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Abstract
Tumor recurrence is the major cause of death in lung cancer treatment. To date, there is no
clinically applied gene expression-based model to predict the risk for tumor recurrence in non-
small cell lung cancer (NSCLC). We sought to embed crosstalk with major signaling pathways
into biomarker identification. Three approaches were used to identify prognostic gene signatures
from 442 lung adenocarcinoma samples. Candidate genes co-expressed with 6 or 7 major NSCLC
signaling hallmarks were identified from genome-wide coexpression networks specifically
associated with different prognostic groups. From these candidate genes, the first approach
selected genes significantly associated with disease-specific survival using univariate Cox model.
The second approach used random forests to refine the gene signatures; and the third approach
used Relief algorithm to form the final gene sets. A total of 21 gene signatures were identified
using these three approaches. These gene signatures generated significant prognostic stratifications
(log-rank P < 0.05 in Kaplan-Meier analyses; Hazard Ratio >1, P< 0.05) in all tumors, stage I
only, and in stage I patients not receiving chemotherapy in all training and test sets. In multivariate
analyses with age, gender, race, smoking history, cancer stage, and tumor differentiation, a 10-
gene signature had a hazard ratio of 3.23 (95% CI: [1.48, 7.06]), which was a more significant
prognostic factor than other clinical factors, except cancer stage (III vs. I; with no significant
difference). All identified 21 gene signatures outperformed other lung cancer signatures evaluated
in the Director's Challenge Study. This study is an important step toward personalized prognosis
of tumor recurrence and patient selection for adjuvant chemotherapy, with significant impact on
down-stream clinical applications.
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Introduction
Lung cancer is a complex disease and remains the leading cause of cancer-related mortality
world-wide. Non-small cell lung cancer (NSCLC) accounts for about 80% of lung cancer
cases. In the current practice, surgical resection is the major treatment option for stage IA
NSCLC patients. However, about 35-50% of stage I NSCLC patients will develop and die
from tumor recurrence within five years following the surgery (1;2), and adjuvant
chemotherapy of stage II and stage III disease has resulted in very modest survival benefits
(3). It is not currently feasible to identify specific patients at high risk for recurrence who
might benefit from adjuvant chemotherapy, especially for stage I patients. The emerging use
of biomarkers may enable physicians to make treatment decisions based on the specific
characteristics of individual patients and their tumors, instead of population statistics (4). To
date, there is no fully-validated and clinically applied model for predicting lung cancer
recurrence (5).

There have been many studies on lung cancer prognosis by transcriptional profiling (6-12).
In these studies, genes are ranked according to their association with the clinical outcome,
and the top-ranked genes are included in the classifier. However, rank-based feature
selection algorithms cannot model complex molecular interactions in disease. It has been
noted that individual biomarkers showing strong association with disease outcome are not
necessarily good classifiers (13-15). Because genes and proteins do not function in isolation,
but rather interact with one another to form modular networks (16); thus, understanding
these interactions is critical to unraveling the molecular basis of disease. Molecular network
analyses have been shown to be useful in disease classification (17) and identification of
novel therapeutic targets (18). Nevertheless, major challenges include the modeling of
genome-scale coexpression networks and the identification of a particular set of markers,
from among the enormous number of potential markers, that has the highest prognostic
ability of disease outcome (19).

Genes implicated in cancer initiation and progression show dysregulated interactions with
their molecular partners (20), and cancer genes are more likely to actively interact with
signal proteins (21). In this study, we present a network-based methodology for the
combined analysis of disease-mediated genome-wide coexpression networks, crosstalk with
major NSCLC signaling pathways, and clinical approaches. This network-based
methodology identified extensive gene signatures coexpressed with major NSCLC signaling
proteins, which generated significant prognostic stratification in all cancer stages (I, II, and
IIIA), stage I only, and in stage I patients not receiving chemotherapy in the Director's
Challenge Study of lung adenocarcinoma (n = 442).

Materials and Methods
Microarray profiles and patient samples

Gene expression profiles were quantified with Affymetrix HG-U133A on 442 lung
adenocarcinoma samples in the Director's Challenge Study (12). This study cohort is
composed of 4 data sets (University of Michigan, H. Lee Moffitt Cancer Center, Memorial
Sloan-Kettering Cancer Center, and Dana-Farber Cancer Institute) contributed by 6
institutions. None of the patients received preoperative chemotherapy or radiation and at
least two years of follow-up information was available for each patient. The raw microarray
data are available from the caArray website
[https://array.nci.nih.gov/caarray/project/details.action?project.id=182]. The data used in this
analysis was quantile-normalized and log2-transformed with dChip (22). A brief summary of
the clinical characteristics of all patient samples is provided in Supplementary Table 1.
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Implication induction algorithm
An implication induction algorithm based on prediction logic (23) was used to derive gene
coexpression networks with the Software package Genet [available at:
http://www.hsc.wvu.edu/mbrcc/fs/GuoLab/products.asp]. Prediction logic reveals the
implication relationships among variables in a dataset and evaluates propositions in formal
logic. A modified U-Optimality method (24) was used to derive the implication relation
between each pair of genes (25). The six foremost implication rules could be used to
represent the gene regulation relations in the biological context (Supplementary Fig. 3). In
this study, the minimum scope and the minimum precision of a derived implication relation
were significantly greater than zero (P < 0.05, one-sided z-tests).

Random forests
The random forests algorithm is an ensemble of tree classifiers (26). The basic step of
random forests is to form diverse tree classifiers from a single training set. Each tree is built
using a different bootstrap sample from the original data. About one-third of the cases are
not used in the construction of a tree. These cases are called out-of-bag (OOB) cases. The
feature selection experiments were performed using the varSelRF package (27) of R
[http://www.r-project.org/]. The feature subset with the smallest OOB error was chosen as
the optimal feature subset.

Relief feature selection algorithm
Relief evaluates the importance of a variable by repeatedly sampling an instance and
checking the value of the given variable for the nearest instance from the same and different
classes. The values of the attributes of the nearest neighbors are compared to the sampled
instance and used to update the relevance scores for each attribute. As approximated in the
following equation, Relief computes the weight of attribute A as:

Relief assigns more weight to those attributes that have the same value for instances from the
same class and differentiate from instances in different classes (28;29).

Results
Network-based Methodology for signature identification

Patient samples from UM and HLM formed the training set (n = 256), whereas samples
from MSK (n = 104) and DFCI (n = 82) constituted two independent test sets. Genes with
missing measurements in at least half of the samples were removed from analysis.
Furthermore, for genes measured using multiple probes, the average expression of the
duplicates was used to represent the expression profile of the unique gene. This gave 12,566
unique genes for the implication network analysis.

To construct implication networks, the mean expression of each gene in a patient cohort was
used as a cut-off to partition the expression profiles. If the expression of a gene in a patient
sample was greater than the mean in the cohort, this gene was denoted as up-regulated in
this tumor sample; otherwise, it was denoted as down-regulated in the tumor sample. In the
training set, patients who died within 5 years were labeled as poor-prognosis (n = 125), and
those who survived 5 years after surgery were labeled as good-prognosis (n = 104).
Censored cases (those with follow-up of less than 5 years) were removed from the analysis
(n = 27). For each patient group in the training set, a genome-scale coexpression network
was constructed using the implication induction algorithm. Between each pair of genes,
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possible significant (P < 0.05; one-sided z-tests) coexpression relations were derived in each
patient group, constituting disease-mediated gene coexpression networks. By comparing the
implication rules connecting each pair of nodes between the two networks, disease-specific
differential network components were identified. These differential components contain the
coexpression relations that were either present in the poor-prognosis group but missing in
the good-prognosis group, or conversely, those present in the good-prognosis group but
missing in the poor-prognosis group (Fig. 1).

Next, candidate genes were obtained by retrieving genes displaying a direct significant (P <
0.05, z-tests) co-regulation relation with major NSCLC signal proteins from the differential
components associated with each prognosis group. From the human NSCLC signaling
pathways delineated by the KEGG pathway database (available at:
http://www.genome.jp/kegg/pathway/hsa/hsa05223.html), 11 signaling proteins (TP53,
MET, RB1, EGF, EGFR, KRAS, E2F1, E2F2, E2F3, E2F4, and E2F5) were included in this
study based on their reported clinical relevance in NSCLC progression. Candidate genes
with significant coexpression relations with any combination of 6 or 7 signaling proteins
were included for further analysis (Fig. 1).

Three approaches were taken to identify gene signatures from the pool of candidate genes.
In the first approach, candidate genes with significant association with disease-specific
survival (P < 0.05, univariate Cox model) were identified as signature genes. In the second
approach, random forests were used to obtain a refined set of signature genes from the
significant probes (P < 0.05; univariate Cox model). In the third approach, significant probes
(P < 0.05; univariate Cox model) were further ranked by the Relief algorithm, and the top
ranked genes formed the final gene signatures in a step-wise forward selection. Specifically,
starting from the top ranked gene, one gene was added at each step to the gene set, until the
prognostic accuracy could not be improved by the addition of more genes. The final gene set
was identified as the gene signature. Fig. 1 gives an overview of the methodology.

Evaluation of identified prognostic gene signatures
To evaluate if the identified signatures could provide accurate prognostic prediction for lung
adenocarcinoma, a multivariate Cox proportional hazard model was used in prognostic
stratification. The models and cutoff values defined using the training set were applied to the
independent test sets without re-estimating the parameters. The prognostic performance of
each identified gene signature was evaluated according to following criteria: log-rank tests
in Kaplan-Meier analyses and hazard ratio of death from lung cancer for all cancer stages,
for stage I only and for stage I without receiving chemotherapy in training and test cohorts.

In the first approach, among candidate genes that co-regulated with 6 signaling proteins, 9
gene signatures generated significant stratification (log-rank P <0.05) with significant
hazard ratios (P < 0.05) in all three patient cohorts (Supplementary Table 2). Among these 9
gene signatures, 5 of them also had significant hazard ratios (P <0.05) on stage I patients in
all three cohorts. Among the 5 gene signatures that could give accurate prognostic
categorization in all stages and stage I tumors, 4 gene signatures (S1-S4; Supplementary
Table 3) generated significant stratifications (log-rank P <0.05 in Kaplan-Meier analysis,
with hazard ratio significantly greater than 1) for stage I patients without receiving
chemotherapy (Supplementary Table 2). Similarly, among candidate genes co-regulated
with 7 signaling proteins in the first approach, 4 gene signatures generated accurate
prognostic stratification (log-rank P <0.05 in Kaplan-Meier analysis, with hazard ratio
significantly greater than 1) in all three patient cohorts, and one of them also generated
accurate prognostic prediction in stage I patients in all three datasets (Supplementary Table
2).
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The second approach identified 1 gene signature (S5; Supplementary Table 4) that provided
significant stratifications in patients with all resectable cancer stages, stage I only, and stage
I without receiving chemotherapy (Supplementary Table 2). The third approach identified
16 such gene signatures (S6-S21; Supplementary Table 5). In summary, a total of 21 gene
signatures were identified using the three approaches in this study, which, in turn, generated
significant prognostic categorizations in lung adenocarcinomas with all cancer stages, stage
I only, and stage I without chemotherapy (Supplementary Table 2).

Survival prediction using the identified 10-gene prognostic signature
The identified 21 gene signatures had similar prognostic performance. As an example, a
prognostic evaluation of a 10-gene signature identified using the third approach (S13;
Supplementary Table 5) was provided.

A multivariate Cox proportional hazard model was fitted with the 10 genes as covariates on
bootstrapped training samples for 1,000 times. For each gene covariate, the average of the
1,000 bootstrapped coefficients was used in the training model. Using the training model, a
survival risk score was generated for each patient. A risk score of -12.04 was identified as a
cutoff value for patient stratification in the training set (Fig. 2A). This training model and
cut-off value was then applied to the two validation sets (Fig. 2B-2C). In all three patient
cohorts, this scheme stratified patients into prognostic groups with distinct post-operative
overall survival (log-rank P < 0.03, Kaplan-Meier analyses). When the high-risk group is
defined as a group of patients who died within 5 years, and the low-risk group is designated
as a group of patients who survived 5 years or longer, this model achieved sensitivity
(correctly predicted high-risk patients) of 55.20% on the training set, 52.94% on MSK, and
75% on DFCI. The specificity (correctly predicted low-risk patients) was 75% on the
training set, 61.29 % on MSK, and 58.33% on DFCI (Fig. 2D). Furthermore, the 10-gene
model could identify high-risk patients with stage I (log-rank P ≤ 0.007; Fig. 3A-3B) or
stage IB (log-rank P ≤ 0.04; Fig. 3C-3D) cancers on both the training set and combined test
sets. In stage I patients who did not receive chemotherapy, the prognostic model stratified
high- and low-risk groups with distinct survival outcome in both training and test sets (log-
rank P ≤ 0.05; Fig. 3E-3F). These results demonstrate that the 10-gene signature provides a
more refined prognosis than the current AJCC staging system. Using this model, patients
with stage I NSCLC could be advised to either receive or be spared from chemotherapy
according to the expression profiles of the 10 prognostic genes.

The constructed 10-gene risk score algorithm was evaluated using clinical factors, including
lung cancer prognostic factors, and by using multivariate Cox analysis on the combined
testing cohorts (Table 1). Without the 10-gene risk score, tumor stage was the only
significant predictor of death from lung cancer (age was borderline significant). After the
10-gene risk score was included, the gene risk score became a highly significant prognostic
factor with a hazard ratio of 3.23 (95% CI: [1.48, 7.06]). The hazard ratio of the gene risk
score was higher than other clinical covariates, except cancer stage (III vs. I; with no
significant difference). Similar results were obtained from a multivariate analysis of age,
gender, cancer stage, and the gene risk score (Supplementary Table 6). These results
demonstrate that the 10-gene signature is a more accurate prognostic factor than most
commonly used clinical factors.

Discussion
Lung cancer is a dynamic and diverse disease and associated with numerous somatic
mutations, deletion and amplification events. The heterogeneous nature of lung cancer
makes it a very difficult disease in the clinical managements. Tumor recurrence and
metastasis is the major treatment failure and death of lung cancer. It remains a critical issue
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to reliably identify specific patients at high risk for recurrence and metastasis of lung cancer.
Molecular prediction is a necessary step in the future direction of personalized cancer care.

This study presents a novel network-based methodology for modeling coexpression with
major NSCLC signaling hallmarks for biomarker identification. Using this network-based
approach, we previously identified a 14-gene (30) and a 13-gene signatures (25) with
significant prognostic performance in patients with all cancer stages. Nevertheless, these two
signatures did not generate significant stratification in stage I patients in all evaluated patient
cohorts. Because tumors utilize different signaling pathways, we hypothesize that including
a diverse set of pathways would perform more uniformly across heterogeneous tumor sets,
particular, in stage I tumors. In this study, we used different combinations of the 11 NSCLC
signaling hallmarks for the identification of co-expressed gene signatures. Based on the
evaluation results of the prognostic performance, using a combination of 6 or 7 hallmarks
could identify gene signatures with significant stratification in all patients, stage I patients,
including those not receiving chemotherapy.

All 21 gene signatures identified in this study outperformed other lung cancer signatures
reported in the literature on the same multi-center patient cohorts, not only in all tumor
stages, but also in stage I patients and in stage I patients not receiving chemotherapy.
Specifically, 11 lung cancer prognostic signatures were evaluated in the Director's Challenge
Study (13) and the best signature was reported as “method A” (A in Fig. 4), which contains
about 9,591 genes. These 11 signatures were identified using traditional statistical and
machine learning methods. In comparison with the 11 gene signatures, our 21 gene
signatures and “method A” are the only models with significant hazard ratio in all three
patient cohorts (Fig. 4A). Furthermore, all 21 gene signatures had a significant hazard ratio
and a concordance probability estimates (CPE) greater than 0.5 in stage I patients (Fig.
4C-4D), and stage I patients without receiving chemotherapy (Fig. 4E-4F), a prognostic
capacity which has not been reported in previous studies (10;12). More importantly, the size
of the 21 gene signatures ranges from 3 to 33 genes, which is feasible for clinical
application. Previous gene signatures were identified using traditional rank-based gene
selection algorithms, which did not account for complex molecular coexpressions and
involvements of signaling pathways in lung cancer progression. Our study results indicate
that identifying genes concurrently co-expressed with multiple NSCLC signaling pathways
could enhance prognostic values. The identified biomarkers could reveal potential
mechanisms underlying metastasis (see functional pathway analyses, Supplementary, Fig.
1-2). The novel implication networks could successfully model the disease-specific
coexpression relations among signature genes (see disease-specific coexpression networks,
Supplementary Fig. 3-23).

Summary of signaling hallmarks from the 21 signatures suggests that genes co-regulated
with KRAS, EGF, or TP53 tend to have more prognostic capacity for lung cancer in the
genomic space (Fig. 5A). Among the 132 marker genes of the 21 signatures, cytoplasmic
polyadenylation element binding protein 1 (CPEB1) was present in 16 signatures (Fig 5B).
CPEB1 regulates beta-catenin mRNA translation and cell migration (31), as well as human
cellular senescence and bioenergetics by modulating p53 mRNA polyadenylation-induced
translation (32). Our results imply that CPEB1 is an important prognostic biomarker for lung
cancer and might be involved in cancer progression and metastasis.

Based on the current study results, the potential down-stream clinical applications could
utilize a customized Affymetrix U133A array to contain the identified signature genes for
prognostic categorization, similar to the development of a commercial prognostic gene test
for breast cancer, MammaPrint© (33;34). In this case, the identified gene expression-based
prognostic models could be used directly in prospective evaluation and future clinical
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applications. Alternatively, quantitative RT-PCR assays could be used to validate and refine
the identified gene signatures for clinical applications, which is an approach taken in the
development of another commercial prognostic gene product for breast cancer, Oncotype
DX© (35).

Conclusion
This study demonstrates that modeling disease-mediated coexpression networks and
crosstalk with major signaling hallmarks is key to identifying clinically important prognostic
biomarkers from the genomic space. We believe that this approach is the most promising for
effectively developing reliable and clinically useful marker panels. The identified 21 gene
signatures could be used to predict the risk of tumor recurrence and advise patient selection
for adjuvant chemotherapy, with significant impact on down-stream clinical applications.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Overview of network-based methodology for identifying prognostic gene signatures.
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Figure 2. Prognostication of disease-specific survival using the 10-gene signature in all stage lung
adenocarcinoma patients
The model stratified patients into two prognostic groups with significantly different (P <
0.03) survival outcome in the training set UM&HLM (A) and both test sets MSK (B) and
DFCI (C) in Kaplan-Meier analyses. Log-rank tests were used to assess the difference in
survival probability between the two prognostic groups. Performance of 5-year survival
prediction on training and two test sets (D).
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Figure 3. Prognostic performance of the 10-gene signature in stage I lung adenocarcinoma
The model generated significant prognostic categorization for stage I patients in both
training set UM&HLM (A) and combined test sets MSK&DFCI (B), for stage IB patients in
training (C) and combined test sets (D), as well as for stage I patients without receiving
chemotherapy in both training (E) and combined test sets (F). Statistical significance of the
difference in survival probability between the two prognostic groups was assessed with log-
rank tests in Kaplan-Meier analyses.
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Figure 4. Comparison of 21 identified gene signatures with other lung cancer gene signatures
The 21 prognostic gene signatures were compared with 11 gene signatures evaluated in the
Director's Challenge Study (12) in two test sets in terms of hazard ratio (A) and concordance
probability estimate [CPE] (B). The prognostic performance of the 21 gene signatures was
evaluated for stage I patients by hazard ratio (C) and CPE (D), as well as for stage I patients
without receiving chemotherapy in the combined test cohorts (E, F). The error bar in the
charts represents 95% confidence interval of the measurement. Signatures A, C-N were from
the Director's Challenge Study (12), and the details were summarized in Table S1 in our
previous study (25).
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Figure 5. Summary of major NSCLC signaling hallmarks involved in the signature identification
and overlapping genes in the 21 prognostic gene signatures
The number of gene signatures coexpressed with each signaling hallmark was summarized
in (A). Genes appeared in at least 4 identified signatures were listed in (B), with the
frequency that a gene was selected to form a prognostic signature using three approaches
presented in this study.
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Table 1

Multivariate Cox proportional analysis of all available clinical covariates and 10-gene risk score in the
combined test cohorts (MSK and DFCI).

Variable* P-value Hazard Ratio (95% CI)ψ

Analysis without 10-gene risk score

Gender (Male) 0.43 1.22 (0.74,1.99)

Age at diagnosis (>60) 0.05 1.70 (0.99,2.92)

Race

    Others/Unknown 0.28 0.43 (0.09,1.97)

    White 0.10 0.28 (0.06,1.28)

Smoking history (0.00,0.00)

    Smokers 0.62 0.84 (0.43,1.66)

    Unknown 0.91 0.89 (0.11,7.10)

Tumor differentiation

    Moderately differentiated 0.14 0.53 (0.23,1.24)

    Poorly differentiated 0.70 1.17 (0.53,2.61)

Cancer Stage

    Stage II 3.31E-04 2.72 (1.57,4.69)

    Stage III 2.38E-05 4.93 (2.35,10.33)

Analysis with 10-gene risk score

Gender (Male) 0.37 1.25 (0.76, 2.04)

Age at diagnosis (>60) 0.05 1.69 (0.99, 2.89)

Race

    Others/ Unknown 0.20 0.37 (0.08, 1.67)

    White 0.10 0.28 (0.06, 1.25)

Smoking history

    Smokers 0.81 0.92 (0.47, 1.80)

    Unknown 0.87 1.18 (0.15, 9.64)

Tumor differentiation

    Moderately differentiated 0.13 0.52 (0.23, 1.21)

    Poorly differentiated 0.81 1.10 (0.50, 2.41)

Cancer Stage

    Stage II 4.19E-04 2.66 (1.54, 4.58)

    Stage III 3.47E-05 4.79 (2.28, 10.05)

10-gene risk score 3.31E-03 3.23 (1.48, 7.06)

*
Gender was a binary variable (0 for female and 1 for male); age at diagnosis was a binary variable (0 for < 60 years old and 1 otherwise); race was

a categorical variable of 3 categories (African American [as the reference group], White, and Others [composed of Asian (5), Hawaiian or Pacific
Islander (1), and unknown]); tumor grade was categorical variable of 3 categories (Well [as the reference group], Moderately, and Poorly
differentiated); Smoking history was a categorical variable of 3 categories (Non-smokers, Smokers, and Unknown); cancer stage was a categorical
variable with 3 categories (Stage I [as the reference group], Stage II, and Stage III).

ψ
denotes confidence interval.
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