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Abstract
We report an optimized version of the molecular dynamics program MOIL that runs on a shared
memory system with OpenMP and exploits the power of a Graphics Processing Unit (GPU). The
model is of heterogeneous computing system on a single node with several cores sharing the same
memory and a GPU. This is a typical laboratory tool, which provides excellent performance at
minimal cost. Besides performance, emphasis is made on accuracy and stability of the algorithm
probed by energy conservation for explicit-solvent atomically-detailed-models. Especially for long
simulations energy conservation is critical due to the phenomenon known as “energy drift” in
which energy errors accumulate linearly as a function of simulation time. To achieve long time
dynamics with acceptable accuracy the drift must be particularly small. We identify several means
of controlling long-time numerical accuracy while maintaining excellent speedup. To maintain a
high level of energy conservation SHAKE and the Ewald reciprocal summation are run in double
precision. Double precision summation of real-space non-bonded interactions improves energy
conservation. In our best option, the energy drift using 1fs for a time step while constraining the
distances of all bonds, is undetectable in 10ns simulation of solvated DHFR (Dihydrofolate
reductase). Faster options, shaking only bonds with hydrogen atoms, are also very well behaved
and have drifts of less than 1kcal/mol per nanosecond of the same system. CPU/GPU
implementations require changes in programming models. We consider the use of a list of
neighbors and quadratic versus linear interpolation in lookup tables of different sizes. Quadratic
interpolation with a smaller number of grid points is faster than linear lookup tables (with finer
representation) without loss of accuracy. Atomic neighbor lists were found most efficient. Typical
speedups are about a factor of 10 compared to a single-core single-precision code.
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I. Introduction
Molecular dynamics and its computational challenges

Molecular Dynamics (MD) simulations have become a vital laboratory tool for
investigations of molecular processes in fundamental statistical mechanics, material science,
and biophysics. Molecular Dynamics trajectories provide significant insights into
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mechanisms, enable the rational design of new materials, and test new analytical theories by
exact numerical calculations. In the present manuscript we restrict the discussion to
algorithms that follow the classical equations of motions, conserve energy, and therefore
enable basic study of dynamic phenomena. Molecular trajectories are computed in small
time steps using initial value solvers that propagate the solution in time steps. The existence
of fast motions at the atomic scale (e.g. molecular vibrations) necessitates the use of small
time steps (femtoseconds ∼10-15s) that are much shorter than times of many processes of
interests. For example, folding (milliseconds), and conformational transitions of proteins
(microseconds) occur on time scales much longer than femtoseconds. Billions of steps (and
more) must be computed in order to reach relevant times. This significant time scale gap
(twelve orders of magnitudes from femtoseconds to milliseconds) motivates research into
the extension of time scales in atomically detailed simulations.

The search for longer simulation times in atomically-detailed, solvent-explicit models, is
theoretical, numerical, and computational. On the theory side alternative formulations of
classical mechanics and statistical mechanics were proposed, such as the use of boundary
value formulation with large time steps 1, sampling of rare (but rapid) trajectories 2, and the
patching of trajectory fragments 3. These theories aimed at reducing the number of time
steps required to obtain a desired result. For specific systems, or with acceptance of
physically-motivated approximations, the reduction in the overall time steps required can
easily reach billions4. On the numerical side, algorithms were introduced for more rapid
calculations of the forces (e.g. PME5), and for the use of multiple time steps (e.g. RESPA6)
The use of a small time step for fast motions and a larger time step for slower motion allows
for further efficiency gains. While the impact of the theory on the computational efforts was
larger than that of numerical analysis (multiple time steps as such did not increase efficiency
by more than a factor of two) there remains the interest in conducting simulations without
approximations or theoretical assumptions on the system type. The third approach to long
time scales is of computational techniques attached to advances in hardware. This approach
dominates the advances in straightforward simulations (no physical assumptions or
constraints on the system type are assumed) in the last 10 years.

Faster computational systems have the promise of speeding up simulations times
considerably. Indeed a special purpose computing machine, the Anton7, produced
trajectories at the millisecond time scales. Cost, however, is an issue, and as a laboratory
tool Anton is out of reach of many research groups. Besides the development of a special
purpose machine for MD, in the last 10 years we have seen significant advances in parallel
hardware and software architectures. While the speed of individual computing elements did
not increase significantly, parallelism of different varieties is now accessible at multiple
levels. Cores, or basic computing elements, are available in distributed and shared memory
configurations, complicating software development but also offering new opportunities.
Another new hardware development of considerable interest is the use of graphics
processing units (GPU) originally designed for the game industry. The massive parallelism
of the GPU attracted the attention of computational scientists, promoting the development of
the high level programming language CUDA. A number of important scientific applications
were ported to the GPU platform 7b, 8. For the cost (mid-to-high end GPU cards can be
found for ∼$200) graphics processing units provide unmatched computing power. The
complete computing node that was used and benchmarked in this work: an MSI-G65 board
with 8GB 1333MHZ RAM, a Phenom™ IIX4 965 3.4GHZ processor, a 1 TB hard drive and
a single GTX480, costs ∼$1,200. This makes it possible for applications that exploit it to run
at high performance speeds accessible to a broad range of investigators.

On the other hand exploiting the promise of the GPU for Molecular Dynamics applications
is not a trivial task and requires a departure from legacy codes, the use of new programming
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models, and learning to code with new constraints on memory sizes and memory hierarchy.
It is therefore not surprising that general-purpose Molecular Dynamics software packages
with modeling of explicit solvent were slow to emerge for the GPU7b, 8. In some cases the
performance was not satisfactory and in others energy conservation (essential for
calculations in microcanonical ensemble) was compromised.

There are two common models for computational chemistry. The first uses high-end
supercomputers and the second employs laboratory tools such as PC and local computing
clusters. Both approaches were found to be very useful throughout the years and are
employed (frequently simultaneously) in many laboratories. Typically a calculation that
requires a lot of resources for a short period of time is better run at national centers while
calculations that require long running periods are better run at laboratory resources. For
example, solving hundreds of millions of coupled equations is better done using massive
parallelism on hundreds of cores 9, while running a large number of straightforward and
short trajectories to obtain statistics for thermodynamic and kinetic averages 4 is more
effectively conducted on computer clusters, common to individual laboratories.

What are the challenges in implementing codes on a combination of CPU/GPU beyond the
need to learn to use a new hardware platform, its limitations, and compilers?

The first is the realization that the GPU is not optimal for everything. Though some attempts
were made to put a whole MD code on a GPU, the performance is lacking for complex
systems that include a diverse set of interactions (e.g. covalent and non-covalent
components), or that require double precision accuracy. Memory access is important and can
be a bottleneck in the calculations. If the system is simple and uniform (e.g. Lennard Jones
fluids 10), then it makes sense to implement the entire MD code on the GPU. For other cases
it is not obvious.

It is therefore suggestive to use the GPU for the parts that it is best at, massive parallel
execution of simple and minimal instruction sets and asynchronously use the cores at the
CPU for complex calculations, or calculations that require double precision. Practice has
shown that the communication between the GPU and the CPU is not a bottleneck with
systems of sufficient complexity.

The second challenge is of load balancing between the CPU and GPU. Ideally we wish the
CPU and the GPU to spend the same time on their assigned load. This is however a complex
task and so far we have not been able to achieve it in full. At present our code still has
bottlenecks in which the GPU is waiting for the CPU to complete its task. Further
optimization of the load is a topic for future studies.

Third the mixture of computer language, compilers and libraries (OpenMP, CUDA, C and
FORTRAN) makes the code highly complex. It is difficult to maintain and it is sensitive to
hardware configurations. Relatively minor changes in hardware, operating system, or
compiler versions can induce non-trivial code and compilation changes. Sustaining MD
programs is simpler for those who remain in the CPU world. For the program reported in
this manuscript we offer binary executables that run on a variety of Intel/AMD multi core
CPU and Nvidia CUDA capable GPU equipped systems with the appropriate drivers
installed http://clsb.ices.utexas.edu/prebuilt/. We also provide a source code, but advise the
user that getting CPU/GPU code to compile and produce an executable file is more difficult
than typing “make” and <enter> because third party hardware and software drivers/libraries
(not provided by us) are involved.

Despite the above difficulties significant speed-ups were obtained on a single heterogeneous
node (multi-cores, one GPU) for a broad range of Molecular Dynamics applications. The
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factors are ∼10 compared to running on a single core with a single precision code. This
makes the investments in solving the above challenges a worthwhile exercise.

In the present manuscript we therefore describe the implementation of a molecular dynamics
module of the modeling package MOIL11 on such a single-node heterogeneous-system.
MOIL is a suite of programs that are written in FORTRAN and span a wide range of
modeling tasks. Some of its options include energy minimization, reaction path
calculations12, rate calculations by Milestoning3b, Molecular Dynamics and more (see
http://clsb.ices.utexas.edu/prebuilt/MOIL.pdf for a comprehensive description). To facilitate
the GPU, code was written in CUDA to compute the non-bonded list and real space non-
bonded interactions on the GPU. The overall Molecular Dynamics driver was written in C
and so was the Verlet (or RESPA) integrators. The rest of the calculations that are
performed on the CPU remained in FORTRAN. Code on the CPU that influences the overall
performance, the PME reciprocal summation, SHAKE13 of water molecules, and SHAKE of
bonds that contain hydrogen atoms, was parallelized using OpenMP. We discuss below the
choices made, speed of calculations and energy conservation.

Energy conservation is especially important for calculations that determine rate and time
scales from microscopic theories and modeling. While stochastic dynamics was proposed to
overcome problems with energy conservation, these corrections are questionable for
dynamics. For example, the use of the Langevin equation with a phenomenological friction
significantly impacts the rate. At the high friction limit the rate is inversely proportional to
the friction, making it impossible to determine the rate constant from microscopic
parameters only.

II. Implementation
At an abstract level Molecular Dynamics algorithms typically have the following structure:

Do while [current number of integration steps < desired number of integration steps]

1. Compute forces (bonded, real space non-bonded, reciprocal space non-bonded)

2. Increase total time by a time step.

3. Compute a displacement in coordinate space

4. Adjust coordinates to satisfy constraints

5. Compute velocity displacements

6. Adjust velocities to satisfy constraints

7. Output: intermediate coordinates and velocities, energies, etc.

End while

For typical systems the most time consuming part is the calculation of the forces, and the
most expensive component of the force calculations is the computation of the non-bonded
interactions (Supporting Information D). We restrict our optimization to simulations with
explicit solvation and periodic boundary conditions as the most appropriate for atomically-
detailed simulations of molecular kinetics (without the explicit inclusion of quantum
effects). Molecular kinetics is a focus of research in our group. We split the calculation of
electrostatic to real and reciprocal space using an Ewald summation scheme. Only the real
part of the non-bonded calculation is performed on the GPU. The rest of the calculations are
performed on the CPU using OpenMP to exploit the multi-core shared memory system.
Below we provide more details on the implementation.

Ruymgaart et al. Page 4

J Chem Theory Comput. Author manuscript; available in PMC 2012 August 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://clsb.ices.utexas.edu/prebuilt/MOIL.pdf


II.1 memory concerns
To appreciate the complexity of GPU programming it is necessary to consider its memory
architecture.

The GPU has a reasonably large global memory (1.5GB in the machine we benchmarked
on), which is relatively slow. Fetching data directly from the global memory to the GPU
cores is costly. Therefore, programming models attempt to maximize the use of intermediate
and faster memories as bridges between the global memory and the executing threads.

For a more detailed discussion on CUDA basics we refer to previous work7b, 10, 14. Briefly,
the fastest memories available in CUDA are the thread local registers, shared memory and
constant memory. Shared memory is available only throughout a single thread block.
Constant memory is available to all threads on the GPU but extremely limited in size (64 kb
total) and read only. There are few registers available per thread (∼32) and they must be
used carefully. For example, during the calculation of the non-bonded interactions between
atom i and its neighbors j, thread local registers keep the coordinates of atom i, the index of
this atom and temporarily store the pair parameters for Lennard Jones interactions Aij and
Bij, and the product of the atomic charges qiqj during the force calculation. The thread
computes and retains (also in thread local registers) the three components of the forces
operating on the i atom: fxfyfz. There is little space to do more on a single thread and
therefore calculations on an individual thread are conducted for one atom pair at a time (loop
unrolling has little or no benefit).

The next best resource after registers, constant and shared memory are caches on global
RAM. Depending on the system at hand, shared memory can be replaced by texture memory
cache or L1 cache available on the global memory of newer chips. However, as a consistent
feature of GPU hardware options, old and new, the shared memory suggests itself as an
indispensible bridge between the global and register memory and we use it extensively. For
example we place lookup table for non-bonded interactions (interpolated quadratically
between the table points) on the shared memory.

II.2 Particle Meshed Ewald
Other codes port the reciprocal sum of the Particle Meshed Ewald (rsPME) calculations to
the GPU15. However, in our hands the rsPME calculations in single precision were not
accurate enough to avoid significant energy drift. For the purpose of the present manuscript
we define “significant energy drift” as an energy variation that exceeds 1 kcal/mole in a
nanosecond simulation of DHFR, Dihydrofolate reductase. Since empirically the drift is
linear in time, one kcal/mole drift in a nanosecond is about 1,000 kcal/mole in a
microsecond, enough energy to break several chemical bonds. While the excess energy is (of
course) distributed in many degrees of freedom it is likely to influence significantly the
results. The kinetic energy of the system is about 15,000 kcal/mole at room temperature and
1,000 kcal/mole is ∼6.7% of the total, or changing the temperature by ∼20°K.

In a periodic box of water, DHFR has become a standard benchmark for Molecular
Dynamics codes (for example http://ambermd.org/amber8.bench2.html). The complexity of
the rsPME calculations is considerable. About 1/3 of the total computation time in a serial
code is spent in rsPME calculation, if the Verlet algorithm is used.Supporting Information D
includes a profile of a serial MOIL run. Note, however, that the profile reported used
RESPA6 in which the reciprocal sum is computed every four steps, see below. We took the
following steps to speed rsPME up: (i) It was parallelized using OpenMP, and (ii) It is
computed less frequently using multiple time steps, and (iii) It is computed asynchronously
on the CPU while the GPU is working on real space summation. We use reversible multiple
time stepping algorithm (RESPA6) to integrate the equation of motion where we designate
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the reciprocal sum as the “slow” force. The forces are split into two, a fast varying
component Ff and a slow varying force Fs. Bond constraints (SHAKE 13a) and matrix
SHAKE for water molecules (MSHAKE 13b) are included in the inner loop of the algorithm.

Studies by16 illustrate that the reciprocal sum has a fast force component, and a better
behaving algorithm can be designed that includes a combination of real space and reciprocal
space as the slowly varying force. A more elaborate and accurate force splitting has been
described in which fast components of the pair interactions are removed from the reciprocal
space Ewald sum. The authors reported an enhance in the stability of the algorithm to an
outer time step of 6 fs although the level of stability depended on the choice of the
parameters for a switching function used to smooth the potential energy near the cutoffs. In
our hand (and also in the paper 16, figure 3) a large time step size of four femtoseconds for
the integration of the reciprocal sum and one femtosecond for the rest of the forces was
stable and did not show energy drift. We therefore consider only the reciprocal force as
slow. Use of this algorithmic variation in our code and its effect on stability and
computation speed will be explored in the future. In the context of heterogeneous GPU/CPU
computing, mixing real space and reciprocal space increases the computational complexity
significantly.

The calculations of the reciprocal sum were further accelerated by parallelization of the
basic FFT algorithm, and of the generation of the required charge grid using OpenMP The
parallelization was performed directly on the public domain PME code of Darden 5. No
changes to the basic algorithm were made. We use cubic polynomial for grid interpolation
and tolerance of error of 10-9 for double precision calculations. Parallelization of the non-
FFT routines was done trivially by splitting up the loops between cores (e.g. in the routines
fill-charge-grid and scalar-sum). The x, y, z components were parallelized with
synchronization after the completion of each Cartesian direction. A recent suggestion by
Schneiders et al. 17 for parallelization of convolutions can improve the performance of the
code. However, the present program is functional and efficient enough to remove the
reciprocal sum as a major hurdle of the calculation. The bottleneck is still the calculation of
real space non-bonded interactions.

II.3 Non-bonded list
Besides the concrete and specific implementation, perhaps the first question to ask is do we
need a non-bonded list at all? In principle there are few options: (i) Do not use list, compute
all against all, (ii) use a space list based on grid partitioning, (iii) use a list based on
chemical grouping, and (iv) used lists based on atoms. All of these ideas were used
extensively in molecular simulations in the past but they were reconsidered and found new
ground in GPU implementations.

Option (i) was used for illustration purposes on systems with non-uniform particle densities.
For example, protein molecules simulated with implicit solvent does not fit an exact grid,
and have a relatively small number of interactions. An implementation on the GPU for all-
against-all interactions can provide good-looking benchmarks (results not shown). However,
most MOIL applications aim at studies of explicit solvent systems in the NVE ensemble.

Option (ii) is used by a number of groups 7b, 8, 10, 14. We consider periodic system of
approximately uniform density. The space is partitioned to boxes, and individual particles
are placed in a box list in an operation of complexity N18. For example if the grid sizes
along the x,y,z directions are gx,gy,gz respectively, a particle with coordinate x,y,z (where the
origin of coordinates is such that x,y,z ≥ 0 for all the particles in the system) is placed in a
box index (i,j,k)= (⌊.x/gx⌋, ⌊y/gy⌋,⌊z/gz⌋) where the counting starts from zero. Box neighbors
are, of course, known. For each atom there are 27 neighboring boxes including its own box.
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Based on box neighbor list the interactions between atoms of nearby boxes and of the self
box are computed. The advantage of this representation is that no atomic list is produced.
Atomic list tends to be long and expensive in terms of storage memory. It cannot be placed
directly in the registers or in the shared memory, while box-lists can reside in the shared
memory. The box lists are particularly convenient for large systems, and we use them in
cases that exceed 100,000 particles. A disadvantage is that box-based lists are not precise.
The neighbors are not distributed spherically around each atom. The number of atom pairs is
larger and requires more computational resources. Another disadvantage is that the force
kernel for a box list is complex and that hinders the use of accurate quadratic lookup tables
because the limit of 32 registers per thread will be exceeded. This is since we will not be
able to compactly and efficiently transfer to the thread one atom-pair at a time. Yet another
disadvantage is that the exclusions are not explicitly removed at the level of the lists.
Therefore, when the force calculations are performed, a logical check is performed, and the
excluded interactions are multiplied by zero.

Option (iii) of chemical grouping replaces the box-based list by a list of neighboring
chemical groups. It was used in MOIL11 for decades. An issue with parallelization is of
load-balancing which was addressed and discussed in 13b. In 19 it was proposed to collect
atoms in groups of 32 for GPU applications. This procedure provides a uniform density and
fits well the GPU specifications. Nevertheless, collections of this type requires periodic
calculations of groups for diffusive particles (such as water molecules), and the scaling of
these calculations as a function of the distances between groups is ∼N2, which is
unfavorable for large systems.

Option (iv), which we adopt for systems smaller than 100,000 atoms, is hierarchical. We
generate a box-based list and we use that list to generate the atomic list (a list of atoms with
a distance equal or smaller than a cutoff distance from the central atom i). The advantages of
the atomic list are that the exclusions are taken care of during the generation of the list and
that the atomic list is precise and spherical around each atom. The atomic list is generated
according to two cutoffs in which the upper cutoff provides the actual list and is used as a
buffer between updates of the lists. Pair calculations are performed only between pairs that
are closer than the lower cutoff distance. This means that the calculations of forces are as
efficient as possible. A disadvantage is the size of the list. Following Anderson10, the list is
stored as a matrix in the global memory Nij, where the index i is running over the atom
number and the index j over its neighbors. It is possible to make the list more efficient by
using a pointer vector, P, of the length of the number of atoms, and the actual list N. P(i)
points to the last neighbor of i in N13b. Hence the neighbors of i are listed between N(i-1)+1
to N(i). Since the density in molecular biophysics simulations is quite uniform, the number
of neighbors per atom is rarely changing by more than 10 percent, and hence both
representations are of comparable complexity. For a typical real space cutoff every atom has
about 500 neighbors.

For the generation of the list for atom i we load the index of atom i, its coordinates, and the
non-bonded parameters, Ai, Bi, and qi, to the registers. We load from the global memory to
the shared memory the coordinates and the corresponding parameters of a box neighbor to i.
The individual threads can access rapidly the shared memory and produce the atomic lists of
all pairs with distances lower than the distance cutoff. They also produce the corresponding
products Aij ≡ AiAj, Bij ≡ BiBj, and qiqj ≡ qij. The preliminary calculations of the products
provide more benefit than saving a few multiplications for a pair of atoms. These products
are stored together in the global memory and can be accessed when needed for the force
calculations in coalesced and efficient way. The GPU has a particularly efficient memory
operation (float4 array) in which four floating-point numbers are transferred between
memory types in one chunk. We transfer in a float4 chunk, the atom index i, its Lennard
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Jones parameters for the pair, AijBij, and its charge product qij. Exclusion of bonded atoms is
accomplished by chemical sorting of the atoms to begin with. Most of the bonded atoms are
within 32 positions of the general atom index, (with the exception of S-S bonds, prosthetic
groups like heme, etc.), allowing the storage of an exclusion decision in a single bit, +1
means exclusion. The basic algorithm for exclusion is the same as reported in 7b, however
the retention and preliminary calculations of the pair parameter is new and adds significantly
to the performance. For the rare (if any) excluded pairs, that are out of the 32 range, the
corresponding force is subtracted in a separate kernel.

II.4 Non-bonded forces
We describe in detail the calculation of the forces, utilizing an atomic list. Similarly to the
calculation of the list a thread is associated with a single atom i. We store and accumulate in
registers the forces that operate on this atom and we loop over the neighboring atoms with
their prepared coefficients (see II.3 Non-bonded list). The coefficients are copied in
coalesced and efficient way from the global memory in float4 arrays. Coordinates of
neighbors need to be read from global memory and these reads are not coalesced. This
however does not lead to significant performance lag, probably because the large amount of
computations that follow cover up some of the memory fetch time and the coordinate fetch
is at least partially cached. Similar performances are obtained if the coordinates are read
from texture cache or directly from the global memory of newer chips which feature an
adjustable L1 cache on global RAM. In the latter case we adjust the L1 cache to its
maximum size of 48 KB.

Once all the parameters are in, the square of the distance between a pair of particles is
computed on each thread. With the square of the distance at hand, explicit and direct
calculations of the electrostatic and van der Waals interactions can be performed. A useful
trick, which is employed for a long time by now in MD codes, is the use of lookup tables to
present complex functions of the square of the distance (e.g. the error function that is used in
Ewald sums). The lookup table provides the value of the function on a grid. For a more
precise value an interpolation between the grid points is required. If the table is dense (say,
10,000 grid points) the interpolation can be simple (linear) as is done in 7b, fetching the
value from the texture memory. The texture memory is however relatively slow even when
100% cached and it is desirable to place the table in shared or constant memory. This is
possible only for small tables. We successfully used exceptionally short tables with 256 or
512 entries interpolated with quadratic lookup (see Supporting Information A and C). The
accuracy of the forces is sufficient for good energy conservation and memory access is no
longer a bottleneck. The calculations of real space PME electrostatic are complex and justify
the use of a table and memory fetches. We found out however that the Lennard Jones
interactions are faster computed directly instead of looking up for values in interpolated
tables. Hence, the Lennard Jones calculations are computed directly on the thread.

Note that we do not take advantage of the symmetry in interactions between particles, i.e.
we compute the interaction between the pair of atoms (i, j) twice. We compute it once with
atom i at the center, and a second time with atom j at the center. This is clearly inefficient.
However, minimizing communication is more important here than saving floating point
operations. Overall re-computing these interactions makes more sense here as is also done
by others 7b, 8, 10.

Pseudo codes for the generation of the non-bonded lists and the calculations of the forces
can be found in Supporting Information B and C respectively.
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II.5 Use of OpenMP
Computing environments change rapidly. A trend of the last few years is a significant
increase in the number of cores on a CPU and the creation of powerful, and shared memory
machines. The recent announcement by Intel of a chip with 50 cores
http://www.electronista.com/articles/10/05/31/
intel.knights.corner.targets.highly.parallel.pcs/ is a particularly significant step making
shared memory programming a mainstream approach. While a distributed computing
approach can provide a significantly larger number of cores, the ease and efficiency of a
shared memory implementation where communication speed is no longer an issue are very
attractive. Shared memory machines are also more likely to be the machine of choice for a
laboratory instrument. We therefore decided to base our new implementation of MOIL on a
model of shared memory CPU with the relatively low-cost option of a GPU. Most molecular
dynamics programs (including an earlier version of MOIL 11, 13b) were built for distributed
computing environment and their parallelization is based on Message Passage Interface
(MPI, http://www.mcs.anl.gov/research/projects/mpi/). Here we are starting fresh and base
our programming model on OpenMP (http://openmp.org/wp/), which is a library designed
for shared memory systems. We parallelized the reciprocal sum calculations of the PME
(see section II.2), the Verlet algorithm and MSHAKE algorithm (matrix SHAKE 13b) that
constrained the geometries of water molecules. While a parallel algorithm for general
SHAKE constraints was designed in the context of the MOIL program 13b, at present this
algorithm is not available in OpenMP and this is the topic of future work. Similarly to other
groups we parallelize SHAKE constraints for bonds that contain hydrogen atoms. We call
this variant SHKL (SHAKE light). These bonds are separated into independent blocks of
constraints and can be trivially parallelized on the multiple cores by OpenMP. We also
comment that if SHAKE of all bonds is calculated (at present only serially) then the energy
conservation with 1fs time step and room temperature simulation of solvated DHFR is
excellent. There is no detectable drift when we use 4096-entries quadratic-interpolation table
of the real-space electrostatic interactions. However, the cost of serial calculations of
SHAKE is high and it reduces the overall speed of calculations by about 30%.

In Figure 2 we sketch the scaling of our OpenMP calculations of DHFR on a single node.
An unusual observation is that the scaling of SHKL is better than the number of processors.
This result is obtained since the convergence decision is made locally in each core. It is not
necessary to wait for convergence for the slowest relaxing bond in the list (like is done in a
serial calculation) but instead we can decide on the convergence based on the local bonds
assigned to a core. These bonds are decoupled from the rest. The figure also shows that
further optimization of the PME code is needed and is a topic for future work.

We did not try to design an algorithm where all the calculations are performed on the GPU,
(or did not try to maximize the role of the GPU in executing the calculations) due to
concerns about accuracy and single precision. Calculations on GPU are efficient if done in
single precision. Recent GPU architecture allows calculations in double precision but the
penalty in performance is high. Besides the final summation of the forces, using double
precision for non-bonded force calculations on the GPU is not practical at present. The
reason is not only that double precision operations are slower on the GPU, but also that the
memory is limited. Doubling the data needed means that we will require registers that are
simply not available and the code will be unacceptably slow. Our requirement for energy
conservation mandated that the reciprocal sum is computed in double precision and
therefore we prefer to execute it on the CPU. Further discussions about energy conservation
can be found in section III.6.2.
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III. Results
All tests run (unless specifically stated otherwise) on MSI-G65 8GB 1333MHZ RAM
Phenom™ IIX4 965 3.4GHZ with a single GTX480. We describe below applications of
MOIL-opt to moderately sized systems. These systems are more likely to be investigated in
a laboratory setting which is our target. Since they are relatively small, they are less likely to
produce impressive benchmarks. However, as we illustrate below, we are getting
consistently good performance with no compromises in the numerical accuracy of the
simulations. We discuss typical inputs, conditions, and timing. In the calculations below the
tolerance for relative errors of constraints was always 10-12. The recommended choice for
the reciprocal sum calculations on the CPU is to be conducted in double precision and
allowed relative errors were 10-9. We discuss in III.6.2 Energy conservation the impact of a
single precision calculation. As a reference for performance we compared these simulations
(GPU code with mixed single/double precision accuracy) to simulations conducted on one
CPU core in single precision. While critical accuracy can be lost in single precision
calculations, these comparisons provide a good measure and a lower bound of the speedup
obtained in the heterogeneous environment of the GPU/CPU. The other alternative we have
in MOIL (calculations on one core in double precision) is significantly slower. The new
lookup tables built for the GPU/CPU code are more accurate than the tables of the double
precision, older version of MOIL11. As a result, the energy conservation at long time scales
is actually better in the GPU/CPU version than the older double precision version. Sections
III. 1 to III.5 focus on the performance of MOIL-opt for different molecular systems.

A quick summary of our observations is in the table below:

III.1 DHFR
We report a simulation in a periodic box of aqueous solution of size 62.23×62.23×62.23 Å3

with the use of PME for long-range electrostatics. Real space cutoff distances define two
layers (to create a buffer during the calculations of the forces) which are of 8.5Å and 8.8Å
respectively. Forces between particles in the list that are separated by distances larger than
the lower cutoff are not computed. The total number of boxes used in the generation of the
non-bonded list was 73.

The non-bonded list was updated every 7 steps. The time step was 1fs and the PME mesh
was of 643 points. The number of particles was 23,536. The force field was OPLS-AA 20

with the TIP3P water model 21. A quadratic lookup table for electrostatic interactions with
256 entries was used. Lennard-Jones interactions were computed explicitly. Water
molecules were kept rigid with MSHAKE (Matrix SHAKE) and all bonds that include
hydrogen atoms were constrained as well. All components of the program run in parallel,
either on the GPU or on (at most) four cores of the CPU. Direct, constant energy simulations
(NVE ensemble) were conducted. The RESPA algorithm was used with a 4fs time step for
integrating the PME reciprocal forces and 1 femtosecond for the rest of the interactions.
Examining the exclusion list, only three particle pairs were beyond the 32 range for this
system. The interactions of these pairs were explicitly subtracted on the GPU from the
forces of these particles. The calculations on the CPU and the GPU are conducted (to the
extent possible) asynchronously. At the time that the non-bonded interactions are computed
on the GPU, the CPU is busy computing the reciprocal sum and the covalent interactions. It
should be noted that overall the GPU is faster. It typically waits for the CPU cores we used
for the OpenMP parallelized calculations to complete their tasks. Use of more cores in the
future can tilt this balance. However, more than speed, our concern with the distribution of
the work between the GPU and the CPU is of accuracy and energy conservation.
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The run described above with a single thread on the CPU generates 2.27 nanoseconds a day,
with two threads 3.42ns/day, three threads 4.07ns/day, and four threads 4.5ns/day. The CPU
scaling leaves room for improvement, but the use of multiple cores is still useful. Times for
different components in the calculations (per step) for a single core are as follows: Real
space non-bonded interactions (GPU):7.80ms, Covalent interactions (CPU): 1.31ms,
Reciprocal sum (computed every four steps on the CPU): 18.5ms, Generation of non-bonded
list (GPU): 1.24ms, SHAKE (CPU): 10.98ms, Verlet integration (CPU): 0.50ms. Note the
significant computation time for the PME and SHAKE calculations (that can benefit from
more cores).

Using four threads the timing of the CPU changes as follows: Covalent interactions (not
parallel, since the overall contribution is small): 1.31ms, Reciprocal sum: 7.19ms, SHAKE:
2.47ms, Verlet 0.55ms. It is clear that adding more cores and bringing the calculation on the
CPU to be at par with the timing of the GPU can speed up the calculations further.

A comparable single precision calculation on one core (no GPU) generates 421 picoseconds
per day. Hence the speed up we see for this system is about a factor of 10, while the
accuracy is higher on the mixed CPU/GPU system.

The DHFR system is a standard benchmark in the field. However, many other applications
different in sizes and complexities are also investigated in numerous laboratories and it is
important to appreciate the flexibility of the code in addressing different systems. The
examples below also illustrate the range of changes in the system parameters that we can do
while still retaining excellent energy conservation.

III.2 Membrane system
Consider a bilayer membrane that consists of 128 DOPC phospholipids with 38,802
particles including SPC water molecules 22 and sodium chloride ions. Besides the water
model, in this case the force field was OPLS-UA23. The system is embedded in a periodic
box of 65×65×120 Å3. The simulation runs at room temperature with a time step of 1fs and
the NVE ensemble. The cutoff distances were 9.8Å and 9.0Å. Periodic boundary conditions
and PME for electrostatic calculations are used. The number of grid points was 643 for the
mesh. There were no excluded atoms beyond the 32 range, ensuring efficient calculations of
the exclusion lists and the real space non-bonded interactions. A look up table of 256 grid
values with quadratic interpolation was used to compute real-space electrostatic interactions.
Water molecules were MSHAKEd. Simulating this system on four threads produce 3.18ns/
day. By far the most expensive calculation is the real space non-bonded interactions (total of
16.40ms/step). The calculation of the neighbor list requires 2.16ms/step. Calculations
conducted on the CPU with four threads include: Covalent forces (1.93ms/step), Reciprocal
sum (8.38ms/step), SHAKE (1.76ms/step).

In this particular case it is the GPU that is slower and completing its task after the CPU.
Additional savings in computer time are obtained from the asynchronous calculations, about
4ms/step or 14.9% of the total time.

On one core, using a single precision calculation, the performance is of 209 picoseconds a
day. The GPU/CPU system speed up these calculations by about a factor of 15 to 3.18ns per
day.

III.3 Twenty amino acid solvated helix (LKKLGKKLLKKLLKKGLKKL) (Peptide I)
The motivation of studying this peptide was reference24. We collaborate with the authors
that helped us build the initial system. Both MSHAKE for water molecules and SHKL were
used in parallel on the CPU. The temperature was 300K and the cutoff distances were 9.8Å
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and 9.0Å. The non-bonded list was updated each 8 steps. The calculations were conducted in
the NVE ensemble in a box size 59×9×9Å3 with a grid of 643 for the reciprocal space
calculations. We also used the most accurate interpolation option for real space electrostatic
calculation (quadratic interpolation with a table of 4096 entries). This explains why the
performance on the GPU is not so impressive in this case. The time step was 1fs The total
number of particles was 20,235. The calculations on the GPU took 12.20ms/step for non-
bonded interactions and 1.12ms/step for the generation of the list. The reciprocal summation
was the most expensive calculation conducted on the CPU (with three threads): 8.32ms/step,
followed by SHAKE (1.62ms/step), the Verlet integration (no RESPA was used in the
present example) 0.40ms/step, and covalent interactions (0.23ms/step). The overall speed of
this simulation of a peptide solvated in a large box of water was 3.7ns/day

The single precision run on one core in this case produced 426 picoseconds per day. This is
about a factor of 9 slower than the CPU/GPU system.

III.4 Tryptophan zipper (SWTWEGNKWSWK)
In this solvated system we have a total of 5,847 particles, with 1875 TIP3P water molecules.
The box size was 40×40×40Å3 and only 163 mesh points were used for the reciprocal sum.
The time step was 2fs and no RESPA integration was used. MSHAKE and SHKL were
used. The cutoff distances were 9.0 and 8.5 respectively, and the non-bonded list was
updated each 7 steps. The system with four OpenMP threads produces 45ns/day.
Interestingly 35.5% of the CPU/GPU calculations are conducted asynchronously. Real space
non-bonded interactions require 2.2ms/step (GPU), and generating the non-bonded list,
0.50ms/step (GPU). On the CPU we have the covalent forces (0.14ms/step), the reciprocal
sum (1.73ms/step), SHAKE (0.41ms/step), and Verlet integration (0.19ms/step).

The one core single precision calculation yielded 3.8ns per day in this case with the same
input (2fs time step) indicating a factor of ∼12 speedup.

III.5 Solvated cyclic peptide (CA4C) (Peptide II)
This is a particularly small system of only 2,690 atoms (including 882 water molecules).
The system is embedded in a box of 30.13Å3 with only 163 grid points for the PME
calculations. The cutoffs were 10Å and 9Å respectively. MSHAKE was used for water
molecules. The time step was 1fs and RESPA with a second step of 4fs was used. It was
conducted in the NVE ensemble. Four threads were effective in this calculation, producing
44.1ns/day.

The one core single precision calculations yielded in this case 3.6ns per day. We obtained
here a speed up of more than a factor of 10. This is a gratifying result, since the system is
small, suggesting that our optimization is not restricted to particularly large systems.

III.6 Parameter choices, different options, and energy conservation
In this section we focused on the results of the DHFR system, which is a standard
benchmark in the field, and describe a variety of acceptable options. We provide deeper
analysis of some of our computer experiments.

III.6.1 Lookup tables—Consider first different choices for a lookup table. The lookup
table can be made very dense (a large number of points) with an interpolation scheme
between the points that is simple and cheap. Indeed, NAMD 7b is using a linear interpolation
scheme for their lookup table, and places the table in the texture memory. This is an
effective choice. However, improvement can be made in efficiency and accuracy. Linear
dense tables are too large to be placed in the shared memory. Instead of highly dense
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interpolation scheme an alternative is to use significantly smaller number of table entries,
and use a more accurate, quadratic, interpolation (see Supporting Information A and C). A
sufficiently smaller table can fit into the shared memory. The disadvantage of quadratic
interpolation is that it requires more calculations. However, since memory access is so
crucial, additional calculations while having the data in rapidly accessed memory positively
influenced the performance. Figure 3 illustrate some of these considerations

III.6.2 Energy conservation—To better appreciate the compromises between accuracy
and speed we performed the following estimates of the energy drifts. The calculations
presented below compute the reciprocal sum of PME in different grid sizes (32,52,64) and
precisions (double and single). MSHAKE (Matrix SHAKE on water molecules) is always
included. The use of SHAKE on all bonds, or light atoms, or not at all is considered. The
calculations use RESPA with 4fs for integration of the reciprocal force and 1fs for
integrating over all other forces. As mentioned earlier better partition of the non-bonded
forces to slow and fast component is possible 16, and is likely to further influence energy
conservation (while requiring more computer resources). Such a study is a topic of future
work. The drift in energy is estimated from a linear fit of the relative drift as a function of
time from nanosecond simulations (Figure 4).

If the drift is exceptionally small (as is the case in the most conserving options) the slope is
hard to estimate and it is ill determined. This is because it is close to zero and even small
fluctuations of the overall energy will cause significant change (with respect to zero).
However, for most cases that show significant drift, the linear fit can be done accurately. We
report the expected drift (using linear interpolation) in the microsecond time scale since this
is the time scale we all want to be, and the fits are indeed close to linear. The drift is
expressed by percentage of total change per microsecond (the total energy is about -60,000
kcal/mole). For comparison we also provide the drift reported by the authors of ACEMD
in 8. We comment that ACEMD was reported to achieve 17.55ms/step for one core and 1
GPU while we are using 38.10ms/step. ACEMD parallelizes the reciprocal sum of the PME
on the GPU. We however parallelized the PME on the CPU. Using a single core means that
the PME in MOIL is run serially. We are therefore slower by a about a factor of two, but the
energy conservation of our code as is shown in Table 2 is clearly better. Energy drifts
reported for other leading programs 25 seem at least as high as ACEMD, even though GPU
was not used in the former cases.

The factors that influence energy conservation are: (i) The accuracy of the lookup table,
controlled by the number of entries and level of interpolation, we consider linear
interpolation with 8,000 entries, and quadratic interpolation with 4,096 and 256 table entries.
(ii) the single/double precision calculations of the PME, (iii) cutoff distance (iv) single or
double precision of the summation of real non-bonded force on the GPU, and (v) use of
SHKL versus shaking all bonds,.

The two most important factors to achieve good energy conservation in the sub-microsecond
time scale are the accuracy of the PME reciprocal sum and the SHAKE calculations. Both
must be conducted in double precision. At present we also use double precision arithmetic in
the calculation of the covalent energies and forces and in the numerical integration of the
equations of motion, since the computational cost of these terms is negligible and there is no
reason not to use double precision. In fact the only term that is not conducted in double
precision in our code is the calculation of real space non-bonded interactions (on the GPU).
Executing the final sum of these interactions in double precision helps and brings energy
conservation to the microsecond domain, but at some computational cost.
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We comment that in Milestoning calculations of long time kinetics the trajectories used are
relatively short. For example, in the calculation of the recovery stroke in myosin (a
millisecond process) only sub-nanosecond trajectories were used4. Hence, energy
conservation in the nanosecond time scale may be sufficient for the theory-based long time
dynamics and kinetic calculations of MOIL.

IV. Concluding remarks
We describe an implementation of MOIL-opt a version of the dynamics module of the
program MOIL11 that was ported to a high performance laboratory tool, namely a CPU with
several cores (we used up to four) and a GPU card. The new features of the present
implementation include a novel implementation of a lookup table, careful partitioning of the
work between the GPU and a shared memory multi-core system, and detailed analysis of the
energy conservation of the simulation. It is shown that the prime factor for successful energy
conservation is the calculations of the reciprocal space of the Ewald summation in double
precision. The double precision summation of the non-bonded interactions on the GPU
comes next.

MOIL strongly emphasizes the calculations of reaction mechanisms and kinetics. It provides
a set of tools to compute reaction paths, approximate long time trajectories, and more
recently also the tools of Milestoning. Using a midrange graphic card, a system can be built
that provides both high-end performance and accurate energies. Sampling correctly from the
microcanonical ensemble and the production of energy conserving trajectories is necessary
for estimating microscopic time scales and rates. Others used stochastic dynamics to
overcome the energy drift. However, it is not clear if a stochastic dynamics, which employs
a basic integrator that does not conserve energy even at the zero friction limit, produces
configurations with probability p(x) proportional to exp(−U(x)/kT) This is in contrast to a
Monte Carlo algorithm in which by rejections and acceptances of steps the Boltzmann
distribution is enforced.

We emphasize that we do no object (of course) for stochastic dynamics to obtain sampling
from ensembles other than microcanonical if the differential equations are solved exactly.
However, information about microscopic kinetics is better obtained from microcanonical
calculations. Even if the canonical ensemble is obtained, the addition of stochastic forces
can significantly affect the time scale of the processes we study. For example, in the strong
friction limit the rate constant is inversely proportional to the friction coefficient of the
Langevin equation. The friction coefficient is typically determined as a phenomenological
(not microscopic) parameter.

The program MOIL including the recent addition to it: MOIL-opt, is freely available from
http://clsb.ices.utexas.edu/prebuilt/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Conceptual memory layout of a CUDA GPU. Note the memory hierarchy in which the
registers and shared memory are closest to the thread in the figure indicating fastest access.
Registers are visible only to individual threads while shared memory is accessible to a whole
block of threads. Constant memory, texture cache and L1 cache are accessible to all threads.
Texture and L1 memory serve as cache on global RAM. Data completely residing in texture
cache, L1 cache or constant memory also benefits from fast access. Note that each of these
memories is small and texture and constant memory are read only. Direct access to global
RAM is slowest although coalescing can significantly improve its performance.
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Figure 2.
Efficiency of parallelization of components of the Molecular Dynamics algorithms
computed with OpenMP. The yellow line is the scaling of the SHAKE algorithm. The red
line is the complete PME reciprocal sum. The blue line is only the Fast Fourier Transform of
the PME reciprocal sum (f is forward and r reverse), and the green line is the scaling of the
overall OpenMP code. See text for more details.
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Figure 3.
Timing in ms/step for calculations of non-bonded interactions for different GPUs and
different options for lookup tables. The rest of the calculations in the GPU presented in this
paper were done on the GTX480. The numbers below include force calculations and
communication between the GPU and the CPU. Quad-256 is a table with quadratic
interpolation of 256 entries that resides in the shared memory. It is the fastest option and
retains acceptable accuracy (Table 2). Quad-4096 is a quadratic table with 4096 entries,
which is our most accurate option, and only moderately more expensive than the other
options. It is too large to fit in the shared memory and resides mostly in the texture memory.
Lin-8000 is a linear interpolation scheme that resides mostly in the texture memory and
offers no advantage, accuracy or speed-wise, compared to Quad-256. Coalescing the data is
critical. If the data of the non-bonded list matrix Mij is not coalesced then running on
GTX480 the Quad-4096 option increases the time from 9.9 to 16.5ms
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Figure 4.
Energy drift for DHFR expressed as percentage of the relative error. We plot [100 ((Et-E0)/
E0)] (where Et is the energy at time t and E0 is the initial energy) as a function of time given
in nanoseconds. Data are obtained from 10 nanosecond simulations. Blue squares
correspond to 6th entry in table 2 (PME 64SP, Quad-4096, NB Force add SP, SHAKE all
bonds). Green triangles correspond to 1st entry in table 2 (PME 64DP, Quad-4096, NB
Force add DP, SHAKE all bonds) and orange hourglass to third entry in table 2 (PME 64DP,
Quad-4096, NB Force add SP, SHAKE all bonds). The linear regression lines (same colors)
can be interpolated to 1000 ns to get the drift per microsecond (values in column 6 of table
2). Since |E0| is ∼60000, an increment on the y-axis of 0.01 is about 6 kcal/mol. Note the
significant drift when Particle Meshed Ewald is computed in single precision (PME 64SP).
Note also the small improvement obtained when the non-bonded interactions are added on
the GPU in double precision (NB Force add DP). The linear fits of the green and orange
curves have significant error in their linear slopes. The error of the linear slope of the blue
curve is smaller.
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