Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Jan 14;68(Pt 2):o407–o408. doi: 10.1107/S1600536812000724

(1R,2R,E,E)-N,N′-Bis(4-chloro­benzyl­idene)cyclo­hexane-1,2-diamine

Hamid Arvinnezhad a, Khosrow Jadidi a,*, Behrouz Notash a
PMCID: PMC3275080  PMID: 22347025

Abstract

The title Schiff base ligand, C20H20Cl2N2, was prepared by condensation of commercially available p-chloro­benzalde­hyde and (R,R)-1,2-diammonium­cyclo­hexane mono-(+)-tartrate. The cyclo­hexane ring adopts a chair conformation. The dihedral angle between the two aromatic rings is 62.52 (8)°. The crystal structure is stabilized by an inter­molecular C—H⋯Cl hydrogen bond.

Related literature

For the crystal structures of some Schiff bases derived from cyclo­hexane-1,2-diamine, see: Fan et al. (2011); Glidewell et al. (2005); Saleh Salga et al. (2010). For applications of chiral Schiff base ligands, see: Da Silva et al. (2011); Przybylski et al. (2009); Gupta & Sutar (2008); Dhar & Taploo (1982); Munslow et al. (2001); Gillespie et al. (2002); Kureshy et al. (2001); Takenaka et al. (2002). For the synthesis of the title compound, see: Larrow & Jacobsen (1998); Periasamy et al. (2001).graphic file with name e-68-0o407-scheme1.jpg

Experimental

Crystal data

  • C20H20Cl2N2

  • M r = 359.28

  • Orthorhombic, Inline graphic

  • a = 5.5058 (11) Å

  • b = 15.734 (3) Å

  • c = 21.302 (4) Å

  • V = 1845.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 120 K

  • 0.5 × 0.23 × 0.15 mm

Data collection

  • Stoe IPDS 2T diffractometer

  • 12920 measured reflections

  • 4973 independent reflections

  • 4065 reflections with I > 2σ(I)

  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.113

  • S = 1.13

  • 4973 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983), 2099 Friedel pairs

  • Flack parameter: −0.11 (7)

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000724/bt5777sup1.cif

e-68-0o407-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000724/bt5777Isup2.hkl

e-68-0o407-Isup2.hkl (243.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000724/bt5777Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Cl1i 0.97 2.81 3.525 (3) 131

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Vice President of Research Affairs at Shahid Beheshti University, General Campus, for financial support.

supplementary crystallographic information

Comment

The class of chiral chelating Schiff bases are significant compounds in chemistry so that several reviews have been published on these substances (Da Silva et al., 2011; Przybylski et al., 2009; Gupta and Sutar 2008). Because of their stereochemical structures as well as their industrial properties (Dhar & Taploo, 1982) and potent biological activities (Da Silva et al., 2011; Przybylski et al., 2009) they are very attractive synthetic targets. Furthermore, it should be stressed that these useful and recyclable materials have been widely used in various enantioselective reactions, such as cyclopropanation (Munslow et al., 2001), aziridination (Gillespie et al., 2002), epoxidation (Kureshy et al., 2001), Diels-Alder reaction (Takenaka et al., 2002) as ligands or catalysts.

The asymmetric unit of the title compound which contains one molecule of related Schiff base compound is shown in Fig. 1. The reaction scheme for the synthesis of the title Schiff base is presented in Fig. 2. The bond distances and angles in the title compound are in agreement with related structures (Fan et al., 2011; Glidewell et al., 2005; Saleh Salga et al., 2010). The crystal structure is stabilized by an intermolecular C—H···Cl hydrogen bond (Fig. 3 & Table 1).

Experimental

In a 25 ml two-necked round bottom flask with a reflux condenser, (R,R)-1,2-diammoniumcyclohexane mono-(+)-tartrate (2.64 g 10 mmol, 2 eq) and K2CO3 (2.76 g 20 mmol, 2 eq) were dissolved in H2O (3 ml) (Larrow & Jacobsen 1998). The mixture was stirred and heated gently (~50 °C) for 10 min. Then a solution of p-chlorobenzaldehyde (2.8 g 20 mmol, 2 eq) in EtOH (10 ml) was poured in dropping funnel and added dropwise. The reaction mixture was stirred and refluxed for further 2 hrs. The mixture was cooled to room temperature and concentrated in vacuo. The residue was dissolved in CH2Cl2 (10 ml) and washed with saturated sodium bicarbonate (5 ml) and dried over Na2SO4. The organic layer was evaporated to yield crude product. Recrystallization in hot EtOH (7 ml) afford desired compound as colorless needles. 3.47 g, 97% yield, mp. 150 °C (mp 148–150°C), [α]20D= -308° (c=1, CHCl3) ([α]20D= -136 (c=1, CHCl3))(Periasamy et al., 2001).

Refinement

All hydrogen atoms were positioned geometrically and refined as riding atoms with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

The reaction scheme for the synthesis of the title compound.

Fig. 3.

Fig. 3.

The intermolecular C—H···Cl hydrogen bonds are shown as blue dashed lines.

Crystal data

C20H20Cl2N2 F(000) = 752
Mr = 359.28 Dx = 1.293 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4973 reflections
a = 5.5058 (11) Å θ = 2.3–29.2°
b = 15.734 (3) Å µ = 0.36 mm1
c = 21.302 (4) Å T = 120 K
V = 1845.4 (6) Å3 Needle, colorless
Z = 4 0.5 × 0.23 × 0.15 mm

Data collection

Stoe IPDS 2T diffractometer 4065 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.088
graphite θmax = 29.2°, θmin = 2.3°
Detector resolution: 0.15 mm pixels mm-1 h = −7→7
rotation method scans k = −19→21
12920 measured reflections l = −29→29
4973 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.5925P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113 (Δ/σ)max = 0.002
S = 1.13 Δρmax = 0.29 e Å3
4973 reflections Δρmin = −0.34 e Å3
218 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0059 (11)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 2099 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.11 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.02567 (12) 1.06658 (5) 0.95529 (3) 0.03732 (17)
Cl2 1.02450 (16) 0.61772 (5) 1.03022 (3) 0.0446 (2)
C9 0.5215 (5) 1.08153 (16) 0.83309 (11) 0.0302 (5)
H9 0.6498 1.1182 0.8246 0.036*
N2 0.9823 (4) 0.78245 (13) 0.73687 (9) 0.0292 (5)
C3 1.0135 (5) 0.91257 (17) 0.56137 (10) 0.0316 (5)
H3A 0.9729 0.9310 0.5192 0.038*
H3B 1.1598 0.9422 0.5742 0.038*
C18 0.9686 (5) 0.65212 (16) 0.95383 (11) 0.0333 (6)
N1 0.6607 (4) 0.92267 (14) 0.71446 (9) 0.0284 (5)
C12 0.1355 (5) 0.97300 (18) 0.85723 (11) 0.0293 (5)
H12 0.0050 0.9371 0.8655 0.035*
C8 0.4930 (5) 1.00840 (15) 0.79711 (10) 0.0258 (5)
C10 0.3615 (5) 1.10062 (18) 0.88148 (12) 0.0319 (6)
H10 0.3825 1.1493 0.9057 0.038*
C7 0.6765 (5) 0.98715 (16) 0.74955 (10) 0.0256 (5)
H7 0.8102 1.0228 0.7451 0.031*
C14 0.8364 (5) 0.73657 (17) 0.76733 (12) 0.0302 (6)
H14 0.6916 0.7206 0.7482 0.036*
C11 0.1706 (5) 1.04590 (17) 0.89291 (11) 0.0279 (5)
C1 0.8652 (5) 0.90495 (16) 0.67300 (11) 0.0269 (5)
H1 1.0099 0.9347 0.6884 0.032*
C15 0.8846 (5) 0.70693 (17) 0.83196 (12) 0.0301 (6)
C2 0.8063 (5) 0.93512 (19) 0.60586 (11) 0.0301 (5)
H2A 0.6575 0.9083 0.5916 0.036*
H2B 0.7814 0.9962 0.6058 0.036*
C17 1.1362 (6) 0.70438 (18) 0.92486 (12) 0.0339 (6)
H17 1.2761 0.7210 0.9460 0.041*
C13 0.2957 (5) 0.95433 (17) 0.80948 (11) 0.0285 (6)
H13 0.2732 0.9057 0.7854 0.034*
C4 1.0598 (6) 0.81726 (19) 0.56146 (11) 0.0366 (6)
H4A 1.1963 0.8045 0.5343 0.044*
H4B 0.9183 0.7880 0.5451 0.044*
C5 1.1139 (6) 0.78524 (18) 0.62769 (12) 0.0349 (6)
H5A 1.1323 0.7239 0.6268 0.042*
H5B 1.2658 0.8096 0.6421 0.042*
C6 0.9115 (5) 0.80889 (17) 0.67350 (11) 0.0292 (6)
H6 0.7621 0.7792 0.6615 0.035*
C19 0.7602 (5) 0.6264 (2) 0.92339 (13) 0.0382 (7)
H19 0.6486 0.5912 0.9433 0.046*
C16 1.0941 (5) 0.73191 (17) 0.86384 (12) 0.0328 (6)
H16 1.2062 0.7672 0.8441 0.039*
C20 0.7205 (5) 0.65407 (19) 0.86231 (13) 0.0372 (6)
H20 0.5809 0.6368 0.8413 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0353 (3) 0.0513 (4) 0.0254 (2) 0.0067 (3) 0.0022 (3) −0.0030 (3)
Cl2 0.0633 (5) 0.0419 (4) 0.0286 (3) 0.0112 (4) 0.0068 (3) 0.0108 (3)
C9 0.0313 (13) 0.0296 (12) 0.0298 (10) −0.0005 (12) −0.0019 (11) −0.0020 (10)
N2 0.0323 (11) 0.0293 (10) 0.0260 (9) −0.0006 (10) −0.0026 (10) 0.0040 (8)
C3 0.0306 (13) 0.0398 (14) 0.0244 (10) 0.0026 (12) 0.0017 (11) 0.0063 (10)
C18 0.0463 (15) 0.0281 (12) 0.0257 (10) 0.0069 (13) 0.0033 (12) 0.0060 (10)
N1 0.0292 (11) 0.0311 (11) 0.0248 (9) 0.0003 (10) −0.0013 (8) −0.0026 (9)
C12 0.0284 (13) 0.0353 (14) 0.0242 (11) −0.0005 (12) −0.0041 (10) 0.0025 (11)
C8 0.0280 (13) 0.0271 (12) 0.0221 (9) 0.0014 (11) −0.0050 (10) 0.0011 (8)
C10 0.0356 (14) 0.0317 (14) 0.0283 (11) 0.0033 (12) −0.0057 (11) −0.0058 (10)
C7 0.0286 (12) 0.0261 (12) 0.0223 (10) −0.0007 (10) −0.0018 (10) 0.0039 (10)
C14 0.0313 (14) 0.0307 (14) 0.0287 (12) −0.0028 (12) 0.0007 (11) 0.0002 (11)
C11 0.0291 (12) 0.0340 (14) 0.0206 (10) 0.0089 (11) −0.0021 (10) 0.0017 (10)
C1 0.0267 (12) 0.0299 (13) 0.0240 (10) −0.0016 (11) 0.0006 (10) −0.0006 (10)
C15 0.0341 (13) 0.0268 (13) 0.0295 (12) 0.0005 (11) 0.0025 (11) 0.0038 (10)
C2 0.0307 (12) 0.0337 (14) 0.0259 (11) 0.0052 (12) 0.0000 (10) 0.0050 (11)
C17 0.0394 (15) 0.0322 (14) 0.0301 (13) −0.0022 (13) −0.0025 (11) 0.0001 (11)
C13 0.0346 (13) 0.0285 (13) 0.0225 (10) −0.0002 (11) −0.0058 (10) 0.0001 (10)
C4 0.0426 (16) 0.0417 (15) 0.0253 (11) 0.0037 (14) 0.0015 (11) −0.0037 (11)
C5 0.0404 (16) 0.0330 (14) 0.0312 (13) 0.0088 (13) 0.0005 (12) 0.0006 (11)
C6 0.0341 (14) 0.0299 (13) 0.0235 (11) 0.0002 (12) −0.0031 (10) 0.0020 (10)
C19 0.0355 (15) 0.0385 (16) 0.0405 (14) −0.0014 (13) 0.0086 (12) 0.0122 (13)
C16 0.0362 (15) 0.0300 (14) 0.0323 (13) −0.0047 (12) 0.0008 (11) 0.0062 (11)
C20 0.0313 (14) 0.0388 (16) 0.0415 (15) −0.0053 (13) 0.0012 (12) 0.0060 (13)

Geometric parameters (Å, °)

Cl1—C11 1.743 (3) C14—C15 1.478 (4)
Cl2—C18 1.742 (2) C14—H14 0.9300
C9—C10 1.389 (4) C1—C6 1.533 (4)
C9—C8 1.391 (3) C1—C2 1.541 (3)
C9—H9 0.9300 C1—H1 0.9800
N2—C14 1.260 (3) C15—C20 1.388 (4)
N2—C6 1.466 (3) C15—C16 1.395 (4)
C3—C4 1.521 (4) C2—H2A 0.9700
C3—C2 1.525 (3) C2—H2B 0.9700
C3—H3A 0.9700 C17—C16 1.390 (3)
C3—H3B 0.9700 C17—H17 0.9300
C18—C19 1.379 (4) C13—H13 0.9300
C18—C17 1.382 (4) C4—C5 1.527 (4)
N1—C7 1.263 (3) C4—H4A 0.9700
N1—C1 1.458 (3) C4—H4B 0.9700
C12—C13 1.378 (4) C5—C6 1.527 (4)
C12—C11 1.389 (4) C5—H5A 0.9700
C12—H12 0.9300 C5—H5B 0.9700
C8—C13 1.404 (4) C6—H6 0.9800
C8—C7 1.469 (3) C19—C20 1.390 (4)
C10—C11 1.380 (4) C19—H19 0.9300
C10—H10 0.9300 C16—H16 0.9300
C7—H7 0.9300 C20—H20 0.9300
C10—C9—C8 121.1 (3) C16—C15—C14 120.9 (2)
C10—C9—H9 119.5 C3—C2—C1 110.3 (2)
C8—C9—H9 119.5 C3—C2—H2A 109.6
C14—N2—C6 117.9 (2) C1—C2—H2A 109.6
C4—C3—C2 110.7 (2) C3—C2—H2B 109.6
C4—C3—H3A 109.5 C1—C2—H2B 109.6
C2—C3—H3A 109.5 H2A—C2—H2B 108.1
C4—C3—H3B 109.5 C18—C17—C16 119.5 (3)
C2—C3—H3B 109.5 C18—C17—H17 120.3
H3A—C3—H3B 108.1 C16—C17—H17 120.3
C19—C18—C17 121.4 (2) C12—C13—C8 120.3 (2)
C19—C18—Cl2 119.7 (2) C12—C13—H13 119.9
C17—C18—Cl2 119.0 (2) C8—C13—H13 119.9
C7—N1—C1 117.3 (2) C3—C4—C5 111.0 (2)
C13—C12—C11 119.4 (3) C3—C4—H4A 109.4
C13—C12—H12 120.3 C5—C4—H4A 109.4
C11—C12—H12 120.3 C3—C4—H4B 109.4
C9—C8—C13 119.0 (2) C5—C4—H4B 109.4
C9—C8—C7 119.4 (2) H4A—C4—H4B 108.0
C13—C8—C7 121.5 (2) C6—C5—C4 111.6 (2)
C11—C10—C9 118.6 (2) C6—C5—H5A 109.3
C11—C10—H10 120.7 C4—C5—H5A 109.3
C9—C10—H10 120.7 C6—C5—H5B 109.3
N1—C7—C8 122.9 (2) C4—C5—H5B 109.3
N1—C7—H7 118.5 H5A—C5—H5B 108.0
C8—C7—H7 118.5 N2—C6—C5 109.0 (2)
N2—C14—C15 123.1 (3) N2—C6—C1 109.3 (2)
N2—C14—H14 118.4 C5—C6—C1 110.9 (2)
C15—C14—H14 118.4 N2—C6—H6 109.2
C10—C11—C12 121.6 (2) C5—C6—H6 109.2
C10—C11—Cl1 119.3 (2) C1—C6—H6 109.2
C12—C11—Cl1 119.0 (2) C18—C19—C20 118.6 (3)
N1—C1—C6 108.2 (2) C18—C19—H19 120.7
N1—C1—C2 109.9 (2) C20—C19—H19 120.7
C6—C1—C2 110.2 (2) C17—C16—C15 120.4 (3)
N1—C1—H1 109.5 C17—C16—H16 119.8
C6—C1—H1 109.5 C15—C16—H16 119.8
C2—C1—H1 109.5 C15—C20—C19 121.5 (3)
C20—C15—C16 118.7 (2) C15—C20—H20 119.3
C20—C15—C14 120.4 (3) C19—C20—H20 119.3
C10—C9—C8—C13 1.3 (4) C9—C8—C13—C12 −1.0 (4)
C10—C9—C8—C7 −175.4 (2) C7—C8—C13—C12 175.6 (2)
C8—C9—C10—C11 −0.7 (4) C2—C3—C4—C5 −56.8 (3)
C1—N1—C7—C8 −174.9 (2) C3—C4—C5—C6 55.3 (3)
C9—C8—C7—N1 −178.8 (2) C14—N2—C6—C5 −127.0 (3)
C13—C8—C7—N1 4.6 (4) C14—N2—C6—C1 111.7 (3)
C6—N2—C14—C15 −178.9 (2) C4—C5—C6—N2 −175.6 (2)
C9—C10—C11—C12 −0.2 (4) C4—C5—C6—C1 −55.2 (3)
C9—C10—C11—Cl1 177.6 (2) N1—C1—C6—N2 −63.4 (3)
C13—C12—C11—C10 0.5 (4) C2—C1—C6—N2 176.4 (2)
C13—C12—C11—Cl1 −177.32 (19) N1—C1—C6—C5 176.4 (2)
C7—N1—C1—C6 138.6 (2) C2—C1—C6—C5 56.2 (3)
C7—N1—C1—C2 −101.0 (3) C17—C18—C19—C20 0.0 (4)
N2—C14—C15—C20 −177.8 (3) Cl2—C18—C19—C20 −179.5 (2)
N2—C14—C15—C16 2.7 (4) C18—C17—C16—C15 −0.1 (4)
C4—C3—C2—C1 58.1 (3) C20—C15—C16—C17 −0.2 (4)
N1—C1—C2—C3 −176.9 (2) C14—C15—C16—C17 179.3 (3)
C6—C1—C2—C3 −57.8 (3) C16—C15—C20—C19 0.4 (4)
C19—C18—C17—C16 0.2 (4) C14—C15—C20—C19 −179.1 (3)
Cl2—C18—C17—C16 179.7 (2) C18—C19—C20—C15 −0.3 (4)
C11—C12—C13—C8 0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···Cl1i 0.97 2.81 3.525 (3) 131.

Symmetry codes: (i) −x+1/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5777).

References

  1. Da Silva, C. M., Da Silva, D. L., Modolo, L. V., Alves, R. B., De Resende, M. A., Martins, C. V. B. & De Fátima, Â. (2011). J. Adv. Res. 2, 1–8.
  2. Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.
  3. Fan, P., Ge, C., Zhang, X., Zhang, R. & Li, S. (2011). Acta Cryst. E67, o3399. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Gillespie, K. M., Sanders, C. J., O’Shaughnessy, P., Westmoreland, I., Thickitt, C. P. & Scott, P. (2002). J. Org. Chem. 67, 3450–3458. [DOI] [PubMed]
  8. Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o1699–o1701. [DOI] [PubMed]
  9. Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.
  10. Kureshy, R. I., Khan, N. U. H., Abdi, S. H. R., Patel, S. T. & Jasra, R. V. (2001). Tetrahedron Lett. 42, 2915–2918.
  11. Larrow, J. F. & Jacobsen, E. N. (1998). Org. Synth. 75, 1–11.
  12. Munslow, I. J., Gillespie, K. M., Deeth, R. J. & Scott, P. (2001). Chem. Commun pp. 1638–1639. [DOI] [PubMed]
  13. Periasamy, M., Srinivas, G. & Suresh, S. (2001). Tetrahedron Lett. 42, 7123–7125.
  14. Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.
  15. Saleh Salga, M., Khaledi, H., Mohd Ali, H. & Puteh, R. (2010). Acta Cryst. E66, o1095. [DOI] [PMC free article] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Stoe & Cie (2005). X-AREA and X-RED32 Stoe & Cie, Darmstadt,Germany.
  18. Takenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299–8305.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812000724/bt5777sup1.cif

e-68-0o407-sup1.cif (19.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812000724/bt5777Isup2.hkl

e-68-0o407-Isup2.hkl (243.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812000724/bt5777Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES