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ABSTRACT
Objective: To investigate the effects that prevalence
has on the diagnostic performance of junior doctors in
interpreting x-rays.

Design: Two-armed cross-sectional design using
systematic sampling.

Setting: Emergency department in the UK.

Participants: From a sample of 2593 patients (1434
men and 1159 women) taken from an unselected
attending cohort between January and April 2002, 967
x-rays were analysed. The sex distribution was 558
men and 409 women, and the mean age of those
receiving an x-ray was 34.6.

Interventions: The interpretation of x-rays by junior
doctors after their triage into high- and low-prevalence
populations by radiographers.

Main outcome measures: Sensitivity, specificity,
likelihood ratios, diagnostic odds ratios and receiver
operator characteristic curve.

Results: There were statistically significant differences
in the performance characteristics of junior doctors
when interpreting high-probability and low-probability
x-rays. For the high- and low-probability populations,
respectively, the sensitivities were 95.8% (95% CI
91.1% to 98.1%) and 78.3% (95% CI 65.7% to
87.2%) and the specificities were 56.0% (95% CI
41.9% to 69.2%) and 92.3% (95% CI 90.0% to
94.2%). Hierarchical logistic regression showed that
the sensitivity did depend on the type of x-ray being
interpreted but the diagnostic odds ratios did not vary
significantly with prevalence, suggesting that doctors
were changing their implicit threshold between the two
populations along a common receiver operator
characteristic curve.

Conclusions: This study provides evidence on how the
prevalence may affect the performance of diagnostic
tests with an implicit threshold and potentially includes
the clinical history and examination. This has
implications both for clinicians applying research
findings to their practice and the design of future studies.

INTRODUCTION
It is convenient in the assessment of diag-
nostic tests to divide the study population
into two disjoint subpopulations consisting of

those with disease and those without.
Leading from this observation, many authors
have asserted that performance characteris-
tics, such as the sensitivity and specificity,
which are derived from one or other of these
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ARTICLE SUMMARY

Article focus
- The sensitivity, specificity and likelihood ratios of

a diagnostic test are often assumed to remain
constant even when the prevalence (pre-test
probability) of disease changes.

- There is a lack of research in the literature on the
effects that the prevalence has on the perfor-
mance of diagnostic tests particularly those tests
with implicit thresholds such as when doctors
interpret x-rays.

- This study investigates the effects that preva-
lence has on the diagnostic performance of
junior doctors in interpreting x-rays.

Key messages
- This study provides empirical evidence that the

sensitivity, specificity and likelihood ratios may
change with prevalence in diagnostic tests that
require subjective interpretation, as in the case of
junior doctors examining x-rays.

- The most plausible explanation for the effect
seems to be doctors modifying their threshold
for an abnormal diagnosis based on the results
of previous tests.

- These results suggest that likelihood ratios and
other test accuracy statistics derived from
clinical studies have the potential to be
misleading when applying them in practice.

Strengths and limitations of this study
- The study models a large data set collected from

a real-life clinical setting and is representative of
everyday clinical practice.

- The findings are likely to extend beyond the
clinical tests analysed here.

- There is a potential for review bias owing to
a lack of blinding between the test and reference
standard.
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populations but not both, are independent of the prev-
alence of disease.1e4

This assertion has been questioned by some
authors,5e8 and circumstances in which a change in
prevalence may affect the sensitivity and specificity have
been described.5 6 A Bayesian approach to diagnostic
medicine relies on the reported values of the sensitivity,
specificity and, hence, likelihood ratios being repro-
ducible in practice. For the evidence-based clinician
hoping to apply likelihood ratios reported in published
studies to their practice, the potential for them to vary
with the prior probability could have a profound effect
on the reliability of applying diagnostic test research.
Despite its potential importance, currently there are

few studies6 8e13 which have considered the effects of
prevalence on a test’s performance. Ideally, this would
be demonstrated by a study design, which has at least two
arms, where prior testing has modified the pre-test
probabilities so that they are different for each arm,
before the test under investigation is applied. There are
instances where this has been done for diagnostic tests,
which have an explicit (fixed) threshold for a positive
result.14e16

By contrast, in tests which have an implicit threshold,
such as examining an MRI scan, the operator sets the
level of the threshold, usually based on prior training
and experience, but potentially in response to prior test
results. This latter point seems to have received little
attention in the literature. While there are examples of
studies which have evaluated the performance of tests
combined sequentially,17e20 due to limitations in
design,17e20 the effect that each of the different
outcomes of a test may have on the performance of
a subsequent test has rarely been estimated.21 22

To help address this, the example used here investi-
gates the effect the pre-test probability has on the
performance of junior doctors in interpreting plain x-
rays in an emergency department (ED) setting, before
considering the implications for similar diagnostic tests.
This study was part of a larger investigation, which has
been published elsewhere.23 Although the data were
collected in 2002, the lack of research in this area and
the continuing relevance of the findings underline the
importance of research in this field. Note that pre-test
probability and prevalence are used interchangeably.

METHOD
Between January and April 2002, systematic sampling was
used to collect data on an unselected attending cohort of
patients at the ED of the Horton Hospital in the UK.
All patients seeing an ED junior doctor underwent

a clinical examination to determine whether treatment
or further investigation was necessary. As part of their
evaluation, some patients were required to have an x-ray,
where the type of x-ray received depended on the results
of the clinical examination.
Before the junior doctors viewed any x-rays, they were

first interpreted then triaged, on the basis of their

findings, by one of the departmental radiographers
(radiologic technologists). Thus, those x-rays considered
abnormal or ‘high-probability’ x-rays were marked with
a red dot by the radiographer otherwise they were left
unmarked. All the radiographers had received in-house
training in interpreting x-rays.
Each x-ray was then interpreted by one of the ED

junior doctors (each with similar training of at least 1-
year experience post-qualification). All x-rays were then
verified by a radiologist and this was the reference
standard.
The data collected included the date, patient’s age,

x-ray type (eg, scaphoid), radiographer’s triage result,
junior doctor’s diagnosis and reference diagnosis. The
x-rays were classified by the part of the body irradiated
(x-ray type), such as chest x-rays.
Features considered abnormal on an x-ray depended

on the x-ray type and included fractures (skeletal x-rays),
cardiomegaly (chest x-rays) and dilated bowel (abdom-
inal x-rays), thus covering a range of target disorders and
are detailed elsewhere.23 In the high-probability (red
dot) x-rays, the prevalence of abnormal findings was 77%
compared with 13% in the ‘low-probability’ x-rays.
Although the junior doctors were aware that a red dot
indicated a higher probability of an abnormality, they
were not aware of how high this probability was.

Statistical analysis
Two by two tables were derived for each of the high- and
low-prevalence subpopulations. The sensitivity, speci-
ficity, likelihood ratios and diagnostic odds ratios (DOR)
were used for comparison and a receiver operator
characteristic (ROC) curve was constructed.1 24e27

While performance statistics, such as the sensitivity
and specificity, could be calculated from pooling the
data across all the junior doctors, this does not take into
account variation in the performances between junior
doctors. Furthermore, it does not allow for the effects of
the x-ray type on the performances of individual junior
doctors.
Hence, a hierarchical logistic regression model27 28

was constructed to study the effects of different cova-
riates on the dependent variables, logit sensitivity and
logit specificity. Junior doctors were included in the
model as a random effect, and covariates on prevalence,
x-ray types and broader groupings of x-ray types were
also included.
As any effects of prevalence on performance may be

explained by differences in performance across different
x-ray types, the interaction between the prevalence and
x-ray type was evaluated. Cross-level interactions between
explanatory variables were also investigated by allowing
the slope to vary across individual doctors. Models were
compared using the log likelihood ratio test statistic
(LRT), which has an asymptotic c2 distribution with
degrees of freedom (df).27 28 All analyses were
completed using the statistical software R, and statistical
significance was set at p<0.05. A full description of the
model may be found in the online appendix.
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The type of x-ray a patient receives is, in part, indica-
tive of their morbidity. Thus, the distributions of x-ray
types were inspected to give some indication on whether
the mix of patients (or patient-mix) varied between the
high- and low-prevalence populations. If some x-ray types
are more difficult to interpret than others (such as
abdominal x-rays compared with tibial x-rays), then
differences in the relative proportions of these may
explain differences in the performance characteristics.

RESULTS
There were 1053 x-rays interpreted by 26 ED junior
doctors following triage by a radiographer. Eighty-six
were excluded due to incomplete information on the
radiographers’ triage result (28), junior doctors’ diag-
nosis (10) and reference diagnosis (48). The remaining
967 x-rays are analysed in table 1.
The striking feature of these results is the change in

sensitivity, specificity and positive likelihood ratio
between the low- and high-prevalence populations
(table 2). The differences are statistically significant and
provide evidence against the null hypothesis that the

performance characteristics of junior doctors at inter-
preting x-rays do not vary with prevalence.
In contrast, the DOR for each of the high- and low-

prevalence populations were not statistically significantly
different, being very close to each other at 37.3 (95% CI
3.6 to 101.3) and 36.1 (95% CI 21.0 to 62.3), respectively.
This is consistent with the null hypothesis that the DOR
is constant, which has a bearing on the shape of the ROC
curve. A common DOR generates a symmetrical ROC
curve,24e26 and observing how closely the points are to
the curve, this informs a possible cause to the variation
in the sensitivity and the specificity, namely a change in
the implicit threshold for test positives as applied by the
junior doctors (figure 1).
The x-ray distributions for each of the normal and

abnormal populations are shown in figures 2 and 3. On
inspection, the distributions are broadly similar for the
high- and low-prevalence populations in each case, with
only chest x-rays being an outlier in figure 3. This would
suggest that any differences in performance between the
high- and low-prevalence populations are unlikely to be
due to differences in the relative proportions of x-ray type.

Table 1 Contingency tables showing the summary totals in each of the cells after pooling all the junior doctors

Pooled data for the junior doctors

High-prevalence population (77%) Low-prevalence population (13%)

Reference standard Reference standard

Positive Negative Positive Negative

Doctor’s diagnosis
Positive 159 22 181 72 50 122
Negative 10 28 38 24 602 626
Totals 169 50 219 96 652 748

Note x-rays in the high/low-prevalence population were those interpreted by the radiographer as having a high/low probability of an abnormal
feature. The true prevalence is determined by the reference standard.

Table 2 Summary performance estimates given for the independent significant covariate, prevalence. Also given are the
estimates of sensitivity for each level of the covariate x-ray group, which was significant for the dependent variable logit
(sensitivity)

Model estimates of performance characteristics in significant covariates

High prevalence Low prevalence

Sensitivity (%)
Soft tissue x-rays 93.7 (79.5 to 98.3) 68.3 (44.3 to 85.3)
Appendicular x-rays 97.3 (93.3 to 99.0) 84.0 (70.3 to 92.2)
Axial skeletal x-rays 58.6 (17.3 to 90.5) 17.0 (2.4 to 63.1)
Summary 95.8 (91.1 to 98.1) 78.3 (65.7 to 87.2)

Specificity (%)
Summary 56.0 (41.9 to 69.2) 92.3 (90.0 to 94.2)

Positive likelihood ratio
Summary 2.2 (1.6 to 3.0) 10.2 (7.6 to 13.8)

Negative likelihood ratio
Summary 0.07 (0.03 to 0.17) 0.23 (0.14 to 0.38)

Diagnostic Odds ratio
Summary 37.3 (3.6 to 101.3) 36.1 (21.0 to 62.3)

All estimates are derived from the hierarchical regression model and take into account variation in performance between individual doctors and
different x-ray groups. The covariate x-ray group has three levels: soft tissue (chest and abdominal x-rays), appendicular (limbs, hands and feet)
and axial (skull, spine and sacrum). Interaction terms were not significant. 95% CIs are shown in brackets.
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The effects that the change in x-ray distributions may
have on performance between the two subpopulations
was modelled using hierarchical logistic regression.
Unsurprisingly, prevalence was a significant covariate for
each of the dependent variables logit sensitivity
(LRT¼20.6, df¼1, pw10�5) and logit specificity
(LRT¼42.8, df¼1, pw10�11).
In contrast, x-ray type was not a significant covariate

for either logit sensitivity (LRT¼34.4, df¼24, p¼0.078)
or logit specificity (LRT¼23.3, df¼33, p¼0.89). Owing to
the number of levels to the factor x-ray type (34), this
could be due to insufficient data. Therefore, x-ray types
were grouped into three broad mutually exclusive
groups: skeletal x-rays that were subdivided anatomically

into appendicular (limbs, hands and feet) and axial
(skull, facial and spine)29 and soft tissue x-rays (chest
and abdomen). The x-ray group was a significant inde-
pendent covariate for logit sensitivity (LRT¼10.88, df¼2,
p¼0.0043) but not for logit specificity (LRT¼2.74, df¼2,
p¼0.26) (table 2). However, interaction terms between
prevalence and x-ray group and across levels between
x-ray groups and junior doctors were not significant for
either dependent variable.
As chest x-rays were a potential outlier (figure 3),

a sensitivity analysis was performed to investigate the
effects of this category on the statistical significance of
covariates, by including and excluding this category
from the model. No significant effects were found.

DISCUSSION
This study demonstrated statistically significant differ-
ences in the sensitivities, specificities and positive likeli-
hood ratios between the high- and low-prevalence
populations (table 2), providing evidence that the diag-
nostic performance of junior doctors in interpreting x-
rays does vary with prevalence. There was evidence that
the sensitivity depended on the x-rays being interpreted,
and although such dependence could not be demon-
strated for individual x-ray types (due to sample size), it
was demonstrated for broader categories of x-rays. Since
the x-ray type is an indicator of the type of target
disorder and therefore patient, this implies that the
diagnostic performance does depend to some degree on
both the type of x-ray being interpreted and the target
disorder being sought.
However, this was an independent effect: analysis of

the interaction between prevalence and x-ray group was
not significant. The effect of the junior doctors’ perfor-
mance varying with prevalence occurred irrespective of
the type of x-ray being interpreted or target disorder
being sought. Although performance was evaluated over
different types of x-rays and multiple target disorders,
these findings suggest the potential of observing such
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Figure 1 Symmetrical receiver operator characteristic curve
(weighted mean diagnostic odds ratios (DOR)) for the average
junior doctor. Weighted mean DOR (36.4) was derived from
weighting model estimates of DORs for high-prevalence
population (37.3) and low-prevalence population (36.1). Point
estimates of sensitivity and 1� specificity for both populations
are also given.

Figure 2 Distribution of x-rays
with a normal diagnosis in the two
populations: high prevalence (red)
and low prevalence (blue). Shown
are the percentage of normal
x-rays in each population (high or
low prevalence), which are of
a particular type. For example,
10% of x-rays diagnosed normal
in the high-prevalence (red)
population were of elbows.
Differences in the distributions
between the high- and low-
prevalence populations could
potentially account for differences
in the specificity between the
respective populations. Note that
the normal diagnosis refers to the
reference standard diagnosis.
T & L, thoracic and lumbar.
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prevalence effects when only a single target condition is
of interest.
Given there was insufficient evidence to reject the

hypothesis of a common DOR and considering
the closeness of the (sensitivity, 1� specificity) pairs to
the ROC curve (figure 1), the doctors’ performance
seems to change along a single symmetrical ROC curve.
This is consistent with the junior doctors changing their
implicit threshold for an abnormal diagnosis on the
basis of the radiographer’s triage result. This does seem
plausible when it is noted that the doctors both had
knowledge of the previous test’s (radiographer’s triage)
results and could change their subjective threshold for
a positive test result on the basis of this information. It is
possible that this latter point was amplified by the rela-
tive lack of experience in the participating doctors, with
more experienced clinicians being expected to exhibit
such threshold effects to a lesser degree. Clearly, this
study does not answer this latter point.
Other explanations are still possible: the ROC curve

may not be unique or symmetrical24e26; differences in
the patient spectrum between the two populations
may affect the different performance characteristics
observed.30 31 For instance, the initial triaging by the
radiographers into high- and low-probability x-rays is
dependent on their ability to spot abnormal features.
Severe cases, where the abnormal features are more
striking, are more easily identified and more likely to be
allocated to the high-prevalence (probability) popula-
tion. Thus, the differences in performance between the
high and low populations could be a reflection of
differences in severity.
This cannot be discounted and almost certainly

explains part of the effect of the prevalence on perfor-
mance. However, the circumstantial evidence in favour
of junior doctors changing their implicit threshold
seems more extensive, suggesting that this is likely to be
the most important factor.

The question that is raised by this example is whether
the effects observed may be generalised to other diag-
nostic tests? An example where these may occur is in the
dynamic process of taking a clinical history or examining
a patient, where information from previous tests such as
the response to a particular question is available to
inform future tests. During this process, the clinician
may adjust their threshold for a positive result on the
basis of the previous test results. The strength of
expectation generated by the previous test results is
likely to play a role in how far the clinician adjusts this
threshold. Thus, a sequence of four positive responses to
directed questions in a history might influence a clini-
cian to lower their threshold for the next question,
thereby increasing the sensitivity and decreasing the
specificity, compared with if the four previous responses
had been negative.
In this study, the test was evaluated in two separate

subpopulations in which the main difference was the
prevalence of abnormality. This has obvious advantages
over two separate studies by controlling for a number of
factors that may affect the test performance: the same
junior doctors, same radiographers, same reference
standard and similar patient-mixes.
Nonetheless, there are two principal limitations

relating to the quality of the reference standard (a single
radiologist’s opinion) and a lack of blinding between the
test and the reference standard, raising the potential for
review bias.32 It is difficult to gauge the effect a lower
quality reference standard would have on performance
estimates, but it is unlikely to have a differential bias
between the high- and low-prevalence populations.
Equally, the effects of review bias are likely to inflate
estimates of the sensitivity and specificity in both the
high- and low-prevalence populations and given it is
differences between these performance statistics that are
important to demonstrate the principle, inflated esti-
mates in both subpopulations are less of a problem.

Figure 3 Distribution of x-rays
with an abnormal diagnosis in the
two populations: high prevalence
(red) and low prevalence (blue).
Shown are the percentage of
abnormal x-rays in each
population (high or low
prevalence), which are of
a particular type. For example,
10.5% of x-rays diagnosed
abnormal in the high-prevalence
(red) population were of ankles.
Differences in the distributions
between the high- and low-
prevalence populations could
potentially account for differences
in the sensitivity between the
respective populations. Note that
the abnormal diagnosis refers to
the reference standard diagnosis.
T & L, thoracic and lumbar.
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In the regression model, the sensitivity and specificity
were treated as independent variables. A bivariate
random effects model would maintain the association
between the sensitivity and specificity, and individual
patient data models have been suggested.33 While such
advanced approaches may augment the analysis, they
would not change the broad findings demonstrated here.
In summary, the diagnostic performance of junior

doctors in interpreting x-rays does vary with pre-test
probability and this seems to be predominantly based
on changing the implicit threshold in response to
previous test results. Furthermore, it is unlikely that
these findings are confined to the example analysed
here. As such, it is an area deserving of further research
to establish the extent by which it affects those tests in
which there is a subjective element in the execution of
the test.
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