitance, or Cvc (Fig. 1).

For an isopotential cell, the voltage-clamp step
method yields an accurate estimate of the total cell
capacitance. But for nonisopotential cells, it has not
been clear exactly how Cvc relates to the total ca-
pacitance. It has generally been considered to be a
measurement of the capacitance of the part of the
cell that is “well-clamped”, but this is vague. In pre-
vious work, I and my coauthors found (although it
is a rather trivial result) that in a two-compartment
model, Cvc is equal to a weighted sum of the capac-
itance of the two compartments, where the weights
are determined by the size of the steady-state voltage
deflection in each compartment, measured as a frac-
tion of the voltage-clamp command step (Golowasch
et al. 2009). Here I generalize this result, showing that
for a neuron with arbitrary geometry, Cvc is equal to
a weighted sum of the total cell capacitance, where
the weights are determined by the size of the steady-
state voltage deflection at each part of the neuron’s
surface area, measured as a fraction of the voltage-
clamp command step. This makes precise the idea that
this method measures the “well-clamped” part of the
capacitance.

2 Results

I assume that the neuron being measured is effectively
passive over the range of voltages used (see Section 3),
and that it is a tree of cylinders, with each cylinder
described by its capacitance per unit length, cm; its
membrane resistance for a unit length, rm; its axial
resistance per unit length, ra; and its length, l. These
parameters are assumed to be uniform in each cylinder,
but may vary across cylinders. I also assume that the
cylinder tree has a uniform resting membrane poten-
tial, which can be assumed to be zero without loss of
generality.

The voltage-clamp step capacitance is measured by
voltage clamping the cell at some convenient location
(normally the soma) and delivering a step:

v(t) = �v u(t), (1)

where u(t) is the unit step function. The voltage-clamp
step capacitance is then defined by

Cvc = 1

�v

∫ ∞

0
[i(t) − i(∞)] dt, (2)

where i(t) is the clamp current delivered as a function
of time (Fig. 1). The integral above yields the charge
delivered by the transient part of the current, which is
then divided by the size of the voltage step to yield Cvc.
It should be noted that computing this quantity does
not require the “peeling” of exponentials (Rall 1969;
Holmes et al. 1992).

I now define a quantity which I call the “clamp-
weighted capacitance”. The main result of this paper
will be to show that the voltage-clamp step capacitance
is equal to the clamp-weighted capacitance for any
neuronal geometry. When the voltage-clamp step has
been on long enough for the voltage at all points in
the tree to come to steady-state, each point will have a
voltage, denoted vk

ss(x), where k indexes the cylinders,
and x represents the distance along a cylinder. The
clamp-weighted capacitance is defined as

Cw =
∑

k

∫
x

ck
m

[
vk

ss(x)

�v

]2

dx, (3)

where ck
m is the capacitance per unit length for the kth

cable segment. That is, the clamp-weighted capacitance
is calculated by dividing the cell surface area up into
many small patches, and then adding up the capaci-
tance of all these small patches, but with each patch
weighted by a factor reflecting how much the voltage
is deflected at that point (Fig. 2). In particular, this
factor is equal to the square of the voltage deflection at
each point, measured as a fraction of the voltage-clamp
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Fig. 2 Illustration of the clamp-weighted capacitance, Cw, in a
single finite cable. The cable is voltage-clamped at the left end
(top panel). Once the voltage-clamp has come to steady state
(bottom three panels), the voltage in the cable is described by a
hyperbolic cosine function (Eq. (15)). The fraction of the voltage-
clamp step “felt” at any point in the cable is given by the fraction
vss/�v (third panel). The weight used in the calculation of Cw
is given by the square of this fraction (bottom panel). Cw is
calculated by dividing the surface area of the membrane into
many slices (shown in top panel), each of which has a capacitance
and a weight associated with it (dashed line). Cw is given by the
weighted sum of the capacitance of all of these slices. Because the
weight varies continuously, this sum is given by an integral (inset)

step size, �v. The square was introduced because in
the two-compartment case, a square factor arises in the
expression for Cvc in terms of the two compartmental
capacitances (Golowasch et al. 2009). And it turns out
that Cw defined in this way can be proven equal to Cvc

for an arbitrary geometry.
The main result of this paper is that Cvc = Cw for any

cable tree.

2.1 Proof that Cvc = Cw

The proof proceeds by induction on cable trees. The
smallest possible cable tree is a single cable segment
(Fig. 3(a)), and any tree can be constructed recursively
by the two operations of (1) joining two subtrees at
their roots (Fig. 3(b)), and (2) cascading a cable seg-
ment with a subtree (Fig. 3(c)). We therefore first prove
that the theorem holds for a single cable segment,
and then prove that (1) if the theorem holds for two
subtrees, it holds for the tree formed by joining them
at a common point, and (2) if the theorem holds for
a subtree, it holds for the tree formed by cascading a
single cable segment with the subtree.

(a)

(b)

(c)

Fig. 3 The three cases considered in the proof. (a) A single finite
cable segment. (b) Two arbitrary subtrees joined at their roots.
(c) A cable segment cascaded with an arbitrary subtree. In all
cases, voltage is measured and current is injected at the terminal
on the left-hand side, and voltage is measured with respect to the
bath

Before presenting the main part of the proof, it will
be useful to establish another identity involving Cvc,
namely

Cvc = Y ′(0), (4)

where Y(s) is the complex admittance of the cable
tree, with s the complex frequency, and Y ′(s) is its
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first derivative. To show this, we define a function that
approaches Cvc in the limit as t → ∞, given by

Cvc(t) = 1

�v

∫ t

0

[
i(t′) − i(∞)

]
dt′. (5)

The Laplace transform of Cvc(t) is then given by

C̃vc(s) = 1

�v
1

s

[
I(s) − i(∞)

s

]
, (6)

where I have used the fact that L
{∫ t

0 x(t′)dt′
}

=
s−1 X(s) (Siebert 1986, p. 62). We can then show that

C̃vc(s) = s−2 [Y(s) − Y(0)] , (7)

by substituting Y(s)V(s) for I(s), using the fact that

i(∞) = lim
s→0

sI(s), (8)

and doing some algebra. Expressing Cvc in terms of
Cvc(t), we then obtain

Cvc = Cvc(∞) (9)

= lim
s→0

sC̃vc(s) (10)

= lim
s→0

s−1 [Y(s) − Y(0)] (11)

= Y ′(0). (12)

This completes the proof that Cvc = Y ′(0).
I now show that Cvc = Cw for a single finite cable

segment. The input admittance of a finite cable segment
with sealed end is given by

Y(s) = G∞
√

1 + τ0s tanh
[

L
√

1 + τ0s
]
, (13)

where τ0 = rmcm is the fundamental time constant of
the cable, G∞ = 1/

√
rarm, the input conductance of the

cable if it were infinitely long, and L = �/λ, the length
of the cable in units of the length constant, λ = √

rm/ra

(Koch and Poggio 1985, Rule I). We can then deter-
mine Cvc for the finite cable by taking the derivative of
Y(s) and evaluating at zero to find

Cvc = Y ′(0) = 1

2
τ0G∞

(
tanh L + Lsech2L

)
. (14)

The steady-state voltage distribution for a finite ca-
ble with a sealed end subjected to a voltage clamp at the
near end (where x = 0) is given by

vss(x) = �v
cosh

[
(x − �)/λ

]
cosh L

. (15)

This result is given in Koch (1999, p. 34). The clamp-
weighted capacitance is then given by

Cw =
∫ �

0
cm

[
vss(x)

�v

]2

dx (16)

= cm

cosh2 L

∫ �

0
cosh2

[
(x − �)/λ

]
dx (17)

= cm

4 cosh2 L
(2� + λ sinh 2L) (18)

= 1

2
cmλ

(
tanh L + Lsech2 L

)
(19)

= 1

2
τ0G∞

(
tanh L + Lsech2L

)
. (20)

Comparing with Eq. (14), we see that Cvc = Cw for a
finite cable with a sealed end.

I now show that if Cvc = Cw for two subtrees, then
it holds for the tree formed by joining the two trees at
their roots. If C1

vc is the voltage-clamp capacitance of
the first subtree, and C2

vc that of the second, it is easy to
see that

Cvc = C1
vc + C2

vc, (21)

where Cvc is the voltage-clamp capacitance of the
joined tree. This is because admittances add in par-
allel, so

Y(s) = Y1(s) + Y2(s), (22)

where Y(s) is the admittance of the joined tree, and
the Yis are the admittances of the two subtrees. By
taking derivatives on both sides of this equation and
evaluating at zero, we find that

Y ′(0) = Y ′
1(0) + Y ′

2(0), (23)

and so Eq. (21) follows from Eq. (4).
If we voltage-clamp the joined tree at the join point,

then the steady-state distribution of voltage in each
subtree will be the same as if the other subtree were
absent. Thus

Cw = C1
w + C2

w, (24)

where Cw is the clamp-weighted capacitance of the
joined tree. Thus if C1

vc = C1
w and C2

vc = C2
w, it follows

that Cvc = Cw for the joined tree.
I now prove that Cvc = Cw for a cable segment cas-

caded with a subtree, given that Csub
vc = Csub

w , where Csub
vc

and Csub
w are the voltage-clamp capacitance and clamp-

weighted capacitance of the subtree, respectively. The
impedance of the cascade, Y(s), is determined by con-
sidering the cable segment as a two-port cascaded with
the admittance of the subtree, Ysub(s) (Siebert 1986,
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p. 84). In particular, the ABCD representation of the
cable considered as a two-port is
[

A B
C D

]
=

[
cosh(Lq) −G−1∞ q−1 sinh(Lq)

G∞q sinh(Lq) − cosh(Lq)

]
, (25)

where q = √
1 + τ0s [this follows from the definition

of the ABCD representation (Siebert 1986, p. 97) and
from a simple application of Rule I in Koch and Poggio
(1985)]. The input admittance of a two-port cascaded
with a known admittance, Ysub, is easily shown to be

Y = − C + Ysub A
D + Ysub B

. (26)

Thus the admittance of a cable segment cascaded with
a subtree is given by

Y = G∞q sinh(Lq) + Ysub cosh(Lq)

cosh(Lq) + YsubG−1∞ q−1 sinh(Lq)
. (27)

Taking the derivative of this expression with respect to
s, evaluating at s = 0, and simplifying yields

Cvc = 1

2
(G∞ cosh L + Gsub sinh L)−2

· [2Csub
vc G2

∞G3
∞Lτ0+

+ G3
∞τ0 sinh L cosh L + G2

∞Gsubτ0 sinh2 L

+ G2
∞Gsubτ0 cosh2 L − G2

∞Gsubτ0 − G∞G2
sub Lτ0

+ G∞G2
subτ0 sinh L cosh L

]
. (28)

where Csub
vc is the voltage-clamp capacitance of the sub-

tree, and Gsub is its input conductance. This expression
can be simplified somewhat by putting it in terms of
the input conductance of the cascade, G. We can derive
an expression for G by evaluating Eq. (27) for s = 0,
yielding

G = G∞
Gsub cosh L + G∞ sinh L
G∞ cosh L + Gsub sinh L

. (29)

Using this expression, and after some algebra, we can
rewrite Eq. (28) as

Cvc = 1

2
Gτ0 + 1

2
G∞τ0

(G2∞ − G2
sub)L − G∞Gsub

(G∞ cosh L + Gsub sinh L)2

+ Csub
vc

G2∞
(G∞ cosh L + Gsub sinh L)2

. (30)

We would now like to show that the right-hand side
of Eq. (30) is equal to Cw. To calculate Cw for the
cascade, we first solve for the steady-state distribution
of voltage along the cable segment. The general expres-
sion for this is

vss(x) = A exp(+x/λ) + B exp(−x/λ), (31)

where A and B are determined by the boundary con-
ditions (Johnston and Wu 1995, p. 75). The boundary
condition at the near end of the cable (x = 0) is deter-
mined in part by the steady-state current being injected
into the cable. This is given by

iss = G�v. (32)

At the far end of the cable (x = �), the boundary
condition involves the steady-state current leaving the
cable and entering the subtree, which is given by

isub
ss = Gsubv(�), (33)

where Gsub is the input conductance of the subtree.
These relations yield the following boundary condi-

tions:

∂v
∂x

∣∣∣∣
x=0

= −raiss (34)

∂v
∂x

∣∣∣∣
x=�

= −raisub
ss . (35)

Plugging Eq. (31) into these equations, and solving for
A and B yields

A = 1

2
�v e−L G∞ − Gsub

G∞ cosh L + Gsub sinh L
(36)

B = 1

2
�v e+L G∞ + Gsub

G∞ cosh L + Gsub sinh L
(37)

Plugging these expressions into Eq. (31) and invoking
the hyperbolic trigonometric identities, we can then
write an expression for vss(x) involving only known
quantities:

vss(x) = �v
G∞ cosh(L − x/λ) + Gsub sinh(L − x/λ)

G∞ cosh L + Gsub sinh L

(38)

We can now determine an expression for Cw (for the
cascade) based on this solution and upon Eq. (3):

Cw =
∑

k

∫
x

ck
m

[
vk

ss(x)

�v

]2

dx (39)

=
∫

x
cm

[
vss(x)

�v

]2

dx+
∑

k∈subtree

∫
x
ck

m

[
vk

ss(x)

�v

]2

dx (40)

= cm

�v2

∫
x

v2
ss(x)dx + 1

�v2

∑
k∈subtree

∫
x
ck

m

[
vk

ss(x)
]2

dx (41)

= cm

�v2

∫
x
v2

ss(x)dx+ v2(�)

�v2

∑
k∈subtree

∫
x
ck

m

[
vk

ss(x)

v(�)

]2

dx (42)

= cm

�v2

∫
x

v2
ss(x)dx + v2(�)

�v2
Csub

w , (43)
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where the last step follows from the definition of Cw as
applied to the subtree. The integral in Eq. (43) can be
evaluated by substituting for vss(x) from Eq. (38) to find
that

∫
x

v2
ss(x)dx= 1

2
λ�v2

[
(G2∞ − G2

sub)L − G∞Gsub

(G∞ cosh L + Gsub sinh L)2

+Gsub cosh L + G∞ sinh L
G∞ cosh L + Gsub sinh L

]
. (44)

This can be written more compactly using the expres-
sion for G in Eq. (29) above as

∫
x

v2
ss(x)dx

= 1

2
λ�v2

[
(G2∞ − G2

sub)L − G∞Gsub

(G∞ cosh L + Gsub sinh L)2
+ G

G∞

]
. (45)

We now substitute this expression into Eq. (43) along
with the expression for v(�) derived by substituting into
Eq. (38), and then use the relation cm = G∞τ0/λ to
arrive at

Cw = 1

2
Gτ0 + 1

2
G∞τ0

(G2∞ − G2
sub)L − G∞Gsub

(G∞ cosh L + Gsub sinh L)2

+ Csub
w

G2∞
(G∞ cosh L + Gsub sinh L)2

. (46)

This expression is very similar to Eq. (30), and by
invoking the inductive hypothesis that Csub

vc = Csub
w , we

can immediately conclude that Cw = Cvc for the cas-
cade. This completes the proof that Cw = Cvc for any
arbitrary cable tree.

2.2 Cvc is related to the centroid of the impulse
response and Rin

There is an interesting relationship between Cvc and the
impulse response of the neuron in current clamp. This
arises because of the close correspondence between
the moments of a function and the derivatives of its
Fourier transform at f = 0. In response to a current
pulse, i(t) = q0δ(t), that delivers an amount of charge
q0, the voltage response of the neuron is

v(t) = q0 z(t), (47)

where z(t) is the impulse response of the system (also
known as the Green’s function). The impulse response
is the inverse Fourier transform of the impedance as a
function of frequency, which I denote by Zf ( f ). (The
subscript f is a reminder that Zf (·) is a function of

the frequency f , not the complex frequency s.) An
elementary property of the Fourier transform is that

∫ +∞

−∞
z(t)dt = Zf (0) = Rin, (48)

where Rin is the input resistance of the cell. It is easy to
show that
∫ +∞

−∞
tz(t)dt = 1

− j2π

∂

∂ f
Zf

∣∣∣∣
f=0

. (49)

= R2
inCvc, (50)

where j = √−1, and where the last follows from the
fact that Zf ( f ) = 1/Y( j2π f ).

The centroid of the impulse response v(t), which I
will call τin, is given by

τin =
∫ +∞
−∞ tv(t)dt∫ +∞
−∞ v(t)dt

(51)

= q0 R2
inCvc

q0 Rin
(52)

= RinCvc. (53)

(It should be noted that τin is just the “input de-
lay” as defined by Agmon Snir and Segev (1993). See
Section 3.)

The centroid of the impulse response is a natural
way of describing the overall time scale of the neuron’s
response to current input, just as the input resistance is
a natural way of describing the overall magnitude of the
neuron’s response to current input. It is therefore very
interesting that Cvc is the capacitance given by τin/Rin,
and suggests that an alternative name for Cvc might be
the “input capacitance”, because it serves as a sort of
“overall” or “summary” capacitance.

2.3 Relation of Cvc to equalizing time constants

Rall (1969) and Major et al. (1993) showed that the re-
sponse of a passive nonisopotential neuron to a current
step of size I0,

i(t) = I0 u(t), (54)

can be written as a sum of exponential charging curves,
namely

v(t) = I0 u(t)
∞∑

k=0

Rk[1 − exp(−t/τk)], (55)

where the τks are the equalizing time constants, and the
Rks are resistances, each associated with a particular
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time constant. This implies that the impulse response
of the neuron can be written as

z(t) = u(t)
∞∑

k=0

C−1
k exp(−t/τk), (56)

where Ck = τk/Rk is a capacitance associated each
equalizing time constant. Using this form for z(t), we
can write Rin as

Rin =
∫ +∞

−∞
z(t)dt (57)

=
∞∑

k=0

Rk. (58)

In a similar fashion, we can write the first moment of
z(t) as

R2
inCvc =

∫ +∞

−∞
tz(t)dt (59)

=
∞∑

k=0

R2
kCk. (60)

Combining these, we have

Cvc = R−2
in

∞∑
k=0

R2
kCk (61)

=
∞∑

k=0

R2
k

R2
in

Ck (62)

=
∞∑

k=0

R2
k

(
∑

m Rm)2
Ck. (63)

This expresses Cvc as a weighted sum of the capaci-
tances associated with each equalizing time constant,
similar to the way Eq. (58) expresses Rin as a sum
of the resistances associated with each equalizing time
constant.

3 Discussion

I have shown that Cvc = Cw for any arbitrary tree of
passive cables. This explains exactly what is being mea-
sured by the voltage-clamp step method: a weighted
sum of the total cell capacitance, where each small
patch of capacitance is weighted by the square of the
fraction of the voltage-clamp step “felt” by that patch.
Thus Cvc includes the capacitance of the well-clamped
part of the cell, but excludes the poorly clamped part,
with “partly-clamped” parts of the cell being counted
at a rather severe discount (because of the square).

For instance, a part of the cell that only feels half
of the voltage-clamp step only has one-fourth of its
capacitance included in Cvc.

As a concrete example, consider a neuron that is
well-approximated by a single cable segment that is
many length constants long. In this case, Cvc is given by
Eq. (19). For a long cable, the factor in parenthesis is
close to one, and so Cvc ≈ cmλ/2. Since cm is a per-unit-
length quantity, this implies that Cvc is equal to the total
membrane capacitance of half a length constant of ca-
ble. This illustrates the way in which Cvc only counts the
capacitance of membrane that is electrotonically close
to the point of voltage-clamp, i.e. the well-clamped part
of the cell.

Whether this discounting of poorly-clamped parts
of the cell is a good thing or a bad thing depends on
the circumstances. Certainly, if one wants to measure
the total cell capacitance, it is a bad thing, and these
results are consistent with the fact that the voltage-
clamp step method cannot be used to measure total cell
capacitance in a nonisopotential cell. However, if one
is using the capacitance to normalize the magnitudes
of currents measured in voltage clamp, one may want
to measure only the capacitance of the well-clamped
part of the membrane. This is a very common reason
to measure neuronal capacitance, and in this case Cvc

may be preferable to a measurement of the total cell
capacitance.

All measurements of neuronal capacitance (not just
the voltage-clamp step method) are based on the as-
sumption that the neuronal response is passive. Of
course, real neurons are not generally passive: they con-
tain voltage-gated conductances, often many of them.
In order to make accurate capacitance measurements,
the active currents evoked by the voltage-clamp step
must be small compared to the passive currents so
evoked. Thus the voltage-clamp steps used to measure
capacitance are best performed at potentials far from
those at which voltage-gated channels are appreciably
activated. If there is no window of membrane potential
free from active conductances, such as might be the case
if h or Kir currents (Hille 1992) are present, pharmaco-
logical blockers should be used to block any currents
that might disrupt the passive response of the neuron.
These techniques have been used successfully in the
past to allow for measurement of capacitance and other
passive properties (Hodgkin et al. 1952; Rall 1964;
Major et al. 1994; Roth and Häusser 2001; Gillis 2009).
Of course, if there are appreciable unblocked active
currents at either the holding or the test potential, these
currents will corrupt the measurement, presumably to
an extent that depends on the size of the evoked active
currents relative to the evoked passive current.
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When recording with sharp electrodes, as in two-
electrode voltage clamp, impalement generally causes
a non-negligible shunt conductance to be introduced.
One interesting feature of Cvc is that it is not affected
by an electrode-induced shunt conductance. This is
because the net somatic conductance only contributes
to the steady-state part of the voltage-clamp current,
not the transient part (Eq. (2)). Another way of seeing
this is to note that

Ymeasured(s) = Gshunt + Yreal(s), (64)

and hence Y ′
measured(s) = Y ′

real(s). Because Cvc = Y ′(0),
we then have that Cmeasured

vc = Creal
vc .

Whole-cell patch clamp is generally thought to intro-
duce negligible shunt conductance, but does introduce a
series resistance between the measured somatic voltage
and the true somatic voltage (Roth and Häusser 2001;
Jackson 1992). However, Cvc is not strongly affected by
a series resistance, even if it is uncompensated. It can
easily be shown that in this case

Cmeasured
vc = 1(

1 + Rs/Rreal
in

)2 Creal
vc , (65)

where Rs is the series resistance. Thus a typical Rs/Rin

ratio of ∼0.01 (Gillis 2009) will lead to an error of ∼2%
in the measurement of Cvc.

Another noteworthy point is that the proof that
Cvc = Cw does not require that the neuron’s passive
properties are the same in all cable segments, nor does
it require that the cable segments have cylindrical cross-
sections.

The voltage-clamp step method is not the only
method of measuring capacitance, although it is prob-
ably the most commonly used one (Gillis 2009;
Golowasch et al. 2009). At least one popular data
acquisition program (Clampex 10, Molecular Devices)
has a form of this method built-in. Other commonly-
used methods differ in whether they use voltage- or
current-clamp, what sort of input waveform they use,
and how they use the resulting output to form a ca-
pacitance estimate (Gillis 2009; Golowasch et al. 2009).
Of course, these choices have consequences with re-
gard to what part of the cell capacitance is being
measured (Golowasch et al. 2009). (And for some of
these methods, it is not clear what is being measured
in a nonisopotential cell.) Additionally, the methods
have different technical advantages and disadvantages
in different settings (Gillis 2009; Golowasch et al. 2009).

As mentioned above, τin is just the “input delay”
of Agmon Snir and Segev (1993). Among many el-
egant results describing signal propagation in passive
dendrites in terms of temporal centroids, they showed

that the centroid of the voltage response to any current
input follows the centroid of the current input by the
input delay (i.e. τin). Thus Cvc is just the input delay
over the input resistance. They also showed that when
computing the delays between different points of a
neuron, one could lump a subtree into a single com-
partment having the same input resistance and input
delay (and thus the same Cvc) as the subtree. This
underscores the usefulness and naturalness of Cvc as a
measure of neuronal capacitance.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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