Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 11;68(Pt 2):o319. doi: 10.1107/S1600536812000347

4,4′-Dibromo-2-nitro­biphen­yl

J Josephine Novina a, G Vasuki b,*, Sushil Kumar c, K R Justin Thomas c
PMCID: PMC3275008  PMID: 22346953

Abstract

The title compound, C12H7Br2NO2, a biphenyl derivative, displays a twisted conformation with the two benzene rings making a dihedral angle of 55.34 (14)°. The dihedral angle between the nitro group and its parent benzene ring is 26.8 (2)°. The crystal structure is stabilized by inter­molecular C—H⋯Br and C—H⋯O inter­actions, which lead to the formation of chains propagating along the c-axis direction.

Related literature

For the use of dibromo-2-nitro-biphenyl as a crucial precursor in the formation of 2,7-disubstituted carbazole derivatives, see: Dierschke et al. (2003); Blouin et al. (2007). For details concerning 3,6-disubstituted analogs, see: Thomas et al. (2001). For related structures, see: Akhter et al. (2009); Hou et al. (2011); Kia et al. (2009); Rajnikant et al. (1995); Sim (1986).graphic file with name e-68-0o319-scheme1.jpg

Experimental

Crystal data

  • C12H7Br2NO2

  • M r = 357.01

  • Orthorhombic, Inline graphic

  • a = 15.8761 (14) Å

  • b = 7.4350 (7) Å

  • c = 20.7517 (13) Å

  • V = 2449.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.61 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.30 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.089, T max = 0.138

  • 13009 measured reflections

  • 2607 independent reflections

  • 1521 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.095

  • S = 1.00

  • 2607 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000347/su2358sup1.cif

e-68-0o319-sup1.cif (14.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000347/su2358Isup2.hkl

e-68-0o319-Isup2.hkl (128.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000347/su2358Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br2i 0.93 2.89 3.798 (3) 165
C9—H9⋯O2ii 0.93 2.57 3.454 (5) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

GV thanks the UGC, India, for financial assistance under the Minor Research Project (2010–2011). The authors also thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the single crystal X-ray data collection.

supplementary crystallographic information

Comment

Biphenyl and its derivatives are important industrial intermediates used in the production of heat transfer fluids, formulations for dye carriers used in textile dyeing and polychlorinated biphenyls used in insecticides. The C—Br bond in certain biphenyl derivatives is labile and the compound can be used for the preparation of carboxylic acid functionalized biphenyl derivatives. 4,4'-Dibromo-2-nitro-biphenyl is used as an crucial precursor in the formation of 2,7-disubstituted carbazole derivatives (Dierschke et al., 2003; Blouin et al., 2007), which have been found to display unusual electronic properties when compared to the 3,6-disubstituted analogs (Thomas et al., 2001).

Structures of biphenyl and its derivatives have been studied extensively in the past and even now, because of the differences found in the inter–ring torsion angle φ in the solid state (Rajnikant et al., 1995), which alters the electronic properties. In a continuation of our on-going research program aimed at investigating the trends in crystallization and crystal growth of some substituted biphenyl derivatives, the crystal and molecular structure of the title compound is presented herein.

The title compound (Fig. 1) displays a twisted conformation with the two benzene rings making a dihedral angle of 55.34 (14)°. The dihedral angle between the nitro group and its parent benzene ring is 26.76 (20)°. The length of the bond connecting the phenyl rings, 1.483 (5) Å, is close to the standard value of 1.48 Å for a Csp2—Csp2 single bond, and to that observed in similar structures, for example 2-Bromo-4'-phenylacetophenone (II) [Sim, 1986], 4-Methoxy-2-nitro-4'-(trifluoromethyl)-biphenyl (III) [Hou et al., 2011], and N-[1-(Biphenyl-4-yl)ethylidene]-N'-(2,4-dinitrophenyl)hydrazine (IV) [Kia et al., 2009]. All the bond lengths and angles are comparable to those obserbed in related structures. The distribution of bond angles around atom C4 is quite similar to that reported for 2-substituted biphenyls with angle C3—C4—C5 considerably less than 120° and angle C3—C4—C10 greater than 120°, as observed in the related structures, Biphenyl-2-methanol (V) [Rajnikant et al., 1995], and 4-(4-Nitrophenoxy) biphenyl (VI) [Akhter et al., 2009]. The two bromine atoms and the nitro group are in antiperiplanar positions with respect to the benzene rings to which they are attached.

In the crystal, there are no classical hydrogen bonds and the crystal structure is stabilized by intermolecular C—H···Br and C—H···O interactions (Table 1 and Fig. 2), which lead to the formation of one-dimensional chains propagating along the c axis direction.

Experimental

The title compound was synthesized by following a protocol reported in literature (Dierschke et al., 2003), in which the expensive fuming nitric acid was replaced by a potassium nitrate and sulfuric acid mixture. 4,4,-Dibromobiphenyl (25 g) was suspended in 120 ml of glacial acetic acid and heated to 363 K for 45 min. with efficient stirring. A preformed mixture of KNO3 (18 g) and H2SO4 (36 ml) was added drop wise maintaining the temperature at 363 K. After the addition was complete the mixture was heated and stirred for further 30 min. On completion of the reaction, the mixture was cooled and poured into water. The yellow precipitate formed was filtered and recrystallized from ethanol [Yield: 82%]. The spectral data matched with those reported in the literature (Dierschke et al., 2003).

Refinement

All the H atoms were included in calculated positions and treated as riding atoms: C–H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom numbering and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the b axis, showing the C-H···Br and C-H···O interactions as dashed lines (see Table 1 for details).

Crystal data

C12H7Br2NO2 F(000) = 1376
Mr = 357.01 Dx = 1.936 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 25 reflections
a = 15.8761 (14) Å θ = 20–30°
b = 7.4350 (7) Å µ = 6.61 mm1
c = 20.7517 (13) Å T = 293 K
V = 2449.5 (4) Å3 Needle, yellow
Z = 8 0.40 × 0.35 × 0.30 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2607 independent reflections
Radiation source: fine-focus sealed tube 1521 reflections with I > 2σ(I)
graphite Rint = 0.045
ω and φ scan θmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −18→20
Tmin = 0.089, Tmax = 0.138 k = −9→9
13009 measured reflections l = −16→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.041P)2 + 1.6705P] where P = (Fo2 + 2Fc2)/3
2607 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.70 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.03710 (3) 0.09619 (7) 0.65877 (2) 0.05528 (18)
Br2 0.15585 (3) 0.40559 (8) 0.15916 (2) 0.06048 (19)
C7 0.1445 (2) 0.3592 (6) 0.24826 (17) 0.0382 (10)
C9 0.1668 (2) 0.1683 (6) 0.33822 (18) 0.0410 (10)
H9 0.1880 0.0618 0.3552 0.049*
C1 0.0668 (2) 0.1609 (5) 0.57419 (16) 0.0321 (9)
O1 0.30721 (17) 0.1125 (4) 0.51041 (14) 0.0524 (8)
C11 0.0974 (3) 0.4456 (6) 0.35168 (19) 0.0438 (11)
H11 0.0702 0.5287 0.3779 0.053*
N 0.26111 (19) 0.2075 (5) 0.47864 (15) 0.0342 (8)
C5 0.0275 (2) 0.2556 (5) 0.46893 (18) 0.0343 (10)
H5 −0.0144 0.2906 0.4403 0.041*
O2 0.28561 (16) 0.3083 (5) 0.43688 (14) 0.0518 (8)
C4 0.1106 (2) 0.2495 (5) 0.44718 (16) 0.0289 (9)
C2 0.1493 (2) 0.1555 (5) 0.55524 (17) 0.0329 (9)
H2 0.1910 0.1212 0.5842 0.039*
C10 0.1272 (2) 0.2897 (5) 0.37828 (16) 0.0292 (9)
C6 0.0050 (2) 0.2116 (5) 0.53120 (17) 0.0362 (10)
H6 −0.0511 0.2162 0.5440 0.043*
C8 0.1752 (2) 0.2031 (7) 0.27314 (19) 0.0467 (12)
H8 0.2018 0.1201 0.2465 0.056*
C3 0.1701 (2) 0.2011 (5) 0.49318 (17) 0.0280 (9)
C12 0.1067 (3) 0.4826 (6) 0.28703 (19) 0.0476 (11)
H12 0.0873 0.5908 0.2701 0.057*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0631 (3) 0.0675 (4) 0.0352 (3) −0.0030 (3) 0.01363 (19) 0.0059 (2)
Br2 0.0541 (3) 0.0981 (5) 0.0293 (2) 0.0006 (3) 0.00445 (18) 0.0110 (3)
C7 0.034 (2) 0.056 (3) 0.025 (2) −0.002 (2) −0.0014 (17) 0.002 (2)
C9 0.046 (3) 0.042 (3) 0.034 (2) 0.011 (2) 0.0008 (17) 0.003 (2)
C1 0.035 (2) 0.036 (3) 0.0254 (19) −0.0034 (18) 0.0028 (16) −0.0055 (18)
O1 0.0363 (16) 0.074 (2) 0.0470 (19) 0.0164 (17) −0.0024 (13) 0.0104 (17)
C11 0.054 (3) 0.045 (3) 0.033 (2) 0.015 (2) 0.0106 (18) 0.001 (2)
N 0.0308 (18) 0.042 (2) 0.0297 (18) −0.0003 (17) −0.0018 (14) −0.0033 (17)
C5 0.032 (2) 0.039 (3) 0.031 (2) 0.0032 (19) −0.0054 (15) −0.0030 (19)
O2 0.0366 (18) 0.066 (2) 0.0530 (19) −0.0062 (15) 0.0047 (13) 0.0157 (18)
C4 0.031 (2) 0.029 (2) 0.027 (2) 0.0010 (17) −0.0027 (15) −0.0020 (17)
C2 0.031 (2) 0.037 (3) 0.030 (2) 0.0020 (18) −0.0052 (16) −0.0032 (18)
C10 0.029 (2) 0.035 (3) 0.0239 (18) 0.0014 (18) −0.0032 (15) −0.0006 (19)
C6 0.028 (2) 0.040 (3) 0.040 (2) 0.0018 (19) 0.0046 (17) −0.005 (2)
C8 0.049 (3) 0.059 (3) 0.032 (2) 0.010 (2) 0.0054 (17) −0.012 (2)
C3 0.024 (2) 0.032 (2) 0.029 (2) 0.0016 (17) 0.0005 (13) −0.0016 (18)
C12 0.057 (3) 0.049 (3) 0.037 (2) 0.012 (2) 0.0012 (19) 0.013 (2)

Geometric parameters (Å, °)

Br1—C1 1.880 (3) N—O2 1.210 (4)
Br2—C7 1.890 (4) N—C3 1.477 (4)
C7—C8 1.361 (6) C5—C6 1.380 (5)
C7—C12 1.361 (6) C5—C4 1.395 (5)
C9—C10 1.378 (5) C5—H5 0.9300
C9—C8 1.382 (5) C4—C3 1.390 (5)
C9—H9 0.9300 C4—C10 1.484 (5)
C1—C2 1.368 (5) C2—C3 1.372 (5)
C1—C6 1.380 (5) C2—H2 0.9300
O1—N 1.212 (4) C6—H6 0.9300
C11—C10 1.369 (5) C8—H8 0.9300
C11—C12 1.377 (5) C12—H12 0.9300
C11—H11 0.9300
C8—C7—C12 120.6 (4) C5—C4—C10 118.2 (3)
C8—C7—Br2 119.5 (3) C1—C2—C3 119.5 (3)
C12—C7—Br2 119.8 (3) C1—C2—H2 120.2
C10—C9—C8 120.7 (4) C3—C2—H2 120.2
C10—C9—H9 119.6 C11—C10—C9 118.0 (3)
C8—C9—H9 119.6 C11—C10—C4 119.8 (3)
C2—C1—C6 120.3 (3) C9—C10—C4 122.0 (4)
C2—C1—Br1 120.1 (3) C1—C6—C5 119.0 (3)
C6—C1—Br1 119.7 (3) C1—C6—H6 120.5
C10—C11—C12 121.7 (4) C5—C6—H6 120.5
C10—C11—H11 119.2 C7—C8—C9 119.7 (4)
C12—C11—H11 119.2 C7—C8—H8 120.1
O2—N—O1 123.8 (3) C9—C8—H8 120.1
O2—N—C3 118.7 (3) C2—C3—C4 123.1 (3)
O1—N—C3 117.5 (3) C2—C3—N 115.8 (3)
C6—C5—C4 122.7 (3) C4—C3—N 121.1 (3)
C6—C5—H5 118.6 C7—C12—C11 119.2 (4)
C4—C5—H5 118.6 C7—C12—H12 120.4
C3—C4—C5 115.4 (3) C11—C12—H12 120.4
C3—C4—C10 126.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···Br2i 0.93 2.89 3.798 (3) 165
C9—H9···O2ii 0.93 2.57 3.454 (5) 159

Symmetry codes: (i) −x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2358).

References

  1. Akhter, Z., Akhter, T., Bolte, M., Baig, M. A. & Siddiqi, H. M. (2009). Acta Cryst. E65, o710. [DOI] [PMC free article] [PubMed]
  2. Blouin, N., Michaud, A. & Leclerc, M. (2007). Adv. Mater. 19, 2295–2300.
  3. Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dierschke, F., Grimsdale, A. C. & Mullen, K. (2003). Synthesis, pp. 2470–2472.
  5. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  6. Hou, Y.-J., Li, X.-M., Chu, W.-Y. & Sun, Z.-Z. (2011). Acta Cryst. E67, o2915. [DOI] [PMC free article] [PubMed]
  7. Kia, R., Fun, H.-K., Etemadi, B. & Kargar, H. (2009). Acta Cryst. E65, o966–o967. [DOI] [PMC free article] [PubMed]
  8. Rajnikant, Watkin, D. & Tranter, G. (1995). Acta Cryst. C51, 2161–2163.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sim, G. A. (1986). Acta Cryst. C42, 1411–1413.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc 123, 9404–9411. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000347/su2358sup1.cif

e-68-0o319-sup1.cif (14.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000347/su2358Isup2.hkl

e-68-0o319-Isup2.hkl (128.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000347/su2358Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES