Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):o396. doi: 10.1107/S1600536812000098

2-Phenyl­thieno[2,3-b]quinoxaline

Youssef Ramli a,b,*, Hafid Zouihri c, Mohamed Azougagh a, Ahmed Moussaif d, El Mokhtar Essassi b
PMCID: PMC3275073  PMID: 22347018

Abstract

The title compound, C16H10N2S, is almost planar (r.m.s. deviation for all non-H atoms = 0.080 Å). The dihedral angle between the three fused-ring system and the phenyl ring is 9.26 (3)°. The S atom and the opposite C atom of the thio­phene ring are mutually disordered with an occupancy ratio of 0.7706 (19):0.2294 (19).

Related literature

For a related structure, see: Ramli et al. (2011). For the biological activity of quinoxaline derivatives, see: Kleim et al. (1995). For their anti­tumour and anti­tuberculous properties, see: Abasolo et al. (1987); Rodrigo et al. (2002) and for their anti­fungal, herbicidal, anti­dyslipidemic and anti­oxidative activity, see: Jampilek et al. (2005); Sashidhara et al. (2009); Watkins et al. (2009).graphic file with name e-68-0o396-scheme1.jpg

Experimental

Crystal data

  • C16H10N2S

  • M r = 262.32

  • Monoclinic, Inline graphic

  • a = 6.3875 (3) Å

  • b = 16.2896 (8) Å

  • c = 11.6054 (6) Å

  • β = 96.039 (3)°

  • V = 1200.84 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.41 × 0.24 × 0.21 mm

Data collection

  • Bruker APEXII CCD detector diffractometer

  • 27721 measured reflections

  • 4821 independent reflections

  • 4179 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.109

  • S = 1.06

  • 4821 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000098/bt5773sup1.cif

e-68-0o396-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000098/bt5773Isup2.hkl

e-68-0o396-Isup2.hkl (236.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000098/bt5773Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

Comment

Quinoxaline derivatives were found to exhibit antimicrobial [Kleim et al. 1995], antitumor [Abasolo et al. 1987], and antituberculous activity [Rodrigo et al.2002]. They, also, exhibit interesting antifungal, herbicidal, Antidyslipidemic and antioxidative activities of quinoxaline derivatives, see: [Jampilek et al. 2005, Sashidhara et al. 2009, Watkins et al. 2009].

In a former paper, we reported the crystal structure of 2-Methyl-3-(n-octylsulfanyl)quinoxaline [Ramli et al. 2011]. In this communication, the crystal structure of 2-phenyl-4a,8a-dihydrothieno[2,3-b]quinoxaline.

The title compound, C16H10N2S, shows an almost planar geometry, defined by the attached benzene [r.m.s. deviation: 0.0089 (10) A] and 4a,8a-dihydrothieno[2,3-b]quinoxaline groups [r.m.s. deviation: 0.2722 (9) A]. The dihedral angle between the planes of this groups is 9.26 (3)°. The S1 and C9 atoms of the thiophene ring displays 0.7706 (19): 0.2294 (19) positional disorder.

Experimental

6.25 mmol of 3-methylquinoxaline-2-thione is merged with 12.5 mmol of the appropriate aldehyde for 2 h at the boiling point of the latter. At the end of the reaction, the solid is allowed to cool and then heated to 100° C for 10 minutes in 50 ml of ethanol. The product is filtered hot and washed with ethanol

Refinement

The H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H = 0.93Å and Uiso(H) = 1.2 Ueq(C).

The atoms S1 and C8 in the thiophene ring are mutually disordered by a ratio of 0.7706 (19):0.2294 (19).

Figures

Fig. 1.

Fig. 1.

Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C16H10N2S F(000) = 544
Mr = 262.32 Dx = 1.451 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 215 reflections
a = 6.3875 (3) Å θ = 1.8–26.7°
b = 16.2896 (8) Å µ = 0.25 mm1
c = 11.6054 (6) Å T = 296 K
β = 96.039 (3)° Prism, yellow
V = 1200.84 (10) Å3 0.41 × 0.24 × 0.21 mm
Z = 4

Data collection

Bruker APEXII CCD detector diffractometer 4179 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
graphite θmax = 34.0°, θmin = 2.2°
ω and φ scans h = −10→8
27721 measured reflections k = −25→25
4821 independent reflections l = −15→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.5714P] where P = (Fo2 + 2Fc2)/3
4821 reflections (Δ/σ)max = 0.004
192 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.54001 (5) 0.93619 (2) 0.62771 (5) 0.01314 (11) 0.7706 (19)
C1 0.90893 (16) 1.05183 (6) 0.61903 (9) 0.01554 (17)
H1 0.8109 1.0383 0.5569 0.019*
C6 0.87615 (15) 1.02638 (6) 0.73110 (8) 0.01308 (16)
C5 1.02452 (16) 1.04876 (6) 0.82349 (9) 0.01653 (18)
H5 1.0041 1.0331 0.8986 0.020*
C7 0.69078 (15) 0.97700 (6) 0.75084 (8) 0.01331 (17)
C4 1.20213 (17) 1.09414 (6) 0.80401 (10) 0.01888 (19)
H4 1.2993 1.1088 0.8660 0.023*
C2 1.08669 (17) 1.09714 (6) 0.59971 (10) 0.01815 (19)
H2 1.1066 1.1138 0.5250 0.022*
C3 1.23453 (17) 1.11763 (6) 0.69180 (10) 0.01883 (19)
H3 1.3547 1.1469 0.6786 0.023*
C10 0.14188 (16) 0.83199 (6) 0.87817 (8) 0.01446 (17)
C15 0.08412 (15) 0.82081 (6) 0.75707 (8) 0.01349 (16)
C9 0.42799 (16) 0.90599 (6) 0.83950 (10) 0.01732 (18)
C14 −0.10173 (16) 0.77645 (6) 0.71932 (9) 0.01765 (19)
H14 −0.1401 0.7688 0.6405 0.021*
C16 0.36948 (16) 0.89267 (6) 0.71805 (9) 0.01666 (18)
C11 0.01306 (17) 0.79725 (7) 0.95760 (9) 0.01880 (19)
H11 0.0504 0.8032 1.0368 0.023*
C12 −0.16630 (18) 0.75488 (7) 0.91879 (11) 0.0211 (2)
H12 −0.2500 0.7326 0.9718 0.025*
C13 −0.22485 (17) 0.74484 (6) 0.79834 (11) 0.0205 (2)
H13 −0.3476 0.7166 0.7728 0.025*
N2 0.20272 (14) 0.85147 (5) 0.67565 (8) 0.01643 (16)
N1 0.31701 (15) 0.87565 (6) 0.91971 (8) 0.01824 (17)
C8A 0.6155 (2) 0.95601 (9) 0.8506 (2) 0.0156 (3) 0.7706 (19)
H8A 0.6801 0.9727 0.9223 0.019* 0.7706 (19)
S1B 0.6418 (2) 0.96348 (8) 0.89788 (17) 0.0172 (4) 0.2294 (19)
C8B 0.5408 (8) 0.9415 (3) 0.6794 (7) 0.0181 (9) 0.2294 (19)
H8B 0.5454 0.9481 0.6002 0.022* 0.2294 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.01306 (14) 0.01609 (14) 0.0103 (2) −0.00218 (10) 0.00130 (12) 0.00077 (12)
C1 0.0167 (4) 0.0156 (4) 0.0146 (4) 0.0001 (3) 0.0033 (3) −0.0008 (3)
C6 0.0123 (4) 0.0128 (3) 0.0144 (4) 0.0005 (3) 0.0020 (3) −0.0005 (3)
C5 0.0156 (4) 0.0175 (4) 0.0162 (4) −0.0015 (3) 0.0000 (3) 0.0002 (3)
C7 0.0127 (4) 0.0139 (3) 0.0132 (4) 0.0002 (3) 0.0005 (3) 0.0000 (3)
C4 0.0154 (4) 0.0179 (4) 0.0229 (5) −0.0021 (3) 0.0001 (4) −0.0012 (3)
C2 0.0199 (4) 0.0162 (4) 0.0197 (5) −0.0003 (3) 0.0081 (4) 0.0001 (3)
C3 0.0159 (4) 0.0146 (4) 0.0268 (5) −0.0009 (3) 0.0062 (4) −0.0016 (3)
C10 0.0148 (4) 0.0150 (4) 0.0137 (4) 0.0015 (3) 0.0019 (3) 0.0004 (3)
C15 0.0137 (4) 0.0134 (3) 0.0134 (4) 0.0003 (3) 0.0016 (3) 0.0015 (3)
C9 0.0133 (4) 0.0158 (4) 0.0221 (5) 0.0005 (3) −0.0012 (3) −0.0012 (3)
C14 0.0165 (4) 0.0164 (4) 0.0193 (5) −0.0014 (3) −0.0018 (3) 0.0013 (3)
C16 0.0149 (4) 0.0162 (4) 0.0197 (5) 0.0023 (3) 0.0057 (3) 0.0051 (3)
C11 0.0207 (5) 0.0209 (4) 0.0157 (4) 0.0037 (4) 0.0059 (4) 0.0033 (3)
C12 0.0190 (5) 0.0192 (4) 0.0268 (5) 0.0024 (4) 0.0103 (4) 0.0071 (4)
C13 0.0151 (4) 0.0161 (4) 0.0300 (6) −0.0019 (3) 0.0012 (4) 0.0035 (4)
N2 0.0175 (4) 0.0173 (4) 0.0149 (4) 0.0016 (3) 0.0037 (3) 0.0027 (3)
N1 0.0170 (4) 0.0197 (4) 0.0175 (4) 0.0008 (3) −0.0009 (3) −0.0023 (3)
C8A 0.0148 (6) 0.0193 (6) 0.0120 (7) −0.0013 (4) −0.0015 (5) −0.0012 (5)
S1B 0.0150 (5) 0.0205 (5) 0.0160 (8) −0.0038 (4) 0.0006 (5) 0.0002 (5)
C8B 0.022 (2) 0.023 (2) 0.008 (2) 0.0030 (16) 0.0028 (19) −0.0009 (18)

Geometric parameters (Å, °)

S1A—C16 1.7403 (11) C10—C15 1.4267 (14)
S1A—C7 1.7669 (10) C15—N2 1.3663 (13)
C1—C2 1.3921 (15) C15—C14 1.4192 (14)
C1—C6 1.4017 (14) C9—N1 1.3236 (15)
C1—H1 0.9300 C9—C16 1.4362 (15)
C6—C5 1.4024 (14) C9—C8A 1.4430 (19)
C6—C7 1.4692 (14) C9—S1B 1.7338 (18)
C5—C4 1.3923 (15) C14—C13 1.3698 (16)
C5—H5 0.9300 C14—H14 0.9300
C7—C8B 1.331 (7) C16—N2 1.3103 (14)
C7—C8A 1.344 (2) C16—C8B 1.460 (6)
C7—S1B 1.781 (2) C11—C12 1.3722 (16)
C4—C3 1.3935 (16) C11—H11 0.9300
C4—H4 0.9300 C12—C13 1.4179 (17)
C2—C3 1.3903 (16) C12—H12 0.9300
C2—H2 0.9300 C13—H13 0.9300
C3—H3 0.9300 C8A—H8A 0.9300
C10—N1 1.3697 (13) C8B—H8B 0.9300
C10—C11 1.4165 (14)
C16—S1A—C7 89.34 (5) C14—C15—C10 119.36 (9)
C2—C1—C6 120.68 (9) N1—C9—C16 122.04 (9)
C2—C1—H1 119.7 N1—C9—C8A 130.45 (13)
C6—C1—H1 119.7 C16—C9—C8A 107.50 (12)
C1—C6—C5 118.53 (9) N1—C9—S1B 112.64 (10)
C1—C6—C7 120.54 (9) C16—C9—S1B 125.31 (10)
C5—C6—C7 120.93 (9) C8A—C9—S1B 17.82 (8)
C4—C5—C6 120.70 (10) C13—C14—C15 120.34 (10)
C4—C5—H5 119.7 C13—C14—H14 119.8
C6—C5—H5 119.7 C15—C14—H14 119.8
C8B—C7—C8A 97.3 (3) N2—C16—C9 124.28 (9)
C8B—C7—C6 132.8 (3) N2—C16—C8B 140.3 (3)
C8A—C7—C6 129.87 (12) C9—C16—C8B 95.3 (3)
C8B—C7—S1A 15.8 (3) N2—C16—S1A 121.20 (8)
C8A—C7—S1A 112.77 (10) C9—C16—S1A 114.52 (8)
C6—C7—S1A 117.35 (7) C8B—C16—S1A 19.4 (3)
C8B—C7—S1B 110.8 (3) C12—C11—C10 120.63 (10)
C8A—C7—S1B 13.58 (8) C12—C11—H11 119.7
C6—C7—S1B 116.29 (8) C10—C11—H11 119.7
S1A—C7—S1B 126.35 (7) C11—C12—C13 120.40 (10)
C5—C4—C3 120.08 (10) C11—C12—H12 119.8
C5—C4—H4 120.0 C13—C12—H12 119.8
C3—C4—H4 120.0 C14—C13—C12 120.42 (10)
C3—C2—C1 120.20 (10) C14—C13—H13 119.8
C3—C2—H2 119.9 C12—C13—H13 119.8
C1—C2—H2 119.9 C16—N2—C15 114.55 (9)
C2—C3—C4 119.79 (10) C9—N1—C10 115.11 (9)
C2—C3—H3 120.1 C7—C8A—C9 115.82 (17)
C4—C3—H3 120.1 C7—C8A—H8A 122.1
N1—C10—C11 119.16 (9) C9—C8A—H8A 122.1
N1—C10—C15 122.00 (9) C9—S1B—C7 84.43 (10)
C11—C10—C15 118.84 (9) C7—C8B—C16 124.0 (6)
N2—C15—C14 118.63 (9) C7—C8B—H8B 118.0
N2—C15—C10 122.00 (9) C16—C8B—H8B 118.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5773).

References

  1. Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem 24, 1771–1775.
  2. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591–599. [DOI] [PubMed]
  4. Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253–2257. [DOI] [PMC free article] [PubMed]
  5. Ramli, Y., Moussaif, A., Zouihri, H., Bourichi, H. & Essassi, E. M. (2011). Acta Cryst. E67, o1374. [DOI] [PMC free article] [PubMed]
  6. Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143.
  7. Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813–1818. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580–585.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000098/bt5773sup1.cif

e-68-0o396-sup1.cif (20.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000098/bt5773Isup2.hkl

e-68-0o396-Isup2.hkl (236.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000098/bt5773Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES