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Chain Length Determines the Folding Rates of RNA
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ABSTRACT We show that the folding rates (kFs) of RNA are determined by N, the number of nucleotides. By assuming that
the distribution of free-energy barriers separating the folded and the unfolded states is Gaussian, which follows from central limit
theorem arguments and polymer physics concepts, we show that kFzk0 expð�aN0:5Þ. Remarkably, the theory fits experimental
rates spanning over 7 orders of magnitude with k0 � 1:0ðmsÞ�1. Our finding suggests that the speed limit of RNA folding is ~1 ms,
just as it is in the folding of globular proteins.
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RNA molecules are evolved biopolymers whose folding
has attracted a great deal of attention (1–3) because of
the crucial role they play in a number of cellular functions.
The slightly branched polymeric nature of RNA implies
that the shapes, relaxation dynamics, and even their folding
rates must depend on N. In support of this assertion, it has
been shown that the radius of gyration of the folded states,
obtained with the use of data available in the Protein
Data Bank, scales as Rg � 5:5Nn Å, where the Flory
exponent n varies from 0.33 to 0.40 (4–6). Although this
result is expected from the perspective of polymer physics,
it is surprising from the viewpoint of structural biology
because one might argue that the sequence and complexity
of secondary and tertiary structure organization could
lead to substantial deviations from the predictions based
on Flory-like theory. Here, we show that the folding
rates, kFs, of RNA are also primarily determined by N,
thus adding to the growing evidence that it is possible
to understand RNA folding by using polymer physics
principles.
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THEORETICAL CONSIDERATIONS

Theoretical arguments based on the dynamics of activated
transitions in disordered systems suggest that

kF ¼ k0 exp
��aNb

�
; (1)

where b should be 0.5 (7). The rationale for this finding
hinges on the observation that favorable basepairing interac-
tions and the hydrophobic nature of the bases tend to
collapse RNA, whereas the charged phosphate residues
are better accommodated by extended structures. Thus, the
distribution of activation free energy, DGz

UF=kBT, between
the folded and unfolded states is a sum of favorable
and unfavorable terms. We expect from central limit
theorem that the distribution of DGz

UF=kBT should
be roughly Gaussian with dispersion
D
ðDGz

UFÞ2
E
� N.

Thus, DGz
UF=kBT � Nbwith b ¼ 1/2.

We analyzed the available experimental data (see Table 1
for a list of RNA molecules) on RNA folding rates by
assuming that DGz

UF grows as N
b with b as a free parameter.

The theoretical value for b is 0.5. The folding rates of
RNA spanning over 7 orders of magnitude is well fit using
log kF ¼ log k0 � aNb with a correlation coefficient of
0.98 (Fig. 1). The fit yields k�1

0 ¼ 0:87 ms, a ¼ 0.91, and
b z 0.46. In the inset we show the fit obtained by fixing
b ¼ 0.5. Apart from the moderate differences in the
k�1
0 values, the theoretical prediction and the numerical
fits are in agreement, which demonstrates that the major
determining factor in determining RNA folding rates is N.

It is known that RNAs, such as Tetrahymena ribozyme,
fold by multiple pathways that are succinctly described by
the kinetic partitioning mechanism (8). According to this
mechanism, a fraction, F, of molecules reaches the native
states rapidly and the remaining fraction is trapped in an
ensemble of misfolded intermediates. For Tetrahymena
ribozyme F ~ 0.1 (9). The N dependence given by Eq. 1
holds for the majority of molecules that fold to the native
state from the compact intermediates, which form rapidly
under folding conditions (10).
CONCLUSIONS

Our findings indicate that the inverse of the prefactor,
k�1
0 ¼ t0z0:87 ms, is almost 6 orders of magnitude larger
than the transition-state theory estimate of h / kBT z 0.16
ps. The value of t0, which coincides with the typical base-
pairing time (11), is the speed limit for RNA folding. Of
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TABLE 1 RNA length versus folding rate

RNA N kf (sec
-1)

GCUUCGGC (16) 8 6.7 � 104 Tetraloop hairpin

GCUUCGGC (16) 8 27.2 � 104 Tetraloop hairpin

GGUUCGCC (16) 8 1.3 � 104 Tetraloop hairpin

GGUUCGCC (16) 8 4.7 � 104 Tetraloop hairpin

GGACUUUUGUCC (16) 12 6.1 � 104 Tetraloop hairpin

GGACUUCGGUCC (16) 12 4.5 � 104 Tetraloop hairpin

A6C6U6 (17) 18 3.4 � 104 Tetraloop hairpin

Extra arm of tRNAser (yeast) (18) 21 1 � 105 tRNA

pG half of tRNAPhe (yeast) (18) 36 9 � 103 tRNA

CCA half of tRNAPhe (yeast) (18) 39 8.5 � 103 tRNA

CCA half of tRNAPhe (wheat) (18) 39 8 � 103 tRNA

tRNAPhe (yeast) (19) 76 5.3 � 102 tRNA

tRNAAla (yeast) (18) 77 9 � 102 tRNA

Y4 hairpin (20) 14 5.75 � 104 Hairpin (5 � 2 þ 4)

Y9 hairpin (20) 19 2.29 � 104 Hairpin (5 � 2 þ 9)

Y19 hairpin (20) 29 8.70 � 102 Hairpin (5 � 2 þ 19)

Y34 hairpin (20) 44 6.03 � 102 Hairpin (5 � 2 þ 34)

VPK pseudoknot (21) 34 9.09 � 102 Pseudoknot

Hairpin ribozyme (four-way junction) (22,23) 125 6 Natural form of hairpin ribozyme

P5abc (24) 72 50 Group I intron T. ribozyme

P4-P6 domain(Tetrahymena ribozyme) (24) 160 2 Group I intron T. ribozyme

Azoarcus ribozyme (23,25) 205 7 ~ 14

B. subtilis RNase P RNA catalytic domain (26) 225 6.5 5 0.2

Ca.L-11 ribozyme (27) 368 0.03

E. coli RNase P RNA (28) 377 0.011 5 0.001

B. subtilis RNase P RNA (28) 409 0.008 5 0.002

Tetrahymena ribozyme (23,29) 414 0.013 Group I intron T. ribozyme
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interest, general arguments based on the kinetics of loop
formation have been used to predict that the speed limit
for protein folding is also ~1 ms (12–14). It remains to be
ascertained whether the common folding speed limit for
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FIGURE 1 Dependence of the folding rates of RNA on N. The

circles are experimental data and the line is the fit obtained

using log kF ¼ log k0 � aNb, with b used as an adjustable param-

eter. Inset shows the fit obtained by fixing b to the predicted

theoretical value of 0.5.
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proteins and RNA is due to evolutionary pressure on the
folding of evolved sequences. It is worth pointing out that
Dill et al. (15) recently showed that the rates and stabilities
of protein folding depend only on the number of amino
acids, which in turn places strict constraints on their func-
tions in the cellular context. Taken together, these studies
show that despite the complexity of protein and RNA
folding, it is possible that only a few variables determine
their global properties. This suggests that certain simple
principles may determine biological functions.
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