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Abstract

Background: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated
dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder
neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-
associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been
replicated across multiple studies.

Methods: We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86
HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an
important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs) affecting HIV-1
replication in macrophages in vitro were also tested.

Results: The CCR5 wt/D32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in
agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype
distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene
PREP1 (p = 1.261025). Prep1 has recently been identified as a transcription factor preferentially binding the 22,518 G allele
in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD.

Conclusion: These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-
associated neurocognitive disorders.
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Introduction

While the prevalence of HIV-1-associated dementia (HAD) has

greatly decreased, first with the introduction of zidovudine [1,2]

and later with combination antiretroviral therapy (cART) [3,4],

neurocognitive impairment is still seen more frequently in HIV-1-

infected patients than in seronegative individuals. In recent years a

new terminology has been developed to classify this broadening

clinical spectrum of neurocognitive impairment, including milder

abnormalities. HAND (HIV-1-associated neurocognitive disor-

ders) is the umbrella definition, comprising three entities:

asymptomatic neurocognitive impairment, mild neurocognitive

disorders (MND), and HAD. Clinical symptoms of HAND are

cognitive impairment (memory, concentration), motor dysfunction

and behavioral changes. Recent studies showed that MND

occurred in 15–50% of the HIV-1-infected individuals [5–9],

and HAD in 1–10% of the patients [4,5,7,8].

Although CD4+ T cells are the predominant cell type infected

by HIV-1 and primarily associated with the disease course,

circulating monocytes as well as macrophages can also become

infected and contribute to the viral reservoir and disease

progression [10]. Furthermore, monocytes and macrophages play

a crucial role in certain HIV-1-related pathologies, including

HAND [10]. Despite lack of strong evidence it is generally

believed that HIV-1 migrates across the blood-brain barrier in

monocytes that were infected in the blood [11,12]. Indeed, in the
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brain, the monocyte-derived perivascular macrophages and

microglia are the most commonly HIV-1-infected cells [13,14].

Complex mechanisms underlie the neurodegeneration, since

neurons themselves are not infected by HIV-1. Local production

of HIV-1 proteins [15–18] or other non-HIV compounds [19–24]

by infected and activated macrophages and microglia cause

neuronal damage. Furthermore, neuronal injury may occur as a

consequence of the inflammatory process in the brain [25–27].

As is the case for many complex disorders, it remains unclear

why some individuals are more at risk to develop HAND than

others. The cause of the neurodegeneration is multi-factorial, and

in addition to viral genetic factors [28–30], host genetic

predisposition may also contribute to the susceptibility to these

disorders. We previously reported a reduced prevalence of the 32

base pair deletion in the CCR5 gene in HIV-infected individuals

with HAD as compared to controls with AIDS but no HAD [31],

and recently a single nucleotide polymorphism (SNP) in the gene

of one of its natural ligands, CCL3, was identified to be associated

with HAD as well [32]. SNPs in MCP-1 (monocyte chemoat-

tractant protein-1) and TNFA were found to affect protein

expression levels of these genes [33–36] and were associated with

the onset of HAD [34,37,38]. A biological mechanism by which

the SNP in MCP-1, located at position 22,518 in the promoter

region, affects gene expression was described recently [39]. This

study demonstrated that the transcription factor Prep1 preferen-

tially binds the 22,518 G allele in MCP-1, thereby affecting

transcription of this protein. Furthermore a SNP in CCR2,

encoding the receptor for MCP-1, was associated with rate of

progression to neuropsychological impairment [40]. However, few

of the associations between polymorphisms and HAD have been

replicated in other studies (see Table 1 for an overview of all

identified associations between host common genetic variants and

HAD).

Here, we evaluated the polymorphisms in previously tested

candidate genes CCR5, CCR2, MCP-1, TNFA, APOE and CCL3, as

well as a polymorphism in the novel candidate gene PREP1, for

their association with HAD in participants of the Amsterdam

Cohort Studies of HIV infection and AIDS (ACS) and the AIDS

therapy evaluation in The Netherlands (ATHENA) observational

cohort. In addition, given the important role of monocytes and

macrophages in the etiology of HAD, SNPs that we recently

identified to affect HIV-1 replication in macrophages in vitro were

also tested [41].

Materials and Methods

Ethics statement
This study has been conducted in accordance with the ethical

principles set out in the declaration of Helsinki. Anonymized

archival material (peripheral blood mononuclear cells or DNA)

from AIDS patients was used in this study, which was approved by

the Medical Ethics Committee of the Academic Medical Center in

Amsterdam, The Netherlands. For the qPCR experiments,

anonymized buffy coat or full blood was used from healthy blood

donors, and the use was approved by the Medical Ethics

Committee of the Academic Medical Center and the Ethics

Advisory Body of the Sanquin Blood Supply Foundation in

Amsterdam, The Netherlands. Written informed consent was

obtained from all of these healthy donors.

Study population
In total we selected 86 AIDS patients with HAD (cases) from the

Amsterdam Cohort Studies and ATHENA observational cohort

from whom DNA was available for genotyping. Before the AIDS

dementia complex was defined as a distinct clinical syndrome the

diagnosis of dementia in these patients had been based on DSM-

III (Diagnostic and Statistical Manual of Mental Disorders)

criteria. Motor abnormalities were present in all these demented

patients, which agreed retrospectively with the diagnostic criteria

of the AIDS dementia complex [42]. When more precise

Table 1. Overview of all common genetic variants tested for association with HIV-1-associated neurocognitive disorders.

Gene Polymorphism Association with HAND No association with HAND

APOE E4 isoform Corder et al. [60], HAD; prospective
cohort study (n = 44)

Pemberton et al. [61], HAD; 56 cases, 112 controls

Diaz-Arrastia et al. [62], HIVE; cohort A: 43 cases and
104 controls, and cohort B: 14 cases and 117 controls

Dunlop et al. [63], HAD and HIVE; 32 HAD cases,
24 possible HAD cases and 73 controls

CCL3 rs1130371 Levine et al. [32], HAD; 26 cases, 117 controls

CCR2 rs1799864
V64I

Singh et al. [40], HAND, prospective
cohort study (n = 121)

Van Rij et al. [31], HAD; 49 cases, 186 controls

CCR5 D32 Van Rij et al. [31], HAD; 49 cases, 186 controls Singh et al. [40], HAND, prospective cohort study (n = 121)

MCP-1 rs1024611
(22518 A.G)

Gonzalez et al. [34], HAD; prospective
cohort study (n = 1,115)

Singh et al. [40], HAND, prospective
cohort study (n = 121)

Shiramizu et al. [37], HIV-1 DNA in
CSF; 27 specimens

Levine et al. [32], HAD; 26 cases, 117 controls

TNFA rs1800629
(2308 G.A)

Quasney et al. [38], HAD; 16
cases, 45 controls

Sato-Matsumura et al. [64], HIVE;
44 cases, 30 controls

Pemberton et al. [61], HAD; 56
cases, 112 controls

Levine et al. [32], HAD; 26 cases, 117 controls

Diaz-Arrastia et al. [62], HIVE; cohort A: 43 cases and
104 controls, and cohort B: 14 cases and 117 controls

HAND, HIV-1-associated neurocognitive disorders; HAD, HIV-1-associated dementia; HIVE, HIV-1 encephalitis.
doi:10.1371/journal.pone.0030990.t001
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PLoS ONE | www.plosone.org 2 February 2012 | Volume 7 | Issue 2 | e30990



diagnostic criteria were introduced in 1991 and 2007 ([43,44]),

these criteria were used to classify these patients. The absence of

dementia was confirmed by neurological examination by a

neurologist.

We compared the HAD patients with 246 AIDS patients

without HAD (controls) (Table 2). A subset of these samples (49

cases and 186 controls) was included in a previous study that

investigated CCR5 D32 and CCR2 V64I genotype frequencies

between HAD cases and controls [31].

Cases and controls were matched for year of AIDS diagnosis

(AIDS diagnosis was based on AIDS defining events according to

the CDC AIDS definition 1987; Kaposi’s sarcoma was excluded as

an AIDS defining event), time from AIDS diagnosis to death or to

start of combination antiretroviral therapy (cART), age at AIDS

diagnosis and CD4+ T cell count at AIDS diagnosis. Cases

receiving cART more than 6 months before their HAD diagnosis

(n = 14), as well as controls who started cART more than 6 months

before their AIDS diagnosis (n = 5) were excluded from the

analysis. Median time from AIDS to developing HAD for the cases

was significantly shorter than the time from AIDS to death or to

start cART in the control population (p,0.0001; Mann Whitney

test) (Table 2), indicating that time from AIDS to death or to start

cART for the HIV-1-infected individuals in the control group was

in principle long enough to develop HAD. Similar results were

obtained when using Kaplan-Meier analysis, with no difference in

time from AIDS to death (start cART used as censor) between

cases and controls (p = 0.11, logrank test) and significant shorter

time from AIDS to HAD for the cases, than time from AIDS to

death (start cART as censor) for the controls (p = 0.00036, logrank

test) (Figure 1A–B). Information on ancestry was only known for

a limited number of patients and was based on reported ethnicity

by the treating physician or reported country of birth.

Candidate SNP selection and genotyping
Genotype distributions of polymorphisms previously associated

with HAND (Table 1) as well as SNPs associated with in vitro

HIV-1 replication in macrophages (cutoff p value = 561025)

(Table S1) [41], were analyzed in this case-control study. PREP1

Table 2. Characteristics of the studied population consisting of AIDS patients with or without HAD.

Characteristics HAD patients Non-HAD patients p

(cases, n = 72) (controls, n = 241)

AIDS diagnosis (year); median (range) 1989 (1984–2005) n = 69 1990 (1985–2005) n = 241 –

Time AIDS to death or start cART (months); median (range) 14 (0–114) n = 67 12 (0–81) n = 234 0.211

Time AIDS to HAD (months); median (range) 5 (0–114) n = 69 N.A. ,0.00011,2

Age at diagnosis AIDS; average (range) 40 (22–63) n = 69 41 (23–71) n = 241 0.603

CD4+ T cell count (cells/ml) at AIDS, median (range)4 120 (10–850) n = 39 105 (7–1,380) n = 166 0.481

Mode of HIV-1 transmission (IDU : other) 4 : 35 4 : 158 0.0485

N.A., not applicable; HAD, HIV-1-associated dementia; IDU, injecting drug user.
1Mann Whitney test.
2Time to develop HAD after AIDS diagnosis among the cases was compared to the time from AIDS diagnosis to death or to start cART in the control group.
3unpaired t test.
4CD4+ T cell counts within 6 months to the date of AIDS diagnosis.
5Fisher’s exact test.
doi:10.1371/journal.pone.0030990.t002

Figure 1. Comparison of AIDS survival between HAD cases and non-HAD controls. (A) Kaplan Meier analysis for time from AIDS to death
with start cART as censor (vertical lines), for both HAD cases (grey line) and non-HAD AIDS patients as controls (black line). (B) Kaplan Meier analysis
for time from AIDS to death with start cART as censor (vertical lines) for the controls (black line) and for time from AIDS to HAD for the HAD cases
(grey line). cART, combination antiretroviral therapy; HAD, HIV-1-associated dementia.
doi:10.1371/journal.pone.0030990.g001
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was selected because of its preferred binding to the 22,518 G

allele in the promoter region of MCP-1. SNP rs2839619 was

selected from 17 SNPs in PREP1 after preliminary analysis

comparing 15 cases with 126 unmatched controls. This SNP seems

of particular interest since it was shown to be associated with

cholesterol metabolism [45], which is known to play a role in the

etiology of Alzheimer’s disease [46] and in addition, is in linkage

disequilibrium (r2 = 0.51) with nearby intronic SNP rs234720 that

has been associated with cognitive test performance [47].

Peripheral blood mononuclear cells were used for isolation of

genomic DNA using QIAamp DNA blood mini kit (Qiagen,

Valencia, CA, USA) or NucleoSpin blood kit (Macherey-Nagel,

Dueren, Germany). SNP genotypes for SNPs in DYRK1A, PDE8A,

UBR7 and PREP1 (Table S1) were available for 172 individuals

(18 cases, 154 controls) from a recent study on the effects of host

genetic variation on HIV-1 susceptibility and disease progression

[48]. For the remaining DNA samples and other SNPs not present

on the Illumina SNP beadchip, ABI TaqManH SNP genotyping

assays (Applied Biosystems, Carlsbad, CA, USA) were used for

genotyping (Table S1). For all SNPs except the SNP in TNFA,

genotyping assays were run on a LightCyclerH 480 system (Roche,

Basel, Switzerland) using Probes Master (Roche) with the following

amplification cycles: 10 min 95uC; 50 cycles of 15 sec 95uC, 1 min

60uC.

The TNFA SNP assay was run on an Applied Biosystems 7500

Fast Real-Time PCR System (Applied Biosystems) with Taqman

genotyping master mix (Applied Biosystems), and using the

following amplification cycles: 10 min 95uC; 40 cycles of 15 sec

95uC, 1 min 60uC. APOE allele types (E2, E3 or E4 [49]) were

determined by genotyping SNPs rs429358 (C or T) and rs7412 (C

or T). CCR5 D32 and CCR2 V64I genotyping was performed as

described previously [50,51].

Quantitative PCR
Buffy coat or full blood was obtained from 69 healthy blood

donors. Monocyte isolation and monocyte-derived macrophage

(MDM) culture was performed as previously described [52]. Total

RNA was extracted from day 7 uninfected MDM using the High

Pure RNA Isolation kit (Roche). Oligo(dT) primers were used for

reverse transcription of mRNA, using Roche’s Transcriptor First

Strand cDNA Synthesis kit (60 min at 50uC). Resulting cDNA was

used for quantitative PCR (qPCR) analysis, using the following

primes: PREP1 F and R, MCP-1 F and R, and GAPDH F and R

(Table S2). qPCRs were performed with SYBR Green I Master

(Roche) and were run on a LightCyclerH 480 system (Roche) using

the following amplification cycles: 10 min 95uC; 50 cycles of

10 sec 95uC, 20 sec 58uC, 30 sec 72uC. All procedures were

carried out according to manufacturer’s protocol. Messenger RNA

expression is reported relative to GAPDH. Gene expression values

were obtained using Roche’s LightCyclerH relative quantification

software (release 1.5.0). To facilitate accurate and reliable

between-donor comparison, cDNA synthesis and qPCR experi-

ments for all 69 samples were performed simultaneously.

Statistical analysis
Fisher’s exact test was used to test for differences in SNP

genotype distribution between cases and controls. To test for

differences in group characteristics between cases and controls the

Mann Whitney test and the unpaired t test were used. One-way

ANOVA was performed to test for differences in mRNA levels

between genotypes. Statistical analysis was performed using the

statistical computing software R (version 2.9.0) and GraphPad

Prism (version 5).

Results

Genotype frequencies for all polymorphisms tested, in the group

of cases with HAD (n = 72) and the group of controls that did not

develop HAD (n = 241), are displayed in Table 3. Of the 12

polymorphisms tested, a significant difference in genotype

distribution for SNP rs2839619 in PREP1 was found between

cases and controls (p = 1.261025; 71 cases and 235 controls; DNA

was limited for some of the cases or controls, therefore not all

samples could always be genotyped). The difference remained

statistically significant after Bonferroni correction for multiple

comparisons (n = 12), p = 1.461024. Also after excluding HAD

Table 3. Genotype distribution among HAD (cases) and non-HAD (controls) HIV-1-infected patients for all polymorphisms tested.

Gene Polymorphism Cases (HAD) Controls (no HAD) p

AA AB BB AA AB BB

APOE1 E4 isoform2 52 16 1 158 52 5 0.95

CCL31 rs1130371 40 26 5 133 90 9 0.53

CCR21 rs1799864 (V64I) 64 8 0 206 34 1 0.66

CCR51 D32 66 6 0 203 38 0 0.13

DYRK1A3 rs12483205 38 25 8 125 96 11 0.13

MCP-11 rs1024611 (22518 A.G) 3 27 41 14 101 116 0.58

MOAP13 rs1046099 29 36 6 117 93 20 0.28

PDE8A3 rs12909130 33 34 4 110 96 26 0.34

PREP1 rs2839619 30 17 24 55 130 50 1.261025*

SPOCK31 rs17519417 21 32 17 76 102 53 0.91

TNFA1 rs1800629 (2308 G.A)(2308 G.A) 57 13 1 158 62 9 0.20

UBR73 rs2905 10 28 33 22 107 103 0.42

1Polymorphisms selected from earlier studies that tested for association between genotype and HAD.
2In the case of APOE AA, AB and BB refer to no APO E4, one APO E4 allele and two APO E4 alleles, respectively.
3SNPs selected from a previous study that found associations between these SNPs and HIV-1 replication in macrophages.
*Significant difference after correction for multiple testing (n = 12); Bonferroni threshold p = 4.261023.
doi:10.1371/journal.pone.0030990.t003
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cases with known non-Caucasian ethnicity, or for whom injecting

drug use was reported as mode of HIV-1 transmission, a known

risk factor for HAD [4], the difference in PREP1 SNP genotype

distribution between cases (n = 64) and controls remained

significant (n = 211) (p = 4.361025). Quantitative PCR experi-

ments performed to investigate if the SNP in PREP1 was

associated with either PREP1 or MCP-1 mRNA levels showed

no difference in PREP1 or MCP-1 mRNA levels between the three

PREP1 SNP genotypes (p = 0.3 and 0.8, respectively, n = 69; one-

way ANOVA) (data not shown).

Remarkably, for none of the other polymorphisms tested,

including those previously reported to be associated with HAD

(CCR5 D32, promoter SNP in MCP-1, the 2308 G.A SNP in

TNFA, CCR2 V64I variant, Apo E4 isoform and a SNP in CCL3), a

significant difference was found in genotype distribution between

cases and controls. In a previous case-control study [31], we

described a reduced prevalence of the CCR5 wt/D32 genotype

among HAD patients. A subset of cases and controls from this

published study overlaps with our current study population. Cases

and controls that were additionally included for this study

seroconverted on average later in time. We recently reported that

in the HIV-1 epidemic in The Netherlands, the impact of certain

host factor polymorphisms, including CCR5 D32, might be fading

[53]. We therefore hypothesized that the protective impact of the

CCR5 wt/D32 genotype on the onset of HAD also may have

decreased over time. To test this hypothesis we divided cases and

controls into two groups using the median year of AIDS diagnosis

of the complete study population (1990). This approach was

chosen over using seroconversion date since this information was

unavailable for 29 of 42 cases with AIDS diagnosis #1990.

Importantly, cases and controls with AIDS diagnosis #1990 as

well as with AIDS diagnosis .1990 matched all of the

characteristics as described above (Table S4), and time from

AIDS to death or to start cART for the HIV-1-infected individuals

in the control group was in principle long enough to develop HAD

(p = 0.005 and p = 0.001 for cases and controls with AIDS

diagnosis #1990 and .1990, respectively, Mann Whitney test)

(Table S4). Similar results were obtained when using Kaplan-

Meier analysis and logrank test (data not shown). When the CCR5

wt/D32 genotype frequency was compared between cases and

controls we observed a difference in the ‘‘AIDS diagnosis #1990’’

group (p = 0.046), but not for the ‘‘AIDS diagnosis .1990’’ group

(p = 1.00) (Table S3), indeed suggestive of a fading protective

effect. Assuming that other genetic effects may also have

diminished over time in our cohort, we performed the same

analysis for the remaining polymorphisms (Table S3). For 9

polymorphisms, no significant associations were observed in either

group. The effect of the SNP in PREP1 was clearly independent of

the year of AIDS diagnosis, since in both groups there were

significantly fewer heterozygous individuals for SNP rs2839619

among cases than controls (p = 0.001 and p = 0.008 for the ‘‘AIDS

diagnosis #1990’’ and the ‘‘AIDS diagnosis .1990 group’’,

respectively) (Table S3). Conversely, a significant (defined as

p,0.05; however not significant after correction for multiple

testing, n = 24) association with HAD was observed for the SNP in

DYRK1A only in the group with AIDS diagnosis after 1990.

Discussion

Here we describe the first combined evaluation of all previously

identified genetic polymorphisms reported to be associated with

the prevalence of HAND. In addition, we evaluated polymor-

phisms that we recently identified to be associated with HIV-1

replication in macrophages for their association with HAD. For

one of the 12 polymorphisms tested, SNP rs2839619 in PREP1, we

observed a significantly different genotype distribution when

comparing AIDS patients with and without HAD. The prevalence

of the heterozygous genotype was 55% among controls (and 53%

in the HapMap CEU population, n = 226), as compared to only

24% among HAD cases, suggesting that the heterozygous

genotype has a protective effect against the development of

HAD (positive heterosis). Although multiple examples of heterosis

exist ([54,55] and reviewed in [56]), the molecular basis for this

heterozygous effect sometimes remains difficult to understand

(reviewed in [56,57]).

Case-control studies are greatly influenced by variation in allele

frequency across different subgroups [58] that may lead to

identification of false positive associations. However, the associa-

tion for the PREP1 SNP remained significant after excluding

patients expected to be of non-European descent. Moreover, since

the allele frequency for this SNP is similar for Caucasians, Asians

and Africans (NCBI dbSNP) we do not expect that additional

population stratification resulting from ethnicity would affect this

association. Differences in population substructure may be of

importance when SNP rs2839619 is not the causal variant but

rather tags another genetic variant, since for that particular SNP

genotype distributions may vary between different populations. In

addition, the outcome remained unaffected after correcting for

injecting drug use as mode of HIV-1 transmission. Although it is

known that Prep1 binds to the promoter region of MCP-1, we

were unable to demonstrate an association between SNP genotype

and MCP-1 mRNA levels in MDM. However, MCP-1 is secreted

by monocytes and macrophages, but expression is not limited to

these cell-types. The cytokine is also expressed in for HAD possibly

more relevant cells such as endothelial cells, astrocytes, microglia

and neurons ([59] and references therein). Functional follow-up

studies will need to delineate a mechanism that helps to explain the

observed reduced frequency of heterozygous donors in the group

of HAD patients.

None of the previously identified associations between genetic

variants and HAND could be replicated in our present study, even

when tested under a dominant or recessive model (data not

shown). Many of the candidate gene polymorphisms suggested to

play a role in the prevalence of HAND have not been reproduced

widely in other cohorts (Table 1). Limitations in the availability of

patient material, heterogeneity in HAND diagnoses, differences in

case-control matching strategies and possible population substruc-

ture may have contributed to the absence of robust and replicable

results. While we tried to carefully address many of these issues in

this study, no robust replication of the reported associations was

obtained, suggesting that meta-analyses of multiple HAND

cohorts may be required to reliably evaluate the effect of host

polymorphisms on HAND.

SNPs previously associated with HIV-1 Gag p24 levels in

macrophage cultures were not found to be associated with HAD,

although meta-analyses may be required to firmly establish this.

This possibly suggests that the quantity of HIV-1 replication in

macrophages is less important for the etiology of this phenotype as

compared to the immune activation in the brain as a consequence

of HIV-1 replication [12].

The protective effect observed for the CCR5 wt/D32 genotype

was only observed in the group of individuals that had an AIDS

diagnosis #1990 and no longer in the group that was diagnosed

with AIDS .1990. Excluding cases and control from non-

European descent, in whom the CCR5 wt/D32 genotype is less

frequent, did not change the outcome of the analysis. In agreement

with these findings, we observed a similar fading impact of the

SNP in PREP1 Associated with HAD
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CCR5 wt/D32 genotype on HIV-1 control over calendar time and

at a population level [53].

We also observed a difference in DYRK1A SNP rs12483205

genotype distribution between cases and controls with AIDS

diagnosis #1990. While the minor allele of this SNP was

associated with reduced replication of HIV-1 in monocyte-derived

macrophages in vitro [41] the observed difference here is the result

of 35% more cases homozygous for the major allele, yet 59%

fewer cases with the heterozygous genotype as compared to the

controls (data not shown). This difference could possibly be due to

population stratification since in both Asian and sub-Saharan

African populations the frequency of the homozygous major and

heterozygous genotype is higher and lower respectively (dbSNP).

The association of a SNP in PREP1 with the onset of HAD

further supports the biological importance of MCP-1 in the

pathogenesis of this disease. Replication of this association in an

independent cohort using matched HAD cases and controls will

now be highly desirable. Functional studies will be required to

delineate how the observed difference in allele frequencies can be

explained in a biological context.
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