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ABSTRACT The acquisition of different fates by cells that are initially in the same state is central to development. Here, we
investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through
cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We
extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable
networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the
Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms
not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complex-
ation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely
based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscil-
lations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the
dynamical behaviors of various created networks. The results should help to identify and understand genetic structures impli-

cated in cell-cell interactions and differentiation.

INTRODUCTION

How regulatory interactions between genes, mRNAs, and
proteins determine distinct cell fates is a central question
of developmental biology. In a number of cases, cell-cell
interactions play an important role in allowing neighboring
cells to adopt different fates. The well-studied Notch-Delta
pathway (1) provides several biological examples of this
process, ranging from gonadogenesis (2) and vulval devel-
opment (3) in Caenorhabditis elegans or sensory organ
development (4) in Drosophila melanogaster to neurogene-
sis in vertebrates (5). In addition to experimental studies,
different theoretical approaches have been followed to
better understand the structure and interaction requirements
of a cell fate specifying network, from general mathematical
analysis of simple model networks to detailed studies of
specific systems.

Mathematical studies have, for instance, served to empha-
size the interest and potential role of network bistability in
cell fate specification (6). Similarly, spontaneous symmetry
breaking between two cells has been analyzed in a minimal
model of lateral inhibition (7). More detailed models of
lateral inhibition have been developed in the context of
specific biological examples (8,9). Despite their interest,
both approaches have limitations. In a reduced mathemat-
ical description an effective interaction can reflect different
underlying biophysical mechanisms. This is an advantage in
terms of generality but also a source of difficulty when one
wishes to identify a particular mechanism in a given
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network of biophysical interactions. A further limitation
resides in the choice of the simplified model itself, which
usually does leave many possibilities unexplored. Even if
less apparent, this is also true to some extent with detailed
modeling because choices have to be made for many param-
eters, or for the details of many interactions, for which only
scarce experimental guidance exists in most cases.

It therefore appears worth sampling and characterizing,
with minimal a priori bias, core network structures that
produce a given dynamical behavior. An exhaustive search
for networks that perform a given task (10) is feasible
only by restricting oneself to very small networks and
a limited set of interactions. An alternative goal-oriented
computer-assisted procedure (11-20) consists of producing
computer models of genetic networks, in an iterative way,
under the guidance of a score function to be optimized.
This type of evolutionary search has produced interesting
networks that in a number of cases resemble known biolog-
ical networks or, at least, appear to capture some of their
essential structures. For instance, evolutionary simulations
performed to create single-cell oscillators (13) have high-
lighted the so-called mixed-feedback loop in which a protein
both transcriptionally regulates a gene and directly interacts
with the protein it produces (21,22). It is a simplified but
quite recognizable version of the central mechanism used
by circadian clocks in different organisms and it appears
to lie at the core of several other biological oscillators as
well (23). Similarly, for cell-autonomous patterning
networks in a static gradient, evolutionary simulations
produced chains of transcriptional repressors. The simplest
instance is an incoherent feed-forward loop that serves to
produce localized gene expression at an intermediate value
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of a graded signal (15,18) and of which many biological
examples are known. Recently, evolution of cell-autono-
mous patterning networks has further served to try and
shed light on the properties of Hox genes (20).

In this work, we use an evolutionary algorithm to investi-
gate the possible architectures of networks that are able to
create different cell fates in two adjacent cells. We first
consider basic network motifs that are able to drive single
cells toward two different fates in a cell-autonomous
manner. The obtained bistable motifs were studied in
previous works, which highlighted the role of protein
sequestration in a complex (13,22), as we recall. We then
show that it is possible to extend the evolutionary procedure
to include interactions between neighboring cells. We obtain
different network architectures that rely on different mech-
anisms to produce two exclusive cell fates in a pair of inter-
acting cells. Some networks simply provide precise models
of commonly considered mechanisms. Others highlight
little-noted or new mechanisms that rely on protein-protein
interaction, in a crucial way. They should help to recognize
these structures or similar ones in actual biological
networks. The produced networks are also useful as working
examples of two-cell bistable networks. They show, for
instance, that cell interactions allow network designs that
more reliably produce two distinct cell fates when initial
conditions vary.

Mathematical analyses of several interesting obtained
network structures are provided in the Supporting Material,
section 2. A complete description of each discussed network
is provided in the Supporting Material, section 3.

METHODS
Algorithm overview

We follow an evolutionary methodology that was previously proposed (13)
to generate networks of interacting genes and proteins that achieve a prespe-
cified function in a single cell. The algorithm was already adapted to evolve
networks creating patterns of gene expression in a linear array of noninter-
acting cells (15). Here, we further extend the procedure to produce
networks that allow for direct cell-to-cell interactions.

The algorithm used in this work differs from the algorithm of (13) at
several points detailed in the Supporting Material, section 1. Both algo-
rithms evolve a collection of genetic networks using repeated rounds of
growth, mutation, and selection. Each genetic network in the collection
consists of a set of genes and associated mRNAs and proteins, interacting
via transcriptional interactions as well as posttranscriptional interactions.
The dynamics of each network is described by a set of ordinary differential
equations.

Posttranscriptional interactions can be of three types, “dimerization,
“phosphorylation”, and “activated phosphorylation”. Dimerization
consists in introducing a complexation reaction between two proteins A
and B to produce the complex AB as described by the chemical reaction,
A + B — AB. Phosphorylation of protein A consists in the production of
a modified form of protein A, A— A*. Activated phosphorylation is similar
to phosphorylation but the reaction depends on a protein B that is part of the
described network, A +B— A* + B.

In each of these posttranscriptional reactions, the new produced protein
(i.e., AB or A*) is considered as a new protein. Its properties are indepen-
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dent of the properties of the other reactants. No regulation of mRNA trans-
lation by RNA is considered in the present algorithm.

To illustrate how evolutionary simulations proceed, two typical runs for
the creation of cell-autonomous bistable networks are displayed in Fig. S4.1.

RESULTS

We investigate the network motifs that produce different
stable expression profiles in two cells with identical genetic
networks. The chosen evolutionary score function favors
dynamics in which two cells with different initial concentra-
tions of a protein A end up in different well-separated states,
as described in the Supporting Material, section 1.5.

Cell-autonomous bistable networks

Before analyzing the role of interactions between cells, we
consider networks that function in a cell-autonomous way.
In this case, the difference in initial protein concentration
produces different persistent states in the two cells, only
when the network is bistable. The possible structure of
such networks is a long-pondered question (24), which has
previously been addressed with the help of evolutionary
simulations (13). Posttranscriptional interactions between
proteins are found to play an important role in the produced
networks, as noted previously (13) and described below.

The two most frequently produced networks are depicted
in Fig. 1, A and B. In these simple two-gene networks, bist-
ability is achieved by combining a single transcriptional
activation with the formation of a protein complex that
sequesters a transcriptional regulator.

In the first one, displayed in Fig. 1 A, which we term the
autoactivation and complexation (AAC) network, protein A
transcriptionally activates its own gene and can also bind to
protein B in a transcriptionally inactive complex. The AAC
is bistable in a large window of parameters as shown in
Fig. 1 A. One stable state is obtained when the concentration
of protein A is sufficiently high to bypass complexation with
B and allow a high concentration of free A to transcription-
ally activate gene a. On the contrary, in the low A state, the
few A proteins produced are sequestered in complexes with B
and cannot activate gene a. It should be noted that complex-
ation removes the need for cooperative autoactivation of gene
a. A mathematical analysis of the AAC network dynamics is
provided in the Supporting Material, section 2.1.

The second frequently obtained bistable network is dis-
played in Fig. 1 B. In this so-called mixed-feedback-loop
(MFL) (21,22), autoactivation is replaced by a transcriptional
repression of gene b by protein A. As in the AAC network the
complex between proteins A and B is transcriptionally
inactive. The network is bistable when the unrepressed
production rate of protein B is larger than the production
rate of protein A, as precisely shown in Fig. 1 B. When the
concentration of B proteins is low, it cannot prevent transcrip-
tional repression of gene b by A and a stable low B state
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FIGURE 1 Simple bistable networks that give two different stable states

of gene expression. (A) AAC network (network depicted in the figure in-
set).The bistable region of the AAC network is shown in the parameter
plane of dimensionless protein production rates (p4/(64A0), pg/(0440))
(see the Supporting Material, section 2.1). (B) MFL (network depicted in
the figure inset). The bistable region of the MFL is shown in the dimension-
less protein production rate (p,/(64A0), pg/(04Ao)) parameter plane. Note
that in the MFL, complexation can be replaced by a catalytic modification
of protein A by protein B. This is also the case for the AAC network when
saturation of the catalyst is taken into account, as explained in the Support-
ing Material, section 2.

ensues. On the contrary, in the high B state, transcriptional
repression is prevented by efficient sequestration of A in
complexes with B. Mathematical results for the bistable
MFL (22) are summarized in the Supporting Material,
section 2.

When posttranscriptional interactions were allowed in
evolutionary runs, purely transcriptional networks were
rarely produced. To create a significant number of purely
transcriptional networks, we removed posttranscriptional
interactions from the set of possible interactions, in a subset
of simulations.

With cooperative transcriptional regulation, bistability
was achieved by the familiar autoactivation of a single
gene, either directly or indirectly, for instance via cross-
inhibition of two genes, as shown in Fig. S4.2, A and B.

Perhaps more surprisingly, purely transcriptional bistable
networks were also created when transcriptional activation
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was chosen to be noncooperative. A two-gene network of
this kind that was repeatedly produced in our simulations
is shown in Fig. S4.2 C. An effective sigmoidal activation
of gene a by A results from the fact that different concentra-
tions of A are required for half-activation of a direct and an
indirect self-activation loops, as explained in the Supporting
Material, section 2.

The core bistable networks described in this section and
the mechanisms on which they are based play an important
role in the two-cell networks investigated in the following
sections.

Cell-cell interaction and exclusive cell fates

We have adopted the simple and generic formulation de-
picted in Fig. 2 A and detailed in the Supporting Material,
section 1.4 to describe a direct interaction between cell 1
and cell 2. It first requires the choice of two proteins, for
example A and B, which mediate the interaction. The action
of the signal-sending cell on the signal-receiving cell is then
represented by the transformation of B into a modified B* in
the signal-receiving cell when A is present in the signal
sending-cell. The process is meant to model in a simple
way the cleavages of the Notch receptor protein and release
of Notch intracellular fragment upon interaction with its
ligand Delta (25,26). N-cadherin (27) and protocadherins
(28,29) are also thought to mediate intercellular signaling
by releasing soluble intracellular fragments that can enter
the nucleus. Alternatively, our simple description could
also represent the activation of a receptor tyrosine kinase
upon binding of its ligand. An example of this latter type
in cell patterning is for instance provided by the interaction
between R8 and R7 photoreceptor cells in the developing
Drosophila eye, mediated by the binding of Boss to the
receptor tyrosine kinase receptor Sevenless (30).

The results of including interactions between cells in the
algorithm were quantified by performing 1000 evolutionary
simulation runs of 1200 generations each (Fig. 2). Networks
that successfully performed the task were produced in more
than half (627/1000) of the runs. The distribution of the
pruned networks as a function of the number of proteins
they use is shown in Fig. 2 B. To check that this was not
dependent of the maximum allowed numbers of proteins
and transcriptional regulations, another set of simulations
was performed in which these numbers were doubled.
Very similar results were obtained as shown in Fig. S4.3.
We proceed to describe the different types of produced
networks.

The simplest case: interaction between
homologous proteins in the signal-sending
and signal-receiving cells

When interactions were included, some evolutionary runs
(91/627) still led to the cell-autonomous networks described
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FIGURE 2 Interaction between two cells, description and statistics of the
produced networks. (A) Schematic representation of the chosen interaction
model between two cells. Protein A in the signal-sending cell (cell 1)
induces a transformation in the signal-receiving cell (cell 2) of protein B
into protein B*. Of course, the reciprocal interaction between A in cell 2
and B in cell 1 also exists but is not pictured for clarity. See the Supporting
Material, section 1.4 for the explicit mathematical description. (B) Numbers
of created networks successfully producing two different fates in neigh-
boring cells in 1000 evolutionary runs in which A and B can be identical
in a signaling couple (A, B). The networks are sorted by the number of
different proteins they use (a protein and its modified form(s), e.g., B, B*
and AB are all considered different so that, for instance, the AAC and
MFL switches appear as three protein networks). (B") Numbers of created
networks that are either cell-autonomous (noninteracting) or that use
homologous interaction with a signaling couple (A, A) (plain) or signaling
between heterologous couples only (light) in the same simulation runs as in
B. (C) Identical to (B) but when A and B in a signaling couple are required
to be heterologous. (C') Numbers of created networks that are either cell-
autonomous (noninteracting) or use cell-interactions (interacting). The
numbers of interacting networks of the three different types with <6
proteins and a single signaling pair are also shown (see main text for
details).

in the previous section. However, most created networks
(536/627) made use of interactions between the two cells,
as shown in Fig. 2 B’. Without additional constraints (see
below), in ~40% of the successful runs (205/536), the algo-
rithm chose the signal-sending protein, A, and the signal
receiving protein, B, to be identical. Moreover, about half
(101/205) of these networks consisted of only two proteins,
A and its modified form A* and coincided with the simple
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network displayed in Fig. 3 A. In this case, A simply acti-
vates its own gene and transforms A into A* in the neigh-
boring cell. Therefore, when the concentration A; of A is
high in cell 1, autoactivation of A is prevented in cell 2
and the concentration A, of A is cell 2 is low. In turn, this
makes action of A, on A; weak and as a result inactivation
is not prevented in cell 1. Quite remarkably, the network
is bistable in a two-cell context even when autoactivation is
not cooperative and therefore the network is not bistable in
a single cell context. This two-cell network functions on
a principle that is very similar to the AAC single-cell
network with the two different proteins of the AAC network
replaced by homologous proteins in different cells. Mathe-
matical details of the analysis of this simple network are
provided in the Supporting Material, section 2.

In the bistable regime, the symmetry between the two
cells is spontaneously broken: the state in which the two
cells have identical expression profile is unstable and even
a small difference between the initial concentrations of A
in the two cells is sufficient to send one cell toward one
fate and the other cell toward the other fate. On the contrary,
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FIGURE 3 Simplest network of two interacting cells with exclusive
fates: interaction between homologous proteins in the signal-sending and
signal-receiving cells. (A) Schematic explanation of the network dynamics
in two cells that are in different states. Here and in the following pictures,
gray arrows denote nonactive interactions whenever cell 1 is in the high A
state. (B) Phase diagram of the two-cell network showing the parameter
domain in the (p;,7y)-plane (p;: protein production rate, y: interaction
strength) for which bistability exists. In this parameter domain, the
symmetry between the two cells is spontaneously broken and the two cells
settle in different states. The precise definition of the parameters as well as
the equations of the network are provided in the Supporting Material,
section 2.4. (C) Sketch of the domain of initial A concentrations in which
the first cell assumes a high A fate and the second one a low A fate for
a cell-autonomous bistable switch. The chosen threshold of 5 for the high
A state has been chosen arbitrarily. (D) Same as C, for a bistable network
based on cell-cell interactions as the network depicted in A.
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for cell-autonomous bistable networks, a threshold in the
initial concentration of A delimits the basins of attraction
of the two states. One fate or the other is produced depend-
ing on whether the initial concentration of A is above or
below the threshold. This makes the interacting network
more robust than cell-autonomous networks to initial
concentration variations as depicted in Fig. 3, C and D.
We inspected the homologous interaction networks with
>2 proteins. Although we did not precisely quantify it,
a large proportion of these more complicated networks ap-
peared to use the same mechanism as the prototypic network
of Fig. 3, although decorated with further interactions. For
example, in many networks the self-activation of gene a
proceeded indirectly via the activation of an activator of a.

Networks with interaction between heterologous
proteins in the signal-sending and signal-
receiving cells are of three general types

In some of the previously described simulations, protein A
in the signal-sending side and protein B on the signal-
receiving side were different. To further investigate this bio-
logically interesting case, we conducted an additional 1000
evolutionary runs in which it was enforced that an interact-
ing A-B pair was made of two different proteins. About half
(551/1000) of the runs produced successful networks. Most
of the produced networks (426/551) made use of cell inter-
actions (Fig. 2 C). The most commonly created bistable
networks were of three different types (Fig. 2), which are
displayed in Figs. 4-6 and detailed below. We systemati-
cally examined networks with six proteins or less (255/
426). A fraction of these (48/255) made use of two signaling
couples and were not further analyzed. In the remaining
ones (207/255), type 1 and type 2 networks were the most
frequently created, in comparable proportion (respectively
103/207 and 93/207), whereas type 3 was produced less
frequently (11/207).

We defined type 1 networks as the networks in which B*,
the modified signaling protein, only interacted with other
proteins. These dominantly (56/103) consisted in the
simplest network, depicted in Fig. 4 A. Quite strikingly,
this network does not make use of any transcriptional regu-
lation. It is simply based on complexation between A and B*,
the modified B protein. The presence of A in cell 1 trans-
forms B into B* in cell 2. B* then binds to A in cell 2. There-
fore, the level of free A is low in cell 2 and cell 2 cannot
signal back to cell 1. As a result, the level of A and nonac-
tivated B are high in cell 1, whereas B is activated in cell 2
(and the level of A low). Of course, an opposite stable state
is possible with the roles of cell 1 and cell 2 reversed. This
network is bistable and produces two cells in different
states. Notably however, bistability is only possible in
a multicellular context. Dissociated single cells are mono-
stable. Bistability is achieved for this simple network in
a large parameter range when the degradation rate of protein
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FIGURE 4 Two interacting cells with exclusive fates: type 1 network
with interaction between heterologous proteins in the signal-sending and
signal-receiving cells. (A) Schematic explanation of the network dynamic
in two cells that are in different states. (B) Network phase diagram. The
different dynamical regimes in the protein production rates (p,, p,)-param-
eter plane are shown in a case when the degradation rate of A is smaller than
the degradation rate of B, 64 = 1 <dp = 2. The region where the two-cell
network is bistable and the two cells assume different states is shown.
The dashed line is the approximate expression derived in the Supporting
Material, section 2.4.2 (Eq. 2.56) for the bistability boundary, that is valid
for rapid complexation between A and B*. See the Supporting Material,
section 3 for the network equations and precise definitions of the parame-
ters. (C) Dynamical traces showing oscillations in the two-cell network
(one curve for each cell) in different states when the degradation rate of
B is smaller than the degradation rate of A (64 = 1 >dz = 0.25).

B is larger than that of protein A, as depicted in Fig. 4 B and
mathematically shown in the Supporting Material, section
2.4.2. Quite interestingly, mathematical analysis shows
that when the lifetime of B is increased to become larger
than the lifetime of A, another nontrivial dynamical state
is possible. Namely, the two cells can be in different states
at all times but with each cell oscillating in time through
the different states, as shown in Fig. 4 C. Cells oscillate in
antiphase because it is the condition for the presence of
negative feedback in this circuit. Let us consider a variation
with the concentration of A higher than the steady state in
cell 1 and lower in cell 2. The higher A concentration in
cell 1 induces more transformation of B into B*. This
results, in cell 2, in a decrease in the concentration of B,
as well as in the concentration of B* when complexation
is fast enough. In turn, this tends to decrease the amount
of complexed A in cell 2 and counteracts the decrease in A.

The second commonly produced network type is shown
in Fig. 5. It is characterized by the fact that for a couple
(A,B) of signal-sending and signal-receiving proteins, the
modified signal-receiving protein B* does not interact at
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FIGURE 5 Two interacting cells with exclusive fates: type 2 networks
with interaction between heterologous proteins in the signal-sending and
signal-receiving cells. In this type of networks, the modified form of the
signal-receiving protein does not interact with the rest of the network; the
sole effect of the interaction is to lower the concentration of the unmodified
signal-receiving protein. (A) This network, which is purely based on post-
transcriptional interactions, was repeatedly produced. Note that B is the
signal-receiving protein and that B* has no interaction. The working prin-
ciple of this network already appears quite complex but it can be understood
based on our previous analysis of simpler bistable networks. Bistability is
achieved when the production rate of B is smaller than the production
rate of A and therefore controls the production of the complex AB. In this
regime, transformation of B into B* in a cell directly diminishes the produc-
tion of the complex AB. Interaction between the two cells is then similar to
noncooperative cross-repression between the production of the complexes
AB in the two cells. Very similar to the AAC network, complexation of
AB with C is needed to transform this monostable cross-repression, equiv-
alent to a noncooperative self-activation, into a bistable network. (B) This
network makes use of transcriptional and posttranscriptional interactions.
The signal-receiving protein B stimulates the production of A, the signal-
sending protein. Upon signal reception, B is transformed into B*, which
diminishes the signal-sending ability of the cell, an effect further amplified
by the complexation of A with C.

all with the other genes and proteins. The interaction simply
acts by depletion of B in the signal-receiving cell. One
network of this type that was frequently produced is dis-
played in Fig. 5 A. As the network of Fig. 4 A, it is purely
based on posttranscriptional interactions. Here, A needs to
make a complex with B in the signal-sending cell to activate
the transformation of B into B* in the signal-receiving cell.
In other words, A needs to be activated by B to be able to
send a signal. Bistability is achieved when the complex
AB can itself be further titrated into a ternary complex
with a protein C. The network of Fig. 5 B makes use of
a similar interaction-mediated depletion mechanism. It is
based on a mix of transcriptional and posttranscriptional
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FIGURE 6 Type 3 networks: interaction between heterologous proteins
in the signal-sending and signal-receiving cells relayed by an inhibitory
transcriptional interaction. In this third type of networks, the modified
form of the signal-receiving protein inhibits the production of the signal
sending protein, at the transcriptional level. (A) The simplest network. Bist-
ability requires cooperative transcriptional interactions (Hill coefficient
>1). When transcriptional interactions are noncooperative, supplementary
interactions are required to break the symmetry between the two cells and to
render the network bistable. (B) Autoactivation (with a Hill coefficient of 1)
of its own gene by the signal-sending protein is a possibility that was
commonly observed. (C) Activation of the gene coding for the signal
receiving-protein by the modified signal-receiving protein is also an
observed case. (D) The addition of a complexation between the signal-
sending protein A and the signal-receiving protein B is another possibility
with a supplementary posttranscriptional interaction. When A is high in
the receiving cell, this complexation prevents the existence of free B and
signal reception (i.e., the creation of B*). Reciprocally when B is high,
complexation lowers the concentration of free A and diminishes the ability
of the cell to signal. It has thus been termed mutual cis-inhibition in the
context of the Notch-Delta pathway. (E) A related possibility that was
also observed is that the signal-sending protein A catalyzes in its own
cell the transformation the signal-receiving protein B into an inactive
form B;. In this case, there is cis-inhibition of B by A, but no mutual cis-inhi-
bition.

interactions and was also commonly produced when tran-
scriptional interaction where restricted to be noncoopera-
tive. A variety of other more complicated networks based
on the creation of a noninteracting modified signal-
receiving protein were created as well in this case.

The two networks of Fig. 4 and Fig. 5 A are built on
posttranscriptional interactions. Although less frequently
(Fig. 2 C'), evolutionary simulations created some networks
that were based on transcriptional interactions, in addition to
the cell-cell posttranscriptional activation of B. We charac-
terized these type 3 networks by the fact that the modified
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protein B* acts as a transcriptional regulator. B* is a tran-
scriptional repressor of gene a in most networks. The
simplest one is shown in Fig. 6 A and corresponds to the
textbook description of the Delta-Notch-mediated lateral
inhibition. It is very similar in its principle to the simple bi-
stable transcriptional network with cross-inhibition between
two genes shown in Fig. S4.2 B. In Fig. 6 A, however, the
interaction takes place between gene a in one cell and
gene a in the other cell. The transcriptional interaction
between the two cells is mediated by a protein B different
from A in the receptor cell. That is, A in cell 1 activates B
in cell 2. In turn, the activated form B* of B represses A in
cell 2. This results in A being expressed in cell 1 and
repressed in cell 2 (or, of course, the reverse). As for the
simple transcriptional network with cross-inhibition
between two genes, bistability requires some cooperative
interactions. This can be achieved, for instance if B*
represses the transcription of A in a sigmoidal manner
(i.e., with a Hill coefficient greater than one).

The basic network type of Fig. 6 A often appeared deco-
rated with other interactions, especially when transcrip-
tional interactions were noncooperative. To investigate
more systematically the network structures in this case,
two sets of computer simulations were performed in which
transcriptional interactions were restricted to be noncooper-
ative and the mutational appearance of posttranscriptional
interactions were either forbidden or possible. In the case
of noncooperative purely transcriptional interactions, the
two-gene network that repeatedly appeared is displayed in
Fig. 6 B. The basic network structure of Fig. 6 A is supple-
mented by the autoactivation of A that is necessary to make
the network bistable without cooperative transcriptional
interactions. Here, as in several previous examples, the
network is not bistable at the single cell level. In the absence
of interaction, only the high A state exists. When post-
transcriptional interactions were allowed in evolutionary
simulations, in addition to noncooperative transcriptional
interactions, they appeared added to the basic structure of
Fig. 6 A to allow the creation of bistable networks. For
instance, the network of Fig. 6 D displays an added
complexation between A and B as compared to Fig. 6 A.
This so-called mutual cis-inhibition of B by A both dimin-
ishes the availability of B in the cell where A is highly ex-
pressed and further diminishes the action of A in the cell
where a expression is repressed. As a result, the network
of Fig. 6 D is bistable even when the transcriptional repres-
sion of gene a by B has a Hill coefficient of one in contrast
to that of Fig. 6 A, as recently pointed out and analyzed
(31,32). The network of Fig. 6 E is analogous to the network
of Fig. 6 D but cis-inhibition is not due to the formation of
a complex between A and B but to a transformation of B into
an inactive form B; catalyzed by A in the same cell. In this
latter case, in contrast to the network of Fig. 6 D, cis-inhibi-
tion is not mutual. Although the presence of A in a cell
diminishes the concentration of B and its ability to receive
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a signal, the presence of B by itself does not lower the
concentration of A and the cell capacity to signal.

In most of the obtained bistable networks with interac-
tion, the symmetry between the two cells is spontaneously
broken. In contrast to cell-autonomous networks, even
a small initial concentration difference robustly produces
two different fates in the two cells as already illustrated
for the simple network of Fig. 3. Correlatively, this suggests
that large differences, in the initial A concentrations
between the two cells in the test phase of the evolutionary
process, should ease the creation of cell-autonomous
networks. The previous results were obtained with initial
concentrations of A in the same range as the other proteins
(see the Supporting Material, section 1.6), As shown in
Fig. S4.4, more cell-autonomous networks were indeed
produced when we imposed in another set of simulations,
a much larger initial concentration of A in one cell and
a very small concentration in the other one.

In all the previously reported simulations, interactions
between cells were implemented with a simple second-order
kinetics scheme. The interaction strength was thus linearly
proportional to the concentration of A in the signal-sending
cell and to the concentration of B in the signal receiving cell.
In additional simulations, we investigated the effect of
a more complex interaction scheme with a saturating depen-
dence on the concentration on the receiving-cell side, to
gauge the effect of this modification (see the Supporting
Material, section 1.4). Quite generally, the types of obtained
networks did not seem to be affected by this change.
However, the nonlinearity in the interaction allowed in
some cases the production of networks that could not have
been produced without it. A notable case was the network
displayed in Fig. 6 A, which was created in the presence
of nonlinear cooperative signal transmission, even with
noncooperative transcriptional interactions.

DISCUSSION

In this work, we have performed evolutionary simulations to
investigate the architectures of small gene networks capable
of producing different states of gene expression. We have
focused on the role of interactions between cells.

Networks able to produce different cell fates from
different initial conditions have been considered in a number
of previous studies. Lewis et al. (6) is an early example that
examines the question in the context of noninteracting
cells and emphasizes the importance of multistability. The
simple bistable case of a transcription factor that activates
its own gene, the network of Fig. S4.2 A, is explicitly
studied. Interactions between cells have been introduced
using mathematical models (7), or along lines parallel to
ours (11,17,18).

In contrast to most of these previous works, we have
explicitly described posttranscriptional interactions and
chosen to describe the variety of possible networks at a level
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that make direct contact with biological data possible. As
a result, we have obtained and analyzed several network
architectures and mechanisms that have not been previously
examined.

It can certainly be wondered how complete is our sample
of networks and how dependent it is on the choices that, in-
avoidingly, had to be made in formulating the evolutionary
algorithm. Although the question is difficult to fully address
in the absence of a complete theory of such algorithms, the
tests that we have performed lead us to believe that we have
sampled most of the simplest networks. First, for cell-auton-
omous networks, the score function used in this work is
quite different from the one previously used in (13) but
the predominantly created network structures are identical.
The designed score function thus does not appear to strongly
bias the results. Second, we have generated and analyzed
a large sample of networks to survey as completely as
possible the different simple structures. Third, we have
checked that varying the bounds on the number of interac-
tions does not significantly alter the types of network with
few interactions (see Fig. S4.3). Fourth, we have found
that varying the difference in initial concentration between
the two cells during the test phase changed the proportion
of interacting versus noninteracting networks. However,
the different obtained types of two-cell networks did not
significantly change (compare Fig. 4 C' and Fig. S4.4 A").
It certainly remains possible that interesting network topol-
ogies have been missed. Nonetheless, we believe that we
have investigated much more fully than previous works,
the different possible two-cell bistable structures.

In the following, we discuss the different networks that
we have obtained in light of existing biological data.

Cell-autonomous bistable networks

The main core network architectures that we have found
are the familiar autoactivation of a single gene at the tran-
scriptional level, either direct (Fig. S4.2 A) or indirect
(Fig. S4.2 B), as well as the AAC (Fig. 1 A) and MFL
(Fig. 1 B) networks, identified in previous studies (13,22),
that make use of posttranscriptional interactions.

Biological examples of the AAC and MFL networks have
previously been discussed (13,22). We simply remark, here,
that complexation and sequestration in inactive complexes
are known to play an important role in different cases of
cell differentiation. For instance, the proneural genes
achaete and scute, form various active and inactive hetero-
dimers (33) with other bHLH proteins. The interaction
between GATA-1 and PU.1 during hematopoiesis is a nice
example (34) of direct protein-protein interaction, as in
the AAC and MFL switches. Interestingly, the ability of
protein complexation to promote ultrasensitive characteris-
tics (35) and switch-like behavior has recently been quanti-
tatively confirmed (36) in yeast using a synthetic gene
circuit.
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Bistability and different fates mediated by
interaction between neighboring cells

Lateral inhibition through the Delta-Notch pathway is the
most widely reported interaction (1) driving adjacent cells
to different fates. Classic models include AC/VU differenti-
ation in C. elegans (2) and the development of sensory bris-
tles on the dorsal thorax of Drosophila (4). In a proneural
cluster, one sensory mother cell emerges while its neighbors
take an epidermal fate.

The central role of the Delta-Notch pathway in lateral
inhibition has motivated the modeling of the classically
described transinhibition (i.e., in the other cell) of Delta
by activated Notch, both in simplified mathematical terms
(7) and in a more detailed manner (8). A variety of transcrip-
tional and posttranscriptional interactions however appear to
sustend the Notch pathway, both on the cell-sending and
cell-receiving sides (see (25,26) for a review). Despite
much work, it is still not entirely clear which interactions
are the essential ones and moreover species variation
appears to exist (e.g., endocytosis of Delta appears required
for signaling in flies but not in worms).

In contrast to specific modeling approaches, we have
quite generally investigated the production of two distinct
fates in two interacting cells. The simplest found network
motif (Fig. 3) is based on a single gene a that activates its
own transcription and prevents this autoactivation in the
neighboring cell. A role similar to a has been proposed, in
sensory mother cell determination, for the gene scute, which
has been shown to autoactivate itself (33). Interestingly, the
network of Fig. 3 is even simpler than the previously
proposed two-gene model of (7). Notably, when signal satu-
ration is taken into account autoactivation of a is not even
required. It is tempting to wonder whether such a circuit ex-
isted in a primitive context.

The network motifs obtained by requiring that the two
cells interact via a couple (A,B) of different proteins in the
signal-sending and signal-receiving cells have been found
to fall quite generally into three types depending on whether
B*, the modified protein B: i), only interacts with other
proteins, ii), has no interaction whatsoever, or iii), acts as
a direct transcriptional regulator.

Type 1 is realized in a network of striking simplicity
(Fig. 4). It differs from the Notch pathway in that the tran-
sinhibition of A is not transcriptional but uses sequestration
of A in a complex with activated B. One is led to wonder
whether this mechanism will be reported in another context.
Interestingly, we have found that, in a large parameter
regime, this simple network produces cells oscillating in
antiphase. This phenomenon has been observed in cells in-
teracting via the Notch pathway (37) and modeled using
time-delayed equations (38). The example of Fig. 4 network
is an incentive to consider other possibilities.

Type 2 networks may appear quite surprising because the
modified B protein has no effect in the conventional sense.
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They underline a mechanism of general interest based on the
depletion of the signal-receiving protein that does not seem
to have been previously recognized. Being aware of it may
help to recognize biological uses of this mechanism.

Type 3 networks (Fig. 6) mostly use transinhibition of
gene a by B*, which is the mechanism classically described
as underlying Delta-Notch-mediated lateral inhibition,
However, transcriptional inhibition alone is sufficient to
provide bistability only when it is cooperative. Otherwise,
it has to be supplemented by other interactions as found in
the networks of Fig. 6, B-E. For instance, when interpreted
with the Notch pathway terminology, the network of
Fig. 6 D makes use of cis-inhibition (i.e., in the same cell)
of Notch by Delta, which has been known to exist (39) for
some time. Only recently however, the physiological rele-
vance of this mechanism has been demonstrated (40). Inves-
tigations in a synthetic context (31) have further underlined
its potential importance and have provided support for
mutual cis-inhibition of Notch and Delta by titration as
in the network of Fig. 6 D. An alternative to complexation
and mutual inhibition is provided by the network of
Fig. 6 E in which A catalyzes, in its own cell, the transfor-
mation of B into an inactive form but there is no reciprocal
action of B on A. A discussion of the evidence in favor of
cis-inhibition of Notch by Delta, of Delta by Notch, and
of their possible link, can be found in (39). Recent evidence
has also been found for the activation of Notch (B) by acti-
vated Notch (B*) (41), as used by the network of Fig. 6 C.

Finally, the presented networks can usefully serve as
working models of bistable multicellular networks and as
a test ground for various ideas. For instance, they exhibit
spontaneous symmetry breaking between the two cells
that lead to amplification of small differences. A slight
imbalance in initial conditions is then reflected in consis-
tently biased outcomes as observed in C. elegans AC/VU
differentiation in which the first born cell is found more
likely to become the VU (42). As another example, a lateral
inhibition network involving transcription of the Notch or
Delta genes appears too slow as compared to the pattern
development time in a case like fly eye patterning (43)
(we thank N. Baker for emphasizing this point to us). It is
perhaps reassuring and an incentive for further experiments
that several of the networks presented here are purely based
on posttranscriptional interactions.

SUPPORTING MATERIAL

Further discussion, methods, analyses, figures, and references are available at
http://www.biophysj.org/biophysj/supplemental/S0006-3495(11)05403-8.
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