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Abstract
Eradication of infectious disease is our global health challenge. After encountering intestinal
infection with a bacterial pathogen, the host defense program is initiated by local antigen-
presenting cells (APCs) that eliminate invading pathogens by phagocytosis and establish localized
inflammation by secreting cytokines and chemokines. These pathogen-experienced APCs migrate
to the mesenteric lymph nodes, where host immune responses are precisely orchestrated. Initiation
and regulation of this defense program appear to be largely dependent on innate immunity which
is antigen non-specific and provides a rapid defense against broader targets. On the other hand,
many bacterial enteropathogens have evoked abilities to modify the host defense program to their
advantage. Therefore, better understanding of the host-pathogen interactions is essential to
establish effective eradication strategies for enteric infectious diseases. In this review, we will
discuss the current understanding of innate immune regulation of the host defense mechanisms
against intestinal infection by bacterial pathogens.
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Introduction
Intestinal bacterial infection is a common health problem and could lead to a major impact
on public health and the global economy [1]. Many pathogenic bacteria cause foodborne
illness resulting in epidemics. Outbreaks often occur following natural disasters (e.g., recent
outbreaks of Vibrio cholera in Haiti) making already dire situations catastrophic [2–4].
Recent advances of our knowledge have led to the idea that intestinal mucosa maintains
physiological homeostasis through host-commensal interactions, and that gastrointestinal
infections occur through host-pathogen interactions. However, it is largely unknown how the
host-pathogen interactions lead to intestinal pathology and systemic diseases.

The gastrointestinal mucosa is under continuous exposure to a milliard of microorganisms
that comprise the commensal flora. Mucosal immunity maintains tolerance to commensal
flora while inducing effector immunity to pathogens via a fine interplay between innate and
adaptive immune responses. In this process, innate immunity is responsible for recognition
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of microorganisms and initiation of effector and/or regulatory immune responses. In
addition, innate immunity triggers mucosal restitution programs following epithelial injury
or inflammation. Therefore, innate immunity is crucial for regulation of host-commensal
interactions in the maintenance of intestinal homeostasis.

How the host immunity induces effector responses only to harmful pathogens amongst
diverse commensal flora in the intestine is an essential question. Upon pathogenic infection,
both virulence factors of the pathogen and the host defense mechanisms determine the
consequence of intestinal immune responses. Many commensal bacteria that colonize the
intestine have diminished virulence [5]. By contrast, most clinically significant bacterial
enteropathogens have evolutionarily acquired an ability to evade host immune defenses with
individually unique virulence factors [6–8]. The strategies used by these pathogens for
immune evasion mainly target innate immunity, highlighting the importance of innate
immunity in intestinal defense mechanisms.

On the host side, identification of the pathogens and selective induction of immune
responses require utilization of innate immunity, which is initiated by pattern recognition
receptors (PRRs) on APCs including macrophages, dendritic cells (DCs), and intestinal
epithelial cells (IECs). Recognition of specific pathogen-associated molecular patterns
(PAMPs) by PRRs initiates an innate immune response inducing the production of
antimicrobial peptides, phagocytic microbial killing, and expression of cytokines,
chemokines, and reactive oxygen species. These processes lead to the recruitment of acute
inflammatory cells in order to establish localized inflammation. Diverse pathogen patterns
are precisely recognized by toll-like receptors (TLRs) and nucleotide-binding
oligomerization domain (NOD) like receptors (NLRs). Simultaneously, activated APCs
initiate adaptive immunity, which has the ability to terminate the infection and
inflammation.

Intestinal Innate Immune System Forms Host-Pathogen Interactions
Most enteropathogens invade our body through microfold cells (M-cells) within the follicle-
associated epithelium (FAE) that covers intestinal Peyer's patches (PPs). Pathogens can
easily attach to the surface of M-cells because the surface has a poorly formed glycocalyx
layer. M-cells in turn actively uptake the attached pathogens by transcytosis, a process
involving TLR signaling [9]. When pathogens are delivered to PPs, they are phagocytosed
by APCs; i.e., macrophages and DCs. Pathogens that have an ability to evade phagocytic
elimination by APCs establish an infection and colonize PPs. The initial colonization by the
pathogen induces localized inflammation in PPs characterized by recruitment of neutrophils,
DCs and monocytes, leading to activation of CD4+ T cells and production of secretory IgA
[10,11]. The existence of an M-cell-independent route of infection has also been suggested
[12]. The CX3CR1+ subset of DCs is thought to sample luminal contents through a dendrite
extended between the epithelial cells, and may initiate the host immune response [13]. This
transepithelial dendrite formation is known to increase with oral Salmonella infection, and
this process also involves TLR signaling [14]. However, the roles of these DCs in host
defense against in vivo pathogenic infection have been controversial [15].

Pathogens that survive primary host responses in PPs or intraepithelial DCs travel to and
colonize the mesenteric lymph nodes (MLNs). In this process, pathogens (especially
intracellular pathogens) may utilize phagocytes as a carrier to transport them to the MLNs.
In particular, TLR5 signaling in DCs seems to play a role in the transfer of Salmonella to the
MLNs because TLR5−/− mice show a reduced number of Salmonella-harbored DCs in the
MLNs after mucosal infection [16]. Taking the risk of MLN colonization underlines the
importance of transferring the pathogen-experienced APCs to the MLNs for the host to
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establish an organized immune response against bacterial dissemination [17,18]. In fact,
mice with surgically removed MLNs demonstrate increased bacterial dissemination and
severe immunopathology in peripheral organs [19].

We have discussed that innate immunity is responsible for induction of localized
inflammation in intestinal mucosa, PPs, and MLNs after enteric infection with bacterial
pathogens. Although it may result in severe enterocolitis and lymphadenitis, regional
inflammation is required for prevention of systemic dissemination of the pathogen. TLR4−/
− mice are unable to recruit neutrophils in response to chemically induced mucosal injury
and have enhanced bacterial translocation to the spleen [20]. Therefore, prevention of
systemic dissemination of the infected pathogen is one of the important tasks of the innate
immune defense in the face of bacterial infections in the intestine.

Mouse Models of Intestinal Bacterial Infection
One of the obstacles in investigating the role of intestinal defense mechanisms against
enteropathogens is that experimental mice are resistant to many pathogens that cause serious
diseases in humans. Nevertheless, some mouse models of intestinal bacterial infection have
been established (Table 1). Individual models have unique features that are useful to
investigate specific aspects of host immune responses as well as in vivo function of the
virulence factors of the pathogens.

Salmonella enterica serovar typhimurium infection of mice is a well-established model of
intestinal as well as systemic Salmonella infection in humans. Except for infection with
typhi, paratyphi, and sendai serovars, natural infection with Salmonella manifests
enterocolitis in most human cases [21]. In mice, however, S. typhimurium causes a systemic
disease resembling human typhoid fever but neither colonizes the intestine nor manifests as
enterocolitis after oral infection [22]. Interestingly, pretreatment of mice with antibiotics
(e.g., streptomycin) leads to acute intestinal inflammation in response to S. typhimurium
infection, highlighting the importance of commensals in the establishment of intestinal
versus systemic pathology by this pathogen [22].

Yersinia enterocolitica orally infects mice without the elimination of commensals and the
mouse model of Y. enterocolitica infection reproduces the manifestations of human disease
[23]. Once Y. enterocolitica establishes an infection, it forms microcolonies, microabscesses,
and granulomatous lesions in PPs and the MLNs, and may disseminate to the liver and
spleen. Therefore, together with S. typhimurium, the mouse model of Y. enterocolitica
infection is useful to investigate intestinal immune mechanisms and defense against
systemic dissemination of invading pathogens.

Citrobacter rodentium is an enteric pathogen that causes natural infection in mice and is
considered a good model for human enteropathogenic Escherichia coli (EPEC) and
enterohomorrhagic E. coli (EHEC), because it carries similar virulence factors as EPEC and
EHEC. In stark contrast to S. typhimurium and Y. enterocolitica, C. rodentium is not an
invasive pathogen. C. rodentium colonizes the surface of the cecal lymphoid patches a few
hours post oral infection and spreads toward the distal colon within a few days [24]. After
attaching to colonocytes, C. rodentium breaks epithelial barrier integrity through tight
junction disruption by its virulence factors, which manifests diarrhea with colitis and
epithelial hyperplasia [25].

Helicobacter hepaticus naturally infects mice and can induce intestinal pathology and
chronic active hepatitis in immune deficient mice [26]. H. hepaticus does not manifest
enterocolitis in normal mice, but infection with this pathogen exacerbates colonic
inflammation in mouse colitis models [26]. A major component of this colitis is mediated by
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innate immunity, as evidenced by the severe colitis induced by oral infection of
lymphopenic RAG2−/− mice with H. hepaticus [27]. In addition, adoptively transferred
regulatory T cells inhibit induction of colitis in H. hepaticus infected RAG2−/− mice.
Accordingly, this model is advantageous to study how bacterial signaling influences
intestinal inflammation in the context of both innate and adaptive immune responses.

TLRs and NLRs in Intestinal Defense against Bacterial Pathogens
Recognition of PAMPs by specific PRRs triggers innate immunity, which induces a variety
of gene expression via distinct intracellular signaling pathways. Figure 1 shows the complex
interactions of intracellular signaling pathways under the activation of PRRs. TLRs are
expressed on the plasma membrane or endosomes, and NLRs are expressed within the
cytosol of most cell types in intestinal mucosa. Each pathogen induces a unique pattern of
signaling pathways as different PRRs may simultaneously recognize more than one PAMP
on each pathogen. In addition, different cell types induce different responses to the same
pathogen. This combination of cellular and molecular diversity increases the host capacity to
establish organized and directed immune responses to a variety of pathogens. Expression of
most TLRs in IECs and resident APCs in the lamina propria seems to be down-regulated
presumably to avoid excessive immune responses to the commensals [28–30]. However, the
in vivo functional consequences of these TLRs in individual cell types in the intestine are yet
to be fully determined.

Most bacterial pathogens that cause intestinal pathology in humans, such as Yersinia,
Salmonella, Vibrio or Shigella, are Gram-negative species. TLR4 is highly suspected to be
involved in the host defense mechanisms against these pathogens, as lipopolysaccharide
(LPS) of the outer membrane of the Gram-negative bacteria is the major ligand for TLR4. In
fact, TLR4 deficient mice are highly susceptible to oral and systemic infection with S.
typhimurium as well as Y. enterocolitica due to impaired bacterial killing by macrophages
and defective cytokine production [31–33]. Invasive enteropathogens that carry flagella can
be recognized by TLR5 or NLRC4 at the host cell plasma membrane or cytosol,
respectively. Phagocytes infected with S. typhimurium in vitro activate NLRC4, which
induces cellular production of IL-1β and IL-18 via caspase-1 activation [34–36]. This
process appears to be important for host defense as mice deficient in caspase-1, IL-1β, and
IL-18 are individually susceptible to S. typhimurium and rapidly succumb to infection
[37,38]. Bacterial DNA can be recognized by TLR9 within the cytoplasm. However, it is
likely that these PRRs are dispensable for establishing an intestinal immune defense against
S. typhimurium in vivo, because none of the mice deficient in TLR5, TLR9, or NLRC4
shows increased susceptibility to oral S. typhimurium infection [16,37,39●●]. The
discrepancy between these results implies involvement of multiple cell types and upstream
pathways that are responsible for caspase-1 activation and IL-1β, and IL-18 production in
response to S. typhimurium infection. Moreover, the contribution of TLR signaling to
virulence of the pathogens has been suggested [16,33,39●●].

TLR signaling can be a driving force of mucosal inflammation in the setting of enteric
infection with non-invasive pathogens. For example, absence of TLR4 reduces intestinal
inflammation and morbidity in C. rodentium infection [40]. In the H. hepaticus infection
model, RAG2×MyD88 double knockout mice as well as RAG2−/− chimeric mice that carry
MyD88-deficient bone marrow demonstrate no intestinal inflammation, while MyD88
sufficient RAG2−/− counterparts show chronic colitis [41●]. These findings suggest that
MyD88-dependent TLR signaling in myeloid cells during the infection with non-invasive
bacterial pathogens dominantly mediates intestinal inflammation.
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Secretory IgA and Antimicrobial Peptides
Secretory IgA (sIgA) and antimicrobial peptides are crucial component of host immune
defense against enteric pathogens. It has been suggested that sIgA prevents adherence and
invasion by enteric pathogens [42,43]. Antimicrobial peptides are also known to inhibit
colonization of microorganisms on epithelial surfaces [44]. Signaling through TLRs and
NLRs appears to play a central role in regulation of sIgA induction and antimicrobial
peptides and thus contributes to the maintenance of commensals as well as primary defense
against intestinal pathogens [45].

PRR signaling seems to be involved in multiple steps in intestinal IgA secretion. In the
intestine, follicular B cells in PPs are activated by direct contact with activated T cells. The
activated B cells then undergo terminal differentiation to plasma cells by activation of the
transcriptional factors Bimp-1 and IRF-4 and travel to the lamina propria to secrete IgA
[46]. On the other hand, recruitment of B cells to the lamina propria requires expression of
specific chemokines from IECs that may be induced by several types of PRR signaling [47].
This T cell-dependent intestinal sIgA secretion takes five to seven days. To compensate for
this time lag, lamina propria B cells can rapidly undergo class switch recombination in a T
cell-independent manner through induction of B cell-activating factors, APRIL (A
proliferation-inducing ligand) and BAFF (B cell-activating factor of the TNF family)
[48,49]. DCs and IECs have been shown to express these B cell-activating factors in
response to bacterial recognition through TLRs [50,51]. This sIgA has been considered to
have multiple cross-reactions and contributes to host defense against a variety of pathogens
[52,53]. Constitutively-active expression of TLR4 in IECs results in increased lamina
propria B cell number and sIgA secretion along with higher expression of mucosal APRIL
[54]. Activation of TLR3 and TLR4 has been shown to induce expression of the polymeric
Ig receptor (pIgR), an epithelial immunoglobulin transporter, by IECs that enhances luminal
IgA secretion [55,56]. The pIgR−/− mice have more S. typhimurium colonization in PPs
than wild-type (WT) mice, and succumb to infection with a lower infective dose [57]. Since
the sIgA-mediated intestinal defense mechanism is associated with a reduction in local
bacterial burden in the intestine, sIgA is also suggested to contribute to prevention of
epidemics with enteropathogens [57].

Defensins are one of the major antimicrobial peptides in the intestine. Depending on the
molecular structure, defensins are classified into two major forms i.e., α-defensins (cryptdins
in mice) and β-defensins [58]. In contrast to α-defensins that are specific to intestinal Paneth
cells, β-defensins are expressed by a variety of cell types including IECs. Defensins mediate
non-oxidative microbial killing by inducing membrane disruption of the microorganisms.
Mice deficient in the metalloprotease matrilysin (MMP7), an enzyme required for
maturation of α-defensins, are highly susceptible to oral S. typhimurium infection [59].
Conversely, transgenic expression of human α-defensin HD5 by mice confers greater
resistance to oral S. typhimurium infection [60]. Although some defensins are expressed
constitutively, α-defensins and β-defensins may be induced by bacterial stimuli suggesting a
contribution of PRR signaling. Therefore, defensins are an important component of
intestinal defense against pathogenic infection which may be regulated by PRR signaling.

Conventionally raised MyD88−/− mice have been found to have an increased bacterial
translocation to the MLNs due to a significant defect in production of multiple antimicrobial
peptides in Paneth cells [61]. Paneth cell specific transgenic expression of MyD88 restores
the bacterial burden in the MLNs to the WT levels. In addition to α-defensins, MyD88
signaling regulates the expression of another type of antimicrobial Paneth cell product, c-
type lectins such as RegIIIγ and RegIIIβ [61]. TLR9−/− and NOD2−/− mice have impaired
expression of Paneth cell cryptdins compared to WT mice [62,63]. Expression of functional
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NOD2 in IECs inhibits invasion and growth of S. typhimurium in vitro [64]. NOD2−/− mice
are susceptible to oral but not systemic infection with L. monocytogenes due to defective
expression of Paneth cell cryptdin-4 [62]. These NOD2−/− mice also show increased
colonization of H. hepaticus compared to WT mice after oral inoculation [65]. In addition,
signaling through TLR2, TLR3, TLR4, TLR5, NOD1, NOD2 and NLR (NLRP3) have all
been implicated with the expression of β-defensins in IECs [16,66,67]. Therefore, multiple
PRR signaling may induce several sets of antimicrobial peptides that allows the host to
prevent the colonization of pathogens.

Macrophage Phagocytosis: Bacterial Killing vs. Pathogen Carrier
Elimination of infectious agents by macrophage phagocytosis is an important part of host
defense. There are several phagocytic receptors that are required to initiate the uptake of
pathogens into endosomes. Signaling from phagocytic receptors further facilitates
phagosome maturation. Emerging evidence has demonstrated a significant contribution of
TLR signaling in multiple steps of phagocytosis indicating TLRs as potent phagocytic
receptors [68–70]. During the maturation process, phagosomes fuse with lysosomes to
degrade internal pathogens. Formation of phagolysosomes activates NADPH oxidase and
inducible nitric oxide synthase that catalyzes acidification and oxidative burst resulting in
bacterial killing. Digestion of pathogens produces other PAMPs in the phagosomes that
further allow activation of other PRRs, which in turn induce cytokines and chemokines
forming organized innate immune responses. Secreted cytokines such as TNF-α and IFN-γ
help activate other phagocytic cells preparing against further invasion of the pathogens.
Finally, phagocytes that digest pathogens initiate adaptive immunity to generate pathogen-
specific immune defense programs.

Another aspect of phagocytosis is that macrophage phagocytosis can be used by the
pathogens to disseminate to multiple organs of the host. Many pathogens have evolved a
variety of strategies to survive macrophage phagocytosis, which include avoidance of
phagocytosis, disruption of phagosome trafficking, promotion of cell apoptosis, dampening
of inflammation, and alteration of intercellular signaling [71]. Several pathogens have
shown their ability to utilize PRR signaling for their survival in the host [16,71,72].
Pathogens surviving intracellularly may be carried to the MLNs or the spleen by
macrophages, which may cause a systemic infection. Therefore, limitation of pathogens by
macrophage versus virulence of pathogens that utilize phagocytosis for dissemination may
determine the outcome of enteric infections.

Natural Killer Cells and Innate Lymphoid Cells (ILCs) in Intestinal Defense
Mechanism

Natural Killer (NK) cells are one of the major innate immune cells that are indispensable for
early host defense against pathogenic infection. Their defense mechanisms are comprised of
the strong cytotoxicity and cytokine secretion, particularly IFN-γ [73]. Absence of NK cells
increases colonization of S. typhimurium in the intestine and enhances dissemination to the
peripheral organs after oral infection [74]. Interestingly, depletion of NK cells results in
reduced susceptibility of intestinal inflammation during oral S. typhimurium infection in
streptomycin pre-treated mice due to reduced IFN-γ expression in the intestine [75]. These
results indicate that NK cells are important not only to block pathogen invasion but also to
strongly induce inflammatory responses in the intestinal interface.

ILCs are a recently identified NK cell-related cell type that is composed of phenotypically
heterogenous populations. Emerging evidence has highlighted the importance of ILCs in
immuno-surveillance of intestinal mucosa [76,77]. The precise mechanism of ILCs-
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mediated intestinal defense against bacterial pathogens is still largely unknown, but the
effector component appears to be associated with a rapid secretion of IL-17, IFN-γ, and
IL-22. The cytokine phenotypes of ILCs are mainly regulated by the expression of a
transcriptional factor, retinoic acid receptor-related orphan receptorγt (RORγt) [78]. IL-17 is
known to contribute to host defense against enteropathogens through induction of neutrophil
recruitment and antimicrobial peptides such as β-defensins in the intestine [79,80]. On the
other hand, IL-22 deficient mice are highly susceptible to intestinal C. rodentium infection
[81]. IL-22-mediated host defense seems to be associated with induction of RegIIIβ and
RegIIIγ [77]. However, the role of IL-22 in intestinal defense may be pathogen specific as
IL-22 is dispensable for the clearance of oral L. monocytogenes infection [82].

Conclusions
The recent globalization of the food supply increases the chance for wide-spread exposure to
food-borne pathogens and the risk of outbreaks. Although antibiotic therapy may be
effective in treating enteric pathogens, the rapid onset of host systemic inflammatory
responses, the acquisition of antimicrobial resistance, and potential induction of chronic
inflammatory disorders mediated by enteric pathogens have become serious concerns. In
contrast to our evolutionally conserved PRRs, the diverse virulence profiles of enteric
pathogens threaten to overcome host defense mechanisms. Recent studies continue to
elucidate the mechanism by which host innate immunity interacts with pathogens during
intestinal bacterial infection. Innate immunity is a strong host defense program yet
opportunistic modification of this mechanism by pathogen seems to be associated with
intestinal pathology as well as progression to systemic disease. Targeting of this mechanism
will help develop effective strategies to protect host against multiple types of pathogens that
infect through intestinal mucosa.
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Figure 1. Signal transduction pathways of TLR and NLR
Pathogens are recognized by the host APCs through TLRs, which induce intracellular
signaling mainly through two adapter molecules, myeloid differentiation factor 88 (MyD88)
or Toll/interleukin-1 receptor domain-containing adapter inducing IFN-β (TRIF). While
MyD88 is used by most TLRs, the TRIF pathway can be exclusively induced by TLR4 and
TLR3. The MyD88 pathway strongly induces NF-κB activation and pro-inflammatory
cytokine secretion associated with pathogen clearance [83]. The TRIF pathway, on the other
hand, induces type I IFNs and slower NF-κB activation [84,85]. On the other hand,
pathogens can be recognized by NLRs in the cytosol, which assemble a protein complex
named inflammasome to activate caspase-1. Activated caspase-1 induces cellular apoptosis
and promotes secretion of IL-1β and IL-18.
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Table 1

Well-established mouse models of intestinal bacterial infection.

Pathogens Type Gram staining Pathology

S. typhimurium Invasive Negative Oral infection leads to systemic dissemination of S. typhimurium demonstrating
typhoid-like disease. Infection with S. typhimurium after pretreatment of mice with
streptomycin (elimination of commensals) demonstrates intestinal pathology
(enterocolitis).

Y. enterocolitica Invasive Negative Oral infection demonstrates intestinal inflammation, microabscesses in the PPs and
MLNs. Infection eventually disseminates to the spleen and the liver.

C. rodentium Non-invasive Negative A model pathogen of EPEC and EHEC in human disease. Oral infection leads to
colonization of the large intestine. Induces diarrhea disease with colitis.

H. hepatices Non-invasive Negative Natural infection leads to life-long colonization of this pathogen in mice. Inoculation of
normal mice with this pathogen does not demonstrate pathology, but influences the
course of colitis models. Infection to lymphopenic mice demonstrates severe colitis.
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