
Biophysical Journal Volume 102 February 2012 523–531 523
The Role of Lipids in VDAC Oligomerization
Viktoria Betaneli, Eugene P. Petrov, and Petra Schwille*
Biophysics, BIOTEC, Technische Universität Dresden, Dresden, Germany
ABSTRACT Evidence has accumulated that the voltage-dependent anion channel (VDAC), located on the outer membrane of
mitochondria, plays a central role in apoptosis. The involvement of VDAC oligomerization in apoptosis has been suggested in
various studies. However, it still remains unknown how exactly VDAC supramolecular assembly can be regulated in the
membrane. This study addresses the role of lipids in this process. We investigate the effect of cardiolipin (CL) and phosphati-
dylglycerol (PG), anionic lipids important for mitochondria metabolism and apoptosis, on VDAC oligomerization. By applying
fluorescence cross-correlation spectroscopy to VDAC reconstituted into giant unilamellar vesicles, we demonstrate that PG
significantly enhances VDAC oligomerization in the membrane, whereas cardiolipin disrupts VDAC supramolecular assemblies.
During apoptosis, the level of PG in mitochondria increases, whereas the CL level decreases. We suggest that the specific lipid
composition of the outer mitochondrial membrane might be of crucial relevance and, thus, a potential cue for regulating the olig-
omeric state of VDAC.
INTRODUCTION
The mitochondrial voltage-dependent anion channel
(VDAC) is the most abundant channel located at the inter-
face between mitochondria and the cytoplasm. VDAC is
supposedly of a crucial importance for the homeostasis of
living cells, as it provides the main pathway for the
exchange of metabolites, such as ATP and ADP, between
the mitochondria and the cytosol (1).

Recent studies, however, have shown that this channel
also plays an important role in cell death: accumulating
evidence indicates that VDAC is involved in mitochon-
dria-mediated apoptosis (2–4). In particular, apoptosis
induction was found to be associated with increased
VDAC oligomerization (5–7). The existence of VDAC
dimers and higher oligomers was mentioned for the first
time almost 30 years ago (8). Recent AFM studies on native
mitochondrial membranes, as well as NMR studies on
VDAC in detergent solution, confirm the ability of VDAC
to form dimers, trimers, tetramers, and higher oligomers
(9–11).

VDAC oligomerization during apoptosis has been
suggested to result in the formation of large pores, allowing
for release of apoptogenic factors including cytochrome c
from mitochondria, and thus inducing cell death. In partic-
ular, the above-mentioned pores are believed to be created
by VDAC homo-oligomers (6,12,13) or hetero-oligomers
of VDAC with apoptotic proteins of the Bcl-2 family (9).
Formation of these oligomers was suggested to be regulated
not only by Bcl-2 family apoptotic proteins, but also by
hexokinase (6) and cytochrome c (13), although no direct
evidence has been presented so far to show that these
proteins have a direct influence on VDAC oligomerization.
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On the other hand, it is known that membrane protein
function and structure can be regulated by lipids (14).
Protein-lipid interactions can be either specific or nonspe-
cific; in particular, they can depend on the properties
of the lipid bilayer, including the lipid charge, hydrophobic
mismatch, and the presence of nonbilayer lipids (for review,
see Raja (15)). Protein oligomerization can thus also be
significantly influenced by the lipid environment. In partic-
ular, it was shown that negatively charged lipids are impor-
tant for the stability of the quaternary structure of ADP-ATP
carrier (16) and potassium channel KcsA (17).

The anionic lipid cardiolipin (CL) is found almost exclu-
sively in mitochondria (18). CL is considered as the major
negatively charged lipid in the inner mitochondrial mem-
brane (18 wt % of the total lipid content). The amount of
CL in the outer mitochondrial membrane is lower (~4 wt %);
however, it is found in high concentrations at the contact
sites between the inner and outer mitochondrial membrane
(27 wt%) (19) where VDACwas shown to primarily localize
(20). CL is synthesized from phosphatidylglycerol (PG) by
means of cardiolipin synthetase (21). Under normal physio-
logical conditions, the amount of PG in mitochondria is rela-
tively low; during apoptosis, however, it can increase asmuch
as twofold, whereas the opposite effect is observed for CL,
the amount of which is significantly decreased (22,23). It
was also shown that a knockdown of cardiolipin synthetase
increases the level of PG and decreases the level of CL in
HeLa cells, leading to an acceleration of stimuli-elicited
apoptosis (24). The influence of CL on VDAC channel activ-
ity has been previously demonstrated by electrophysiology
measurements (25). However, the interaction of VDAC
with PG was not addressed before. In addition, whereas the
role of CL in apoptosis is emphasized in the literature, the
role of PG in the cell death is largely unknown.

Because of the tight relationship between CL and PG, and
the important role that CL plays in apoptosis, it is reasonable
doi: 10.1016/j.bpj.2011.12.049
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to suggest that PG can also be involved in controlled cell
death by participating in the regulation of VDAC oligomer-
ization. To test this hypothesis, a chemically well-defined
system that avoids unknown factors and biological off-target
effects is required. To this end, we here employ a cell-free
minimal model system (26)—giant unilamellar vesicles
(GUVs) with incorporated VDAC. To characterize the
degree of VDAC oligomerization in various lipid environ-
ments, fluorescence cross-correlation spectroscopy (FCCS)
measurements were carried out to characterize VDAC olig-
omerization in GUV membranes containing CL, PG, and
two other anionic lipids. Based on our results, we suggest
that VDAC oligomerization in the membrane can be tuned
by up- or downregulation of CL and PG levels in mitochon-
dria during apoptosis, respectively.
MATERIALS AND METHODS

Materials

DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), DOPG (1,2-

dioleoyl-sn-glycero-3-phospho-(10-rac-glycerol) (sodium salt)), DOPS

(1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt)), DOPI (1,2-dio-

leoyl-sn-glycero-3-phospho-(10-myo-inositol) (ammonium salt)), CL

(cardiolipin (heart, bovine) (sodium salt)), and DPhPC (1,2-diphytanoyl-sn-

glycero-3-phosphocholine) were purchased from Avanti Polar Lipids

(Alabaster, AL). Alexa Fluor 488 C5-maleimide was obtained from Invitro-

gen (Darmstadt, Germany). ATTO 655-maleimide was purchased from

ATTO-TEC (Siegen, Germany). Detergent LDAO (N,N-dimethylododecil-

amine N-oxide) 30% in H2O was obtained from Sigma (St. Louis, MO).

SM-2Bio-Beadswere purchased fromBio-RadLaboratories (Hercules, CA).

The plasmid pTMVDAC1 containing the gene for hVDAC1 expression

was a generous gift of Dr. Jörg H. Kleinschmidt (University of Konstanz,

Konstanz, Germany).
FIGURE 1 Representative confocal fluorescence microscopy images of

GUVs with reconstituted red- and green-labeled VDAC: (A) red (ATTO

655) channel, (B) green (Alexa 488) channel, and (C) merge of panels A

and B. GUV composition: DOPC/DOPG/CL 75:15:5.
Methods

VDAC purification, labeling, and refolding

A single cysteine mutant of hVDAC1 was generated using a PCR Quik-

Change site-directed mutagenesis kit (Stratagene, La Jolla, CA). The

cysteine at position 232 was replaced by serine using the sense strand

primer GCACATTAACCTGGGCagcGACATGGATTTCGACATTGC and

anti-sense strand primer GCAATGTCGAAATCCATGTCgctGCCCAGGT

TAATGTGC (lowercase letters show mismatched codons). The protein

was expressed in Escherichia coli, purified from inclusion bodies, and re-

folded inLDAOdetergent using the protocol describedbySchanmugavadivu

et al. (27). The protein was labeled in the unfolded state at the single cysteine

by thiol-reactive dyes Alexa 488 and ATTO 655. The single-cysteine muta-

tion of VDACwas shown not to affect VDAC oligomerization (28). To sepa-

rate the labeled protein from free dye, a Sephadex G-25 gel filtration column

(GE Healthcare, Waukesha, WI) was used. The protein concentration was

determined by measuring absorbance at 280 nm using the extinction coeffi-

cient of 1.25 L/(g$cm) or by the Lowry method (both methods gave close

values). The degree of labeling was determined by measuring absorption

spectra of the protein and dye, and was found to be 90% for VDAC-Alexa

488 (VDACgreen) and 70% for VDAC-ATTO 655 (VDACred).

Reconstitution of VDAC into giant unilamellar vesicles

VDAC was reconstituted into GUVs using the protocol described by Girard

et al. (29) with minor modifications of the GUV electroformation proce-
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dure. Small unilamellar vesicles were prepared from DOPC, DOPC/CL,

DOPC/PG, DOPC/PI, DOPC/PS, and DOPC/PG/CL at various lipid

mixture ratios at a total lipid concentration of 4 mg/ml by sonication in

2 mM MOPS-Tris buffer, pH 7. Mixed micelles were prepared by solubi-

lizing small unilamellar vesicles in detergent at a lipid/detergent (LDAO)

ratio of 2 w/w. VDAC in LDAO was added to the mixed micelles mixture

at the lipid/protein ratio 40 w/w (which corresponds to the lipid/protein

molar ratio of ~1500:1) and incubated for 30 min. To remove the detergent,

30 mg of Bio-Beads (Bio-Rad Laboratories) per 1 mg of detergent were

added to the mixture followed by incubation for 4 h. Proteoliposomes ob-

tained in the above procedure at a concentration of 2 mg/ml were deposited

on indium tin oxide-coated glass slides (GeSiM, Grosserkmannsdorf, Ger-

many) in the form of several 2 mL droplets and dried for 30 min in a desic-

cator. GUVs were produced in a custom-made perfusion chamber by the

electroformation method (30) in a buffer containing 300 mM sucrose,

1 mMMOPS-Tris, 2 mM KCl, pH 7. A simpler electroformation procedure

compared to the one described in Girard et al. (29) was found to be suffi-

cient for producing good-quality GUV samples with GUV diameters in

the range of 10–100 mm. In particular, an alternating-current electric field

with the root-mean-square field strength of 400 V/m was applied across

the chamber at a frequency of 12 Hz for 3 h. After preparation, the buffer

surrounding the vesicles was exchanged to 10 mM Tris, 150 mM KCl,

pH 7.2.

Representative confocal fluorescent images of GUVs containing fluores-

cently labeled VDAC are shown in Fig. 1. As can be seen from the image,

the protein was homogeneously distributed in the membrane, showing no

significant aggregation, which allowed us to carry out measurements of

protein diffusion and oligomerization using fluorescence cross-correlation

spectroscopy (see below).

VDAC activity measurements

To determine the structure of VDAC refolded in detergent, circular

dichroism (CD) spectroscopy was used. Spectra were recorded by a model

No. 715 CD spectrometer (JASCO, Tokyo, Japan) using a 0.5-mm cuvette.

Far-UV CD spectra of VDAC in LDAO matches the one reported previ-

ously (27) (data not shown).

To check the functionality of the protein refolded in LDAO and incorpo-

rated into proteoliposomes, electrophysiology measurements were carried

out (for details, see Supporting Material). Activity of refolded VDAC
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FIGURE 2 Representative scanning FCCS auto- and cross-correlation

curves of fluorescence intensity fluctuations of red- and green-labeled

VDAC reconstituted into GUVs. Experimental FCS data (symbols) are

shown along with the corresponding least-squares fits: single-focus,

single-color, red-channel autocorrelation (circles); single-focus, single-

color, green-channel autocorrelation (squares); two-focus, single-color,

red channel cross-correlation (up-triangles); two-focus, single-color,

green-channel cross-correlation (down-triangles); and one-focus, two-

color, red-green cross-correlation (diamonds). GUV composition: (A)

DOPC/DOPG 80:20, (B) DOPC/CL 80:20. Temperature, 21 5 0.5�C.
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was studied in black lipid membranes prepared from DPhPC at a concentra-

tion of 5 mg/ml dissolved in pentane. For the electrophysiology studies on

VDAC incorporated from proteoliposomes, black lipid membranes were

made of DOPC, instead of DPhPC.

Experiments have shown that wild-type VDAC and its labeled single

cysteine mutants are electrophysiologically active. Our results are in agree-

ment with the previous studies, showing that VDAC cysteine residues do

not influence protein function (28). In addition, our findings indicate that

attachment of fluorescent dyes Alexa 488 and ATTO 655 to the cysteine

residue at the position 127 does not affect VDAC channel activity.

We also found that upon reconstitution of VDAC from proteoliposomes,

the channel shows the characteristic voltage-dependent behavior, indicating

proper folding of VDAC in proteoliposomes.

FCCS measurements

FCCS measurements were carried out on a LSM 510 Meta system (Zeiss,

Jena, Germany) using a home-built detection unit at the optical fiber output

channel. All experiments were carried out at 21 5 0.5�C. The light was

collected using a 40� NA 1.2 UV-VIS-IR C-Apochromat water immersion

objective (Zeiss, Jena, Germany). The sample was excited by the 488-nm

line of an Argon-ion laser (6 mW) and the 633-nm line of a He-Ne laser

(15 mW). A 570DCXRUV dichroic mirror and HQ 520/40 and HQ700/75

band-pass filters (AHF Analysentechnik, Tübingen, Germany) were posi-

tioned behind a collimating achromat to split the emission for the dual-color

detection and to reject the residual laser light. Fluorescence was detected by

avalanche photodiodes (PerkinElmer, San Jose, CA). Photon arrival times

were recorded in the photon mode of a Flex 02-01D hardware correlator

(Correlator.com, Bridgewater, NJ).

Two-focus, two-color scanning FCCS measurements across the GUV

equator were carried out, and the resulting sets of auto- and cross-

correlation curves of fluorescence intensity fluctuations were analyzed

by a global nonlinear least-squares fitting software developed in-house

in MATLAB v. R2007b (The MathWorks, Natick, MA). Detailed descrip-

tion of the experimental method and the model used in the data analysis is

given in the Supporting Material. When analyzing the data, we assumed

that diffusion coefficients of the red-labeled, green-labeled, and red-

green-labeled species are all equal and independent of the protein

oligomerization degree. The latter assumption is justified because of

the very weak dependence of the translational diffusion coefficient on

the membrane inclusion size for the expected monomer and oligomer

sizes (31).

As a result of the analysis of FCCS data, surface concentrations of single-

color (Cr and Cg) and two-color particles (Crg), as well as their diffusion

coefficient, were determined.

Oligomerization of VDAC should not depend on whether it is labeled

with a red or green fluorophore, and therefore formation of two-color

(red-green) and single-color (red or green) oligomers is possible. Cr

(Cg) will account not only for red (green) monomers, but also for the

corresponding single-color oligomers. At the same time, Crg will describe

the concentration of oligomers containing both red- and green-labeled

molecules. As a result, Crg will generally underestimate the total

concentration of oligomers (a fraction of which will be single-color),

but this discrepancy vanishes fast upon an increase in the degree of

oligomerization.

To quantitatively characterize oligomerization of VDAC in the

membrane, we therefore define the (approximate) oligomer fraction as

f ¼ Crg

Crg þ Cmin

: (1)

Here, Cmin ¼ min(Cr,Cg) is the minimum of the concentrations of red (Cr)

and green (Cg) particles measured in the FCCS experiment. The represen-

tative auto- and cross-correlation curves obtained by two-color, two-focus

FCCS measurements for GUV reconstituted VDAC along with the corre-

sponding fit curves are presented in Fig. 2.
RESULTS

VDAC reconstitution into giant unilamellar
vesicles

To investigate the oligomeric properties of VDAC in the
membrane under controlled conditions, purified fluorescently
labeled VDAC was reconstituted into chemically well-
defined model systems represented by GUVs with different
lipid compositions. We found that the protein was uniformly
distributed in GUVs (Fig. 1) and showed free diffusion in the
membrane with the diffusion coefficient in a DOPC environ-
ment similar to the one reported previously for the trimeric
glutamate transporter (32).We found, however, that the diffu-
sion coefficient showed slight variations depending on the
lipid composition of the membrane of GUVs (Table 1).
Typical surface densities of fluorescent VDACgreen and
VDACred particles in the membrane as determined by
FCCS measurements were in the range of 5–70 mm�2.
VDAC forms oligomers in detergent that are
stable even after reconstitution into the
membrane

Previous experiments had shown that VDAC from different
species forms dimers and higher order oligomers in deter-
gent and in the membranes of living cells (9–12,33,34).
Biophysical Journal 102(3) 523–531
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TABLE 1 Translational diffusion coefficients of VDAC in

GUVs with different lipid compositions obtained from the

analysis of FCCS data

Lipid composition D, mm2/s

DOPC 4.6 5 0.5

DOPC/CL 80:20 5.4 5 0.4

DOPC/DOPG 90:10 5.2 5 1.0

DOPC/DOPG 80:20 5.8 5 0.8

DOPC/DOPI 90:10 6.1 5 0.4

DOPC/DOPI 80:20 5.2 5 0.5

DOPC/DOPS 90:10 5.0 5 0.7

DOPC/DOPS 90:10 5.0 5 0.7

DOPC/DOPS 80:20 4.8 5 1.0

DOPC/DOPG/CL 80:15:5 6.3 5 0.7

DOPC/DOPG/CL 80:10:10 5.4 5 0.8

Measurements were carried out at 21 5 0.5�C. Mean values and standard

deviations obtained from measurements on 10–30 GUVs.

FIGURE 3 Two different methods of reconstitution of fluorescently

labeled VDAC into GUVs. (A) VDACred and VDACgreen are mixed in

detergent solution and incorporated into proteoliposomes, which are further

used to form GUVs. (B) VDACred and VDACgreen are incorporated into

proteoliposomes separately, and the proteoliposomes are mixed only imme-

diately before the formation of GUVs.

FIGURE 4 Oligomer fraction of fluorescently labeled VDAC in deter-

gent solution (dark shaded) and upon reconstitution into GUVs with two

lipid compositions: pure DOPC and DOPC/CL 80:20. VDACred and

VDACgreen were incorporated into GUVs using the two different methods

shown in Fig. 3: Method 1 (light shaded) or Method 2 (medium shaded).

Data were obtained in three independent experiments with three indepen-

dently prepared samples; each point is an average of values measured on

10–40 vesicles.
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To check the oligomeric state of refolded VDAC in the
detergent solution, VDACred and VDACgreen in LDAO
micelles were mixed together (see the upper part of Fig. 3
A) and FCCS measurements were carried out on this sample.
The estimated oligomer fraction for VDAC in detergent
solution clearly indicates the formation of VDACred-
VDACgreen complexes (Fig. 4).

To monitor the oligomeric state of VDAC in the
membranes, the same solution was used further to incorpo-
rate VDAC into proteoliposomes made of DOPC (Fig. 3 A).
GUVs were grown from these proteoliposomes and two-
focus, two-color FCCS measurements in the membrane
were performed to check whether VDAC oligomers were
present in the membrane. The oligomerization level of
VDAC in the membrane appeared to be similar to the one
observed in detergent solution (Fig. 4). This clearly shows
that the VDAC oligomers preexisting in detergent solution
are preserved after reconstitution into the membrane.

The crucial question now is whether the detected oligo-
mers were first formed in detergent and subsequently trans-
ferred to the membrane during reconstitution, or if they were
formed in the membrane after protein reconstitution. To
distinguish between these two scenarios, proteoliposomes
containing VDACred and VDACgreen were prepared sepa-
rately and mixed just before the formation of GUVs to
ensure that only oligomeric complexes newly formed in
the membrane are detected by FCCS (Fig. 3 B). As can be
seen from Fig. 4, very few oligomeric complexes were
observed in DOPC lipid membrane in this case. Therefore,
we conclude that VDAC forms stable oligomers already in
detergent, which are preserved even after incorporation
into the membrane.

These results confirm our suspicions that a particular
protein incorporation procedure can strongly affect subse-
quent experiments and conclusions made on their basis.
The main goal of this article was to study the stability of ex-
isting VDAC oligomers once transferred to the membrane,
and their dependence on varying lipid composition; to this
Biophysical Journal 102(3) 523–531
end, the preparation procedure depicted in Fig. 3 A was
applied. In addition, the ability of VDAC to form oligomers
after reconstitution to the membrane was also studied, using
the procedure depicted in Fig. 3 B.
Cardiolipin disrupts VDAC oligomeric complexes
in the membrane

Cardiolipin, a negatively charged lipid with four acyl chains,
is an important constituent of the mitochondrial membrane



FIGURE 5 Oligomer fraction of fluorescently labeled VDAC in GUVs.

GUV composition: DOPC, DOPC/DOPG 90:10, DOPC/DOPG 80:20,

DOPC/DOPG/CL 80:15:5, DOPC/DOPG/CL 80:10:10, and DOPC/CL

80:20. Data were obtained in three independent experiments with three

independently prepared samples; each point is an average of values

measured on 13–39 vesicles.
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known to be related to mitochondrial metabolism and the
process of apoptosis (35). Cardiolipin is enriched in the
contact sites between the inner and outer mitochondrial
membrane (19) where VDAC is localized (20). Therefore,
it was straightforward to check whether the VDAC oligo-
merization state can be affected by this lipid. As can be
seen from Fig. 4, very few VDAC oligomers were found
in the membrane at the composition DOPC/CL 80:20,
similar to the case of the pure DOPC membrane.

To check whether CL influences the stability of VDAC
oligomers preformed in detergent, we carried out experi-
ments on GUVs containing VDACred and VDACgreen
incorporated following the procedure depicted in Fig. 3 A.
As it is clear from Fig. 4, the presence of cardiolipin
substantially reduced the amount of VDACred-VDACgreen
oligomers compared to the pure DOPC membrane. We
therefore conclude that cardiolipin is able to disrupt supra-
molecular assemblies of VDAC in the membrane.

Electrophysiology studies suggest that VDAC can parti-
tion into CL-enriched domains (25) formed on mitochon-
drial contact sites. In view of this model, the implication
of our finding is that under normal (nonapoptotic) condi-
tions the relatively high CL level on the mitochondrial
membrane precludes VDAC oligomerization.
FIGURE 6 Specific particle brightness of fluorescently labeled

VDACgreen in GUVs. GUV composition: DOPC/DOPG 80:20 or DOPC/

CL 80:20. (Light-shaded and medium-shaded) Data depict two independent

experiments carried out with two independently prepared samples. Each

point is an average of values measured on 5–7 vesicles.
PG induces VDAC oligomerization

PG is a precursor of CL in mitochondria. Similar to cardio-
lipin, it carries a negative charge, but, unlike CL, has only
two acyl chains. During the programmed cell death, an
increase in PG concentration by ~30–50% of the control
and the decrease in the CL levels by ~15–50% have been re-
ported (22,23).

To investigate whether the elevated PG levels can influ-
ence VDAC oligomerization, we have incorporated VDAC
into DOPC/DOPG GUVs with the composition DOPC/
DOPG 80:20 and monitored the formation of oligomers in
the membrane by means of FCCS (here and elsewhere, if
not specified otherwise, VDACred and VDACgreen were re-
constituted into GUVs using Method 2 (Fig. 3 B)). Interest-
ingly, we observed a significantly enhanced level of VDAC
oligomerization in DOPC/DOPG membranes compared to
pure DOPC membrane. Moreover, an increase in the PG
concentration in GUVs leads to a gradual increase in the
number of VDAC oligomeric complexes formed in the
membrane (Fig. 5).

These conclusions are based on the FCCS measurements
that provide information on the amount of red-green
complexes formed in the membrane. The experiment can
be modified such that only one-color species are present
in the membrane, and oligomerization of VDAC is followed
by the so-called specific brightness of fluorescent particles
measured in photon counts per particle per second, which
can be extracted from the fluorescence fluctuation data.
If single-color particles cluster and diffuse together, the
detected specific brightness should increase. Our experi-
ments show that the mean specific brightness of fluorescent
particles increases roughly by a factor of two in membranes
containing PG compared to membranes with CL (Fig. 6),
which is additional evidence supporting the formation of
oligomeric complexes. The fact that VDAC is able to
form not only dimers, but also higher-order oligomers in
the membrane (9–11), does not allow us to draw more quan-
titative conclusions from these data.

The results of the above experiments allow us to conclude
that the negatively charged lipid PG induces formation
of VDAC supramolecular assemblies, in contrast to its
four-acyl chain analog CL that, inversely, prevents oligo-
merization in the membrane and even disrupts the oligomers
originally formed in solution after they attach to the
membrane.
Biophysical Journal 102(3) 523–531
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Effect of PG on VDAC assembly vanishes in
presence of CL

In view of the above findings, it was interesting to check
whether the effect of CL on VDAC oligomers would also
be detected in the presence of PG in the membrane, and
vice versa. The results presented in Fig. 5 demonstrate
that addition of CL to the lipid mixture disrupts oligo-
meric complexes of VDAC formed in presence of PG.
Virtually no oligomers were detected in GUVs with
the compositions DOPC/DOPG/CL 80:15:5 or 80:10:
10, similar to what was observed for the pure DOPC
membrane (Fig. 4).

Thus, we conclude that CL reduces the number of supra-
molecular complexes of VDAC that can be formed in the
membrane in presence of PG. We suggest that under the
normal cell conditions, one of the functions of CL in mito-
chondria consists in keeping VDAC in the monomeric state.
During apoptosis, cardiolipin levels in mitochondria
decrease (36), the cristae are rearranged, and contact sites
between the inner and outer membrane, where VDAC is co-
localized with CL, are disrupted (37). These conditions
favor the interaction of VDAC with PG and subsequent
VDAC oligomerization.
Other anionic lipids with two acyl chains also
increase the level of VDAC oligomerization

To find out how specific is the interaction of VDAC with
DOPG, oligomerization of the protein in membranes con-
taining other negatively charged lipids with two acyl chains,
PI and PS, was tested. Fig. 7 summarizes the results ob-
tained with FCCS. An increase in PI and PS concentrations
in the membrane clearly leads to an increase in the amount
of oligomeric complexes. Thus, anionic phospholipids PI
FIGURE 7 Oligomer fraction of fluorescently labeled VDAC in GUVs.

GUV composition: DOPC (dark shaded), DOPC/DOPI 90:10, DOPC/

DOPI 80:20 (light shaded) or DOPC/DOPS 90:10, and DOPC/DOPS

80:20 (medium shaded). Data were obtained in three independent experi-

ments with three independently prepared samples; each point is an average

of values measured on 13–29 vesicles.
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and PS also induce VDAC oligomerization, although their
effect is weaker compared to PG (see Fig. 5).
DISCUSSION

To summarize, we have found that PG, PI, and PS induce
VDAC oligomerization, whereas CL disrupts VDAC supra-
molecular assemblies in the membrane. We believe that
these results can be related to VDAC oligomerization
observed during programmed cell death (5–7). Indeed,
experimental studies show that apoptosis is associated
with the suppressed CL synthesis and an increase in the
level of PG (22,23). On the other hand, CL deficiency and
PG accumulation in cardiolipin-synthetase-deficient yeast
cells were shown to lead to cytochrome c release from mito-
chondria followed by apoptosis (24). A decrease in the
amount of CL, which interacts with VDAC in the mitochon-
dria contact sites, can also occur as a consequence of rear-
rangements of cristae observed during cell death (37) and
possible disruption of the contact sites. As we know from
our results, a decrease in the amount of CL and increase
of PG levels in the membrane can lead to efficient formation
of VDAC oligomers. Interestingly, in previous studies
(22,24), CL deficiency was stressed as the most important
factor for apoptosis, which was connected only with disrup-
tion of interactions between CL and cytochrome c, whereas
PG was not even considered as a component playing any
significant role in cell death.

On the other hand, a recent study (38) has shown that cell
lines from patients with the Barth syndrome, which also
exhibit low levels of CL, but no increase in PG, are not
susceptible to apoptosis. This observation suggests that the
level of PG in mitochondria may be a crucial factor regu-
lating apoptosis. As we have demonstrated, an increase in
the PG level in the membrane induces VDAC oligomeriza-
tion that, in turn, is believed to be an important step in pro-
grammed cell death. It is known that, in general, lipids can
regulate protein oligomerization in different ways, and the
literature on this topic is extensive (see, e.g., (15,39)).
Most of the research in this field is concerned with the influ-
ence of lipid charge and hydrophobic mismatch on protein
association. The importance of negatively charged lipids
for protein oligomerization has been discussed widely in
the literature. For example, it was shown by in vivo studies
that PG is required for the formation and stability of supra-
molecular assembly of the photosystem I reaction center
(40). Another negatively charged lipid DOPA (dioleoyl
phosphatidic acid) was shown to stabilize the tetrameric
assembly of KcsA channel (17), whereas DMPS (dimyris-
toyl phosphatidylserine) and DMPG (dimyristoyl phospha-
tidylglycerol) were reported to be involved in aggregation
of the AbP(25–35) peptide (41). Other studies also indicate
that CL enhances the formation and stability of oligomers of
KcsA channel (17) and mitochondrial respiratory chain
supercomplexes (42).



FIGURE 8 Charge-surface (positive, red, and negative, blue) of VDAC

monomer responsible for the dimer formation generated using the software

PyMOL 1.3 (DeLano Scientific) (A) and schematic representation of the

interaction of VDAC with anionic lipids (B and C). (B) Formation of

VDAC dimers in presence of PG. (C) Interaction of VDAC with CL.
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Protein-lipid interactions on membranes containing
anionic lipids have also been addressed in theoretical studies
(43,44). The general conclusion is that negatively charged
lipids in the membrane migrate toward the positively
charged protein, which leads to electrostatics-induced local
demixing of charged and neutral lipids, which produces
a varying lipid composition profile around the charged
protein (44). In this way lipid-protein complexes can be
produced in the form of domains enriched in both positively
charged protein and anionic lipids.

Our results are generally in line with the above-mentioned
experimental and theoretical studies (40,41,44). VDAC is
positively charged at neutral pH (45) and therefore anionic
PG, PS, PI, and CL interact with VDAC, which should result
in their local demixing. We found that in agreement with
previous findings for other proteins interacting with anionic
lipids (17,40,41), PG, PI, and PS induce oligomerization of
VDAC in the membrane.

On the other hand, we found that—surprisingly—CL,
which is also negatively charged, does not induce VDAC
oligomerization and moreover, precludes the formation of
oligomeric complexes in the membrane. The question arises
why CL has an opposite effect on VDAC oligomerization
compared to the other negatively charged lipids PG, PS,
and PI.

In our opinion, this difference is most probably related to
the different structure of the hydrophobic part of these
lipids (CL has four acyl chains compared to two acyl
chains in PG, PS, and PI), as well as with the character
of protein-protein interactions responsible for VDAC
oligomerization. The crystal packing analysis of murine
VDAC suggests that oligomerization of VDAC is mostly
driven by van der Waals interactions (46). Using the data
from the Protein Data Bank (PDB ID:2JK4 (33)), we
reconstructed the three-dimensional view of the VDAC
protein with the help of the software PyMOL 1.3 (DeLano
Scientific, www.pymol.org), and the interaction surface
responsible for VDAC oligomer formation (46) was
highlighted.

One can see that the interaction surface is characterized
by areas with a strong positive charge (Fig. 8 A). Negatively
charged lipids can interact with the positively charged
surface of VDAC, resulting in charge screening, which
decreases the distance between VDAC monomers and facil-
itates the formation of stable complexes due to van der
Waals attraction (Fig. 8 B). If, instead of two-acyl chain
lipid (e.g., PG), a substantially more bulky CL is present
in the membrane, its local electrostatics-induced demixing
should, in contrast, preclude the close approach of VDAC
molecules and thus prevent the formation of VDAC
complexes (Fig. 8 C). In addition, we observed that CL
eliminates the effect of PG on VDAC oligomerization.
This means that CL competes with PG for binding with
VDAC, and interaction of CL with VDAC seems to be ener-
getically more favorable.
Several previous studies suggested that, in general, nega-
tively charged lipids induce aggregation or clustering of
transmembrane proteins (17,41). Although the dependence
of the stability of oligomers on the lipid charge and specific
properties of the headgroup was emphasized (17), the role of
the hydrophobic part of the lipid was usually not taken into
consideration in these studies. Our experiments demonstrate
that the shape of hydrophobic part of lipids can play a crucial
role in the formation and stability of protein supramolecular
assemblies in the membrane. We believe that our results
shed light on the role played by the anionic lipids PG and
CL in the regulation of VDAC oligomerization during
apoptosis, and thus provide additional information of the
molecular mechanisms of the programmed cell death.
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