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Abstract
Tracer studies are analyzed almost universally by multicompartmental models where the state
variables are tracer amounts or activities in the different pools. The model parameters are rate
constants, defined naturally by expressing fluxes as fractions of the source pools. We consider an
alternative state space with tracer enrichments or specific activities as the state variables, with the
rate constants redefined by expressing fluxes as fractions of the destination pools. Although the
redefinition may seem unphysiological, the commonly computed fractional synthetic rate actually
expresses synthetic flux as a fraction of the product mass (destination pool). We show that, for a
variety of structures, provided the structure is linear and stationary, the model in the enrichment
state space has fewer parameters than that in the activities state space, and is hence better both to
study identifiability and to estimate parameters. The superiority of enrichment modeling is shown
for structures where activity model unidentifiability is caused by multiple exit pathways; on the
other hand, with a single exit pathway but with multiple untraced entry pathways, activity
modeling is shown to be superior. With the present-day emphasis on mass isotopes, the tracer in
human studies is often of a precursor, labeling most or all entry pathways. It is shown that for
these tracer studies, models in the activities state space are always unidentifiable when there are
multiple exit pathways, even if the enrichment in every pool is observed; on the other hand, the
corresponding models in the enrichment state space have fewer parameters and are more often
identifiable. Our results suggest that studies with labeled precursors are modeled best with
enrichments.

Keywords
Enrichments; Estimation; Identifiability; Modeling; Rate constants

1. Introduction
Many biological systems are studied by introducing a tracer, typically as a bolus or as a
primed constant infusion, and following the tracer appearance and disappearance in one or
more chemical species. The data are typically tracer enrichment (abundance, atoms percent
excess) or specific radioactivity, e.g., d3-leucine as tracer and data on d3-leucine enrichment
in plasma leucine and in circulating apolipoproteins. Tracer kinetics are studied typically by
linear, stationary models. Hearon (1963), and later Bright (1973), pointed out that, when
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pool masses are constant, state variables can be the total tracer amounts (expressed in mass
units, activities, etc.) in the pools, or the tracer concentrations (expressed as enrichments,
specific activities, etc.) in the pools. However, modeling has been performed almost
universally in terms of activities (Berman and Schoenfeld, 1956; Shipley and Clark, 1972;
Rescigno and Michels, 1973; DiStefano 3rd, 1983; Chapman and Godfrey, 1985; Cobelli et
al., 1987, 2000; García-Meseguer et al., 2003), and for good reason: the coefficients in the
differential equations for activities are rate constants that express mass fluxes as fractions of
the source pools, a natural definition in the context of the common assumption of first-order
kinetics. This is not the case with enrichment modeling, where some coefficients do not
have the same natural physical interpretation.

We focused instead on the fact that in most human tracer studies, measurements are of tracer
enrichments or specific activities (SA), and looked at tracer kinetics models in the state
space of enrichments compared to models in the state space of activities. We present both
activity and enrichment (or SA) formulations for tracer studies and show that, for certain
commonly encountered model structures, enrichment modeling has fewer parameters, and
hence is better suited with respect to identifiability and parameter estimation. We find that
there is an advantage, especially where there is direct removal of material from multiple
pools, to modeling enrichments and not activities.

Enrichment and activity modeling are first compared in four simple, illustrative structures:
the simple situation of calculating the fractional synthetic rate (FSR) in a single pool, then a
simple two-pool cascade structure with direct material removal from both pools and tracer
introduced as an exogenous bolus into the first pool or endogenously via a precursor, and
finally a two-pool exchange structure with multiple outflows. Enrichment modeling is
shown to be superior in each example—it leads to simpler formulations and fewer
parameters, and consequently to identifiability when the commonly used activity models are
unidentifiable.

The two-pool structures are followed by general n-pool structures, first for exogenous tracer
studies, and then for endogenous tracer studies, which generalize FSR modeling. Finally, a
duality is proved between activity and enrichment models to explain why one approach is
better for certain structures and the other for others.

2. Preliminaries and notation
2.1. Definitions

The words “system,” “structure,” and “model” are used synonymously in the literature on
identifiability of pool models, as seen in the seminal paper of Bellman and Åström (1970) as
well as in the major review by Cobelli and DiStefano 3rd (1980). We believe it is useful to
distinguish among (1) a biological system, (2) a structure with pools and pathways used to
represent the system, and (3) a mathematical model for tracer kinetics when a tracer is
introduced into the system. Thus, a pool structure abstracts the system into a set of
interconnected pools and is completely described by a diagram, with no equations; the
model contains the mathematical relationships needed to describe the structure.

We consider multicompartmental structures, i.e., structures made up of a number of
compartments or pools, the material within each of which is assumed to behave identically
(homogeneous). Tracer activity refers to the amount of tracer, typically expressed in units of
mass or of radioactivity. Activity modeling refers to modeling (writing differential and
algebraic equations for) tracer activities in different structural pools. Enrichment is
expressed as the amount of tracer divided by the total of tracer and tracee. We use
enrichment modeling to refer to modeling enrichments or equivalent quantities—tracer
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abundance in the form of atoms percent excess or a fraction, tracer-to-tracee ratio where
appropriate, specific radioactivity in a study with a radiolabel. Activity modeling refers to
the usual formulation of differential equations for the tracer amount, quantity or activity.
Following the definition of local identifiability by Bellman and Åström (1970) and later by
Chapman and Godfrey (1985), and dropping the word “local” for brevity, a model is
identifiable if error-free data lead to a unique solution (or a finite number of solutions) for
all the parameters in the model equations; a model is unidentifiable if one or more
parameters are unidentifiable, i.e., have an infinity of possible values consistent with error-
free data.

We consider a biological system that can be abstracted by a linear, stationary structure of n
pools. Linear means that mass fluxes are linearly proportional to (i.e., a constant multiplied
by) pool masses so that linear differential equations can describe the changes with time of
tracer quantities in different pools. Stationary means the biological system is in a steady
state and pool masses are not changing with time so that the differential equations for tracer
quantities have only constant coefficients. The quantity or mass (tracer+tracee) of the ith
pool is Qi, and the quantity or activity of tracer qi (t), and the tracer enrichment or SA is yi
(t) = qi (t)/Qi. Qi is assumed to be constant, either because the tracer is radioactive, and
hence of negligible mass or, in case of a stable isotope, the tracer enters the system via
synthetic pathways unaffected by the introduction of the isotope (Garlick et al., 1994;
Ramakrishnan, 2006). Some systems with mass isotopes have been modeled by considering
the amount of tracee to be constant (Cobelli et al., 1987), especially in glucose kinetics
(Basu et al., 2003). The results of the present paper will apply to those systems provided Qi
stands for the quantity or mass of tracee alone in the ith pool, and yi (t) stands for the tracer-
to-tracee ratio. Qi may be unknown.

Tracer is introduced in one of two ways: as a bolus into one or more pools (e.g., if
introduced into pool 1, q1(0) = q10, possibly unknown), or into a precursor structure with the
tracer concentration of the immediate precursor known as a function of time, w(t). More
generally, w(t) can be a vector in case of multiple immediate precursor pools; while we
assume a scalar w(t) for simplicity of presentation, the results would hold for a vector w(t).
The mass fluxes are Fij into pool i from pool j, with the additional understanding of Fi0 as
the direct inflow or synthesis into pool i, F0j as the direct outflow or catabolism from pool j,
and Fii as the total flux through the ith pool (equal to the sum of all the individual fluxes into
the ith pool, as well as to the sum of all the fluxes out of the ith pool).

Rate constants are defined conventionally as fluxes divided by source pool masses:

(1)

For convenience, which will become apparent presently, we also define

(2)

The rate constant ki0 is termed the fractional synthetic rate (FSR) in protein turnover.

An alternative, seldom used (Hearon, 1963), definition for rate constants is as fluxes divided
by the destination pool masses:

(3)

with the additional definition for the fractional catabolic rates (FCR):
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(4)

It may be noted that kij expresses each flux as a fraction of its source pool mass so that the
flux out of a pool, Fij, is kij times Qj, analogous to and consistent with first order reaction
kinetics and mass diffusion models where the mass transport is proportional to the source
mass. On the other hand, rij expresses the flux from j to i as a fraction of the destination pool
mass and thus has no natural physical meaning. It is for this reason that modeling with k’s is
nearly universal while modeling with r’s is virtually nonexistent (Rubinow and Winzer,
1971; Ramakrishnan et al., 1981, 1984; Anderson, 1983; Ramakrishnan, 1984).

The parameters kij and rij are strongly related. It is easily seen that

(5)

The total flux out of the ith pool (= kii Qi) must equal the total of all the fluxes from the ith
pool to the other pools and to the outside (= kji Qi summed over j):

(6)

Also, the total flux into the ith pool (= rii Qi) must equal the total of all the fluxes into the ith
pool from the other pools and from the outside (= rij Qi summed over j):

(7)

Since kii = rii, it follows that

(8)

Also, writing Eq. (7) in terms of the k-parameters, and Eq. (6) in terms of the r-parameters,
yields two more relationships:

(9)
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(10)

Data are typically measurements of enrichments. The measurements may be made in single
structure pools. Often, however, if the measurement technique cannot separate material in
structural pools that occupy the same physical space, the measurement is of the weighted
mean enrichment in multiple structure pools. For instance, Demant et al. (1996) consider
model structures for apolipoprotein B in which each measurement typically is of the
enrichment in two or three structural pools. [If tracer concentration in some unit volume is
measured, e.g., dpm/ml plasma, we assume that it can be converted to SA on dividing by
tracee concentration in the same unit volume.] We define an index set Jm that points to the
pools whose enrichment is zm(t). For instance, if z2 is the enrichment in pool 4, then J2 = {4}
and z2 = y2; if z6 is the combined enrichment in pools 5, 7, 8, 10, then J6 = {5, 7, 8, 10} and

. We also define the masses of these responses:

(11)

2.2. Two alternative models for the same structure
The differential equations for tracer kinetics in a pool structure can be written for q(t), the
tracer activities in the pools, or for y(t), the tracer enrichments (or SA) in the pools. It is to
be noted that there are two models for the same structure. The models are equivalent in that
they describe the same biological processes and the same assumptions; a pictorial
representation of the structure with pools and arrows would be the same for the enrichment
and activity models. But the models are different in their state variables and model
parameters so that the differential equations and the model solutions take different forms,
which as we see below, can lead to one model being identifiable while the other is not. Each
model describes a different state space, much as a change of variable in calculus.

We begin by noting that, by the assumptions of stationarity, linear relationships among the
pool masses can be derived from flux balances for the ith pool:

(12)

for the ith pool. We note that Eq. (9) above follows from this equation, which is referred to
as the Q-model or as the tracee model (Pont et al., 1998).

The activity model differential equations are written readily (Cobelli and DiStefano 3rd,
1980). The rate of change in tracer activity in the ith pool is given by
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(13)

The first term on the right side is tracer entry from the precursor into the ith pool; the second
term is tracer entry from the other pools into the ith pool; the last term is tracer leaving the
ith pool, going to other pools or to the outside. The quantity Si is the synthetic flux into the
ith pool from the precursor with enrichment w(t); Si equals Fi0 = ki0Qi if all flux into the ith
pool is labeled. The parallel to the steady-state equation (12) is apparent, making clear once
again why activity modeling is natural.

For the enrichment model, the rate of change in tracer enrichment in the ith pool is derived
from Eq. (13) (Ramakrishnan et al., 1984) by a change of variable qj (t) = yj (t)Qj, using the
relationships kij Qj = rij Qi from Eq. (5), and noting that, since the structure is stationary,
Qi ’s are constant:

(14)

The quantity si is Si /Qi, the fractional synthetic flux into the ith pool with enrichment w(t),
equaling ri0 if all flux into the i th pool is labeled.

The activities model is written readily in matrix-vector notation (Cobelli and DiStefano 3rd,
1980):

(15)

where the matrix K, vector S, and matrix C are given by

(16)

The activities model is termed the q-model.

The enrichment model in matrix-vector notation is as below:

(17)

where the matrix R, vector s, and matrix D are given by
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(18)

The enrichment model is termed the y-model.

Either model can be derived from the other by noting that

(19)

The state spaces for q(t) and y(t) are differentiable vector spaces of n-tuples of functions of
time, isomorphic to each other. Equation (19) defines the transformation between the two
state spaces.

It follows from Eqs. (5), (16), and (18) (as shown in Anderson, 1983, Section 9) that

(20)

Often, each response is the enrichment in a single pool, obviating the need for index sets J:
If the mth response is the enrichment in the j th pool,

(21)

The differential equation coefficients in a q-model (for activities) are k’s, rate constants in
terms of source pool masses, while those in a y-model (for enrichments) are r ’s, rate
constants in terms of destination pool masses. As noted above, a rate constant in terms of the
source pool mass has a natural physical meaning, explaining why tracer kinetics models are
almost always in terms of total activities, even though the data are generally of enrichments
or specific activities.

3. Four simple illustrations of superiority of enrichment modeling
3.1. Modeling fractional synthetic rate

Consider the usual method of estimating an organ-specific protein synthetic rate constant or
the fractional synthetic rate (FSR) of a particular protein (Zilversmit, 1960; Zak et al., 1979),
modeled by a single pool, as shown in Fig. 1. The precursor is shown by a square, instead of
the usual circle for a pool, to indicate that it is used as a forcing function known from
precursor enrichment data, and that it is not necessarily a single pool. Note that, in this case,
the parameter of interest itself is flux divided by the destination pool mass. The q-model is a
single differential equation:

(22)

There are three parameters, k, S, Q. One is eliminated easily since S = kQ:
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(23)

However, it is not actually possible to estimate Q from the data. This is easily seen with the
y-model for the enrichment:

(24)

A single parameter, k, is identifiable. This point is obscured by the formulation in the q-
model.

This example is quite trivial as the q-model’s unidentifiability is manageable: Q can be set to
an arbitrary value and k estimated from the enrichment data. The point to note is that the q-
model unidentifiability is not apparent from Eq. (23). In the three examples that follow,
setting a mass arbitrarily is not enough to make the k rate constants in the activity state space
identifiable.

The generalized models for FSR are analyzed in Section 4.2 under Endogenous Tracer
Studies.

3.2. A two-pool cascade with entry and removal from both pools
Consider the simple two-pool structure in Fig. 2, a great simplification of complex structures
such as the delipidation cascade of very low density lipoproteins (VLDL) to intermediate
density lipoproteins (IDL) (Packard et al., 2000; Barrett et al., 2006). Assume a known bolus
tracer injection u into pool 1 at time zero, and enrichments in both pools observed. The y-
model for enrichments involves two differential equations:

(25)

The y-model has four parameters—three rate constants (r11, r21, r22) and one mass (Q1). The
differential equations (25) are easily solved:

(26)

It is readily seen that all four parameters can be estimated from the data: the two exponential
rate constants are r11 and r22; the coefficient for y1(t) leads to Q1; the coefficients for y2(t),
equal in magnitude, lead to r21.

The q-model for activities also involves two differential equations:

(27)
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The activity model has five parameters, one more than the enrichment model—three rate
constants (k11, k21, k22) and two masses (Q1, Q2). But Eqs. (26) for the enrichments, which
are observed, contain only four parameters—two exponential rate constants and two
coefficients. Therefore, the activity model is unidentifiable while the enrichment model is
identifiable. And the unidentifiability of the activity model is not obvious.

Further, unlike in the first example with FSR, it is not apparent how to deal with the
unidentifiability. From Eqs. (5), we know that k11 = r11, k22 = r22. Therefore, from the
analytical solutions in Eqs. (26), three parameters (k11, k22, Q1) are identifiable, but what
about k21 and Q2? How are they related to r21, which is identifiable, and to the other
parameters?

With the help of the results from the enrichment model, we can investigate k21 and Q2, the
two unidentifiable parameters of the activity model, and determine what values they can
assume consistent with the data. From Eqs. (5), we know that

(28)

The mass ratio Q2/Q1 and k01, both unidentifiable, have a negative linear relationship
involving r21, an identifiable enrichment model parameter, as shown in Fig. 3.

Thus, even if activity model parameters are of interest, we can first fit the data with
enrichment modeling and estimate the identifiable Q1, r11, r21, and r22, three of which are
activity model parameters as well, and then use Eqs. (5) to obtain a relationship between Q2/
Q1 and k01, the direct removal rate constant, as in Fig. 3. The activity model, on the other
hand, is unidentifiable, so some simplification (e.g., setting k01 = 0) is necessary even to fit
the data. In contrast, no simplifying assumption is needed in the state space of enrichments.

3.3. Two-pool cascade with tracer entry from precursor
Consider again the two-pool structure in Fig. 2 but, instead of a bolus tracer injection into
pool 1, tracer enters both pools from a precursor at constant enrichment, c, and enrichments
in both pools are observed. Lipoprotein kinetics are typically studied by a primed constant
infusion of a labeled amino acid so that the precursor enrichment may be assumed to be
constant (Nagashima et al., 2005; Tremblay et al., 2006). The y-model for enrichments again
involves two differential equations:

(29)

The y-model has three parameters—the rate constants r11, r21, r22. The differential equations
(29) are easily solved:

(30)

The three rate constants (and, if needed, the precursor enrichment c) can be estimated by
fitting the model to enrichment data from the two pools.
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The q-model for activities also involves two differential equations:

(31)

The activity model has five parameters, two more than the enrichment model—three rate
constants (k11, k21, k22) and two masses (Q1, Q2). We know from Eqs. (30) that only three
parameters can be estimated from the data—three rate constants. Therefore, the activity
model is unidentifiable while the enrichment model is identifiable.

Once again, it is not obvious how to deal with the unidentifiability of the activity model.
From Eqs. (5), we know that k11 = r11, k22 = r22. Therefore, two parameters (k11, k22) are
identifiable, but in order to estimate them, an identifiable model is needed; the enrichment
model can be used for this purpose. We can analyze the other three using the results from
the previous two examples. From the first example, with FSR, Q1 is unidentifiable but can
be set to an arbitrary value. From the second example, the mass ratio Q2/Q1 and k01, both
unidentifiable, have a negative linear relationship involving r21, an identifiable enrichment
model parameter, as shown in Fig. 3. As in the previous example, the choice of state space
determines the identifiability of the tracer kinetics model.

3.4. Two-pool exchange structure with removal from both pools
Consider the simple two-pool structure in Fig. 4. Assume a known bolus tracer injection u
into pool 1 at time zero, and pool 1 enrichment observed. The y-model for enrichments
involves two differential equations:

(32)

The y-model has four parameters—three rate constants (r11, r12, r22) and one mass (Q1). The
solution is given by

(33)

It can be shown easily that the four parameters can be estimated from the two eigenvalues
(λ1 and λ2) and the two exponential coefficients in y1(t). The y-model is identifiable.

The q-model for activities also involves two differential equations:

(34)

The activity model has five parameters, one more than the enrichment model—four rate
constants (k11, k12, k21, k22) as opposed to three in the enrichment model, and one mass
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(Q1). We know from Eq. (33) for the enrichment in pool 1 that only four parameters can be
estimated from the data—two exponential rate constants and two coefficients. Therefore, the
activity model is unidentifiable.

As in the previous examples, the identifiable enrichment model can be used to study the
unidentifiable activity model. From Eqs. (5), we know that k11 = r11, k22 = r22. Therefore,
three parameters (k11, k22, Q1) are identifiable in the activity model. As for the other two, we
know from Eqs. (5) that k12k21 = r12r21 = r12r22. This means that we can only estimate the
product of the two exchange rate constants k12 and k21. Each has an upper bound: k12 ≤ k22;
k21 ≤ k11. Since the product is fixed, each has a lower bound as well:

(35)

The relationship between k12 and k21 is displayed in Fig. 5, a rectangular hyperbola. The
product of the two unidentifiable activity model parameters, k12 and k21, equals the product
of two identifiable enrichment model parameters r12 and r22.

4. Enrichment and activity modeling compared in multicompartmental
structures

We next consider some general n-pool structures where analytical solutions are not available
but the relative merits of working in the q-space versus the y-space can be determined.
Exogenous tracer studies are followed by endogenous tracer studies and then by a duality.

4.1. Modeling exogenous tracer studies
We contrast q- and y-modeling with mammillary structures; catenary and other structures
will be shown to yield similar results. A mammillary structure, seen in Fig. 6, has a central
pool that exchanges material directly with each of the other pools with no direct material
flux between any other pools; a catenary structure is one that can be visualized on a line with
each pool exchanging material directly only with the pool immediately to the left or to the
right (Hart 1955, 1965). Consider an n-pool mammillary structure with a bolus injection of
tracer into the central pool and the tracer enrichment (or specific activity) in that pool
observed. In this case, w(t) is zero. The q-model becomes:

(36)

Alternatively, the y-model is

Ramakrishnan and Ramakrishnan Page 11

Bull Math Biol. Author manuscript; available in PMC 2012 February 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(37)

The system matrices for the q-model and for the y-model, respectively, are

(38)

(39)

The matrices K and R have each been augmented by a column on the left to indicate
pathways from the outside, and by a row at the top to indicate pathways to the outside. [This
formulation extends the notation of Chapman and Godfrey (1985) who used an augmented
row to account for fluxes to the outside.] Equations (5) provide relationships between K and
R. With n pools, z(t) can be expressed by a sum of n exponentials, which means 2n
parameters are identifiable.

We begin with the simplest flux configuration and proceed to more complex structures.

4.1.1. All tracee input and output in central pool—First, suppose that all tracee entry
is into the central pool 1 (i.e., ki0 = ri0 = 0 for i > 1), and all removal is from that pool as
well (i.e., k0i = r0i = 0 for i > 1), as shown in Fig. 6A. Applying Eq. (6) leads to kii = k1i for i
> 1, while Eq. (7) leads to rii = ri1 for i > 1.

The system matrices for the q-model and for the y-model, respectively, are

(40)
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(41)

For the q-model, there are 2n parameters—Q1, k11, and kii, ki1 for i > 1. For the y-model, as
well, there are 2n parameters—y0, r11, and rii, r1i for i > 1. Thus, both models satisfy a
necessary condition for the model to be identifiable. Cobelli et al. (1979) have shown that
the q-model is identifiable; the y-model is identifiable from applying Eqs. (5):

(42)

4.1.2. All tracee input into central pool—We next consider a structure with outflows
possible from all pools but entry only into the central pool, as shown in Fig. 6B. This means
that while rii = ri1 for i > 1 as in the simpler case, kii = k0i + k1i ≥ k1i for i > 1. The system
matrices for the q-model and for the y-model, respectively, are

(43)

(44)

The y-model is identical to the simpler case in Fig. 6A with all tracee output from the central
pool because r0i ’s do not appear in the differential equations; not so for the q-model in
which the presence of k0i ’s makes it impossible to eliminate the k1i ’s unlike in the simpler
case. While the y-model still has only 2n parameters (y0, r11, and rii, r1i for i > 1), the q-
model has 3n − 1 parameters—Q1, k11, and kii, k1i, ki1 for i > 1. Again, we note that kii = rii
from Eqs. (5), but k1i = F1i /Qi, ki1 = Fi1/Q1, while r1i = F1i /Q1, rii = Fi1/Qi, and so the q-
model has 2n − 2 unidentifiable parameters with the only constraints being k1i ki1 = r1i rii.
Each k1i can assume a range of values ≤ kii with a corresponding value for ki1.

DiStefano 3rd (1983) has derived bounds for the q-model parameters, but the identifi-ability
of the y-model when all tracee input is into the central pool appears to be a novel result here.
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4.1.3. All tracee output from central pool—We next consider a structure with entry
possible into all pools but outflow only from the central pool, as shown in Fig. 6C. The
system matrices for the q-model and for the y-model, respectively, are

(45)

(46)

In this case, the q-model is identical to the simpler case in Fig. 6A with all tracee input into
the central pool because ki0’s do not appear in the differential equations; not so for the y-
model in which the presence of ri0’s makes it impossible to eliminate the ri1’s unlike in the
simpler case. The q-model has only 2n parameters (Q1, k11, and kii, ki1 for i > 1), while the
y-model has 3n − 1 parameters (y0, r11, and rii, r1i, ri1 for i > 1) with 2n − 2 unidentifiable
parameters with the only constraints being kii ki1 = r1i ri1. So, q-modeling is to be preferred
in this case.

4.1.4. Catenary structures—The results are similar with general catenary structures. We
assume tracer injection and observation in one of the two terminal pools, termed pool 1 for
convenience. The system matrices K and R are tridiagonal: nonzero elements of the system
matrix are on the diagonal, superdiagonal and subdiagonal for a total of 3n − 2, the same as
in the mammillary structure. When all tracee input and outflow are in pool 1, each diagonal
element other than the first can be expressed in terms of other elements—in the q-model,
equal to the negative sum of the other elements in its column (as output from each pool goes
only to other pools and not to the outside); and, in the y-model, equal to the negative sum of
the other elements in its row (as tracee input into each pool comes only from other pools):

(47)

This decreases the number of distinct nonzero elements in the system matrix to 2n − 1 with
both the q-model and the y-model. Both models are identifiable.

When all tracee input is into pool 1 but outflow is from multiple pools, the system matrix for
the y-model is the same as with the simpler configuration but not for the q-model. And when
all tracee outflow is from pool 1 but input is into multiple pools, the system matrix for the q-
model is the same as with the simpler configuration but not for the y-model. Thus, the
results for catenary structures parallel those for mammillary structures.
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4.1.5. General pool structures—Considering a more general mammillary or catenary
structure, with tracee input as well as outflow in multiple pools, it can be seen that both the
q-model and the y-model have more than 2n and up to 3n − 1 parameters because neither the
kii ’s nor the rii ’s can all be eliminated; neither is superior.

The above results for mammillary and catenary structures can be extended to arbitrarily
general structures as follows. If a pool has tracee outflow to the outside, it is not possible to
use Eq. (6) to express an element in that column in K in terms of the others, and so there is
one more unknown parameter in K. On the other hand, if a pool has tracee inflow from the
outside, it is not possible to use Eq. (7) to express an element in that row in R in terms of the
others, and so there is one more unknown parameter in R. Thus, for exogenous tracers,
enrichment modeling is superior when there are multiple exit pathways while activity
modeling is superior with multiple unlabeled entry pathways. The results are different with
endogenous labeling as shown in the next section.

4.2. Modeling endogenous tracer studies
We now consider experiments where most or all entry pathways are labeled by the use of a
labeled precursor. With an endogenous tracer, if all synthetic pathways are labeled, si = ri0 =
ki0 for all i. The precursor enrichment w(t) can be constant in a primed constant infusion
study; in general, w(t) is a time-varying function assumed to be known. We consider a
general n-pool structure with arbitrary connectivity with the enrichment in every pool
observed. This is a generalization of the structure shown in Fig. 2 and analyzed in Section
3.3, as well as of the one-pool structure in Fig. 1 analyzed in Section 3.1. The q-model is as
follows:

(48)

In the system matrix above, the ki0 can be eliminated by applying Eqs. (9). The k0i do not
appear in the model differential equations but, if any k0i is zero, the corresponding kii can be
set to the sum of the other kji ’s in that column by applying Eqs. (6); if k0i is nonzero because
of a clearance pathway out of pool i, the corresponding kii is an unknown parameter. The
nQi ’s appear in the differential equations as well as in P to calculate the observed z(t). The
number of unknown parameters to be estimated from the data is the number of nonzero off-
diagonal elements (equal to ma, the number of pathways among the pools) in K plus the
number of pools n, plus mc, the number of nonzero entries in the top row for clearance
pathways, or ma + n + mc. This number is reduced if the Qi ’s are not of interest. At least one
Qi can be set to an arbitrary value such as 1. If the matrix K can be partitioned into md
disconnected blocks (i.e., no flux between blocks, i.e., i, j in different blocks implies kij = kj i
= 0), md of the masses can be set arbitrarily. Thus, the number of unknown parameters is ma
+ n + mc − md. We note that, since each block must have at least one outflow element in the
top row, mc ≥ md. If md > 1, the structure graph is not connected (Rescigno and Segre,
1964).

The y-model is as follows:
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(49)

In the system matrix above, the ri0 can be eliminated as equal to . The removal
rate constants r0i do not appear in the model differential equations. The number of unknown
parameters to be estimated from the data is just the number of nonzero elements in R, which
is ma + n.

Thus, the q-model has ma + n + mc − md parameters while the y-model has only ma + n.
Since the information content is the same, the number of parameters that can be uniquely
identified cannot exceed ma + n. If mc = md, then the activity model is identifiable if the
enrichment model is; the structure in Fig. 1, analyzed in Section 3.1, is an example, where
the activity model is identifiable except for Q. However, with multiple exit pathways, mc >
md, and activity modeling results in an unidentifiable model, with more parameters than can
be identified from the data. As an example, for the structure shown in Fig. 2 and analyzed in
Section 3.3, n = 2, ma = 1, and mc = 2, so that, as shown in Section 3.3, the q-model with ma
+ mc + n = 5 parameters (k11, k21, k22, Q1, Q2), only one (md = 1) of which (Q1) can be set
arbitrarily, is unidentifiable, while the y-model with only ma + n = 3 parameters (r11, r21,
r22) is identifiable.

4.3. Duality in flux balances between modeling activities and enrichments
Pool model parameters are masses and rate constants. Flux balances around the pools
provide relationships among the parameters, which can be used to decrease their number by
expressing some parameters in terms of the others, as in Section 4.2 to analyze endogenous
tracer studies. Here, we manipulate the flux balances for a general pool structure and show a
duality between modeling activities and modeling enrichments.

The flux balances are simple to state: for each pool, the total of all the individual fluxes into
that pool must equal the total flux out of that pool and, in turn, the total of all the individual
fluxes from that pool.

With the matrix K for rate constants in modeling activities, using the relationships between
Kij and kij in Eqs. (16), we can rewrite Eqs. (9) for the total of the individual fluxes into the
ith pool in matrix-vector notation as follows:

(50)

where Q is the vector of pool masses; P is a diagonal matrix whose iith element is Qi, i.e., P
= diag(Q); and f is the vector of outside entry rate constants (fi = ki0 = ri0).

Equation (6) for the total of the individual fluxes from the ith pool to the other pools and to
the outside becomes:

(51)
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where KT is the transpose of K; u is a vector whose every element is 1; and g is the vector of
removal rate constants (gi = k0i = r0i).

Proceeding similarly with the matrix R for rate constants in modeling enrichments, using the
relationships between Rij and rij in Eqs. (18), we can rewrite Eq. (7) for the total of the
individual fluxes into the ith pool in matrix-vector notation as follows:

(52)

Equation (10) for the total of the individual fluxes from the ith pool to the other pools and to
the outside becomes:

(53)

where RT is the transpose of R; and the other symbols are as explained for Eqs. (50) and
(51).

Equations (50)–(51) and (52)–(53) are quite distinct. However, there is a structural similarity
between Eqs. (50) and (53), and between (51) and (52).

Consider a dual of a structure, obtained by reversing every pathway. An entry from the
outside to the ith pool becomes a path to the outside from the ith pool; a path to the outside
becomes an entry in from the outside; a flux from pool j to pool i becomes a flux from pool i
to pool j. Denoting the parameters of the dual structure by the prime symbol (′), Eqs. (50)–
(51) become for the dual q-model:

(54)

But since, by definition:

(55)

we get, substituting these equalities into Eqs. (54) for the dual structure:

(56)

which are identical to Eqs. (52)–(53) for the original structure with R.

Likewise, substituting the equalities in (55) into Eqs. (52)–(53) for the dual y-model, we get

(57)

which are identical to Eqs. (50)–(51) for the original structure with K.

Thus, the flux balances for the dual q-model and for the original y-model are identical.
Likewise, the flux balances are identical for the dual y-model and for the original q-model.

4.3.1. An illustration of duality—As an illustration, consider the three-pool structure in
Fig. 7A. The flux balances for the activities model lead to:
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(58)

Next, consider the dual structure in Fig. 7B; note that every path in this figure is the opposite
of a corresponding path in Fig. 7A. The flux balances for the enrichment model leads to:

(59)

Equations (58) and (59) can each be obtained from the other by interchanging “r” and “k,”
and reversing all subscripts (i.e., “ij” by “ji”). A similar duality can be shown between the
flux balances for the enrichment model for Fig. 7A and the activities model for Fig. 7B.

This duality helps to explain the differences between Figs. 6B and 6C. We saw that
enrichment modeling was superior for the structure in Fig. 6B, while activity modeling was
superior for the structure in Fig. 6C. The two structures are duals of each other. This means
that the flux equations for the activities model for Fig. 6B are identical to those for the
enrichment model for Fig. 6C. Thus, since the activities model is unidentifiable for Fig. 6B,
the enrichment model is similarly unidentifiable for Fig. 6C.

5. Discussion
5.1. Paradox of identifiable and unidentifiable models for same structure

It may appear paradoxical that a biological system, with a specific configuration of pools
and pathways and a specific tracer injection/observation study design, can have an
unidentifiable as well as an identifiable model. In each of the four examples in Section 3, the
structure being modeled was the same, shown in Figs. 1, 2, and 4, but the activity model was
unidentifiable while the enrichment model was identifiable. The reason is that the same
structure can be modeled in two different state spaces—the space of activities as state
variables or the space of enrichments as state variables. Each state space induces a distinct
parameter space. The dimensionality of the two parameter spaces may be different,
depending on the pathways among the structure pools and the study design (how the tracer is
introduced, which enrichments are observed).

We have shown in Section 4.2 that, particularly with endogenous tracer studies, which are
widely used, enrichment modeling is to be preferred because the dimensionality of its
parameter space is smaller.

Another way to understand this is that following the definition of Cobelli and DiStefano 3rd
(1980), the identifiability of a model is determined by just those parameters that appear in
the differential and observation equations and initial conditions. Parameters that do not
appear thus, and there may be many such, do not influence the identifiability of the model.
Thus, in the first example, in Section 3.1, the enrichment model in Eq. (24) has just one
parameter, the rate constant k. It is not that the pool mass Q and flux S are not system
parameters, but they do not appear in the enrichment model and so their unidentifiability
does not affect the enrichment model’s identifiability. On the other hand, the activity model,
in Eq. (23), contains the pool mass Q as well and is, therefore, unidentifiable. Similarly, for
either of the two examples in Fig. 2, analyzed in Sections 3.2 and 3.3, the enrichment model
is identifiable though the direct removal rate constant r01 is unidentifiable; this is because
r01 does not appear in the enrichment model given by Eqs. (25) or (29).
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It should be noted here that what we propose is not reparameterization. Rather, the state
space is transformed, in a manner analogous to change of variable in calculus, so the model
is in a completely different state space, which in turn induces a different parameter space of
possibly different dimensionality.

5.2. Limitations of enrichment modeling
The most important limitation of enrichment modeling is that it relies on the stationarity
assumption to replace the conventional k parameters with the r parameters. In Eqs. (5),
which express the relationships between the k and r parameters, kij equals rij multiplied by
the ratio of two pool masses. In a stationary structure, the pool masses, and consequently
their ratios, do not change with time and so the rij parameters are constant and enrichment
modeling is useful. However, if the structure is nonstationary, the pool masses, as well as
their ratios, may be changing with time, which means the rij parameters are changing with
time even if the kij parameters are constant with time, which makes enrichment modeling
using rij not useful. Linearity is also required but this assumption is likely to be satisfied in
tracer studies: even if the tracee system is nonlinear, the differential equations for the tracer
are linear.

Also, as shown in Sections 4.1.3 and 4.1.5, with exogenous tracers and multiple unlabeled
inputs into the structure, activity modeling can have fewer parameters and may be the
preferred approach. This is much less common with the increasing use of mass isotopes and
the use of labeled precursors to achieve endogenous labeling, which means most if not all
input pathways are labeled.

The obvious fact should also be noted that any parameters that are unidentifiable in the
activity model remain unidentifiable with enrichment modeling. When the focus of interest
is an unidentifiable k parameter, enrichment modeling can first fit the observed data and
estimate the identifiable r parameters, and the numerical values used to construct useful
relationships for the unidentifiable k parameters of interest. This approach was illustrated in
Section 3.2 with Fig. 3 for the structure in Fig. 2, and in Section 3.4 with Fig. 5 for the
structure in Fig. 4.

5.3. Relationship to earlier work in pool model identifiability
An important paper by DiStefano 3rd (1983) introduced the idea of quasi-identifiability. The
main example of an unidentifiable model in that paper was a mammillary model with tracer
input into the central pool and exit pathways from all the pools—the model shown here in
Fig. 6B, except that DiStefano’s model is more general in not specifying tracee input, thus
allowing for tracee input into multiple pools, not just in the central pool as in Fig. 6B. The
author derived the transfer function, solved for the k parameters in terms of the system
eigenvalues and transfer function coefficients in order to determine what combinations of
the k parameters are identifiable, and constructed bounds on the others. The algebraic
expressions are quite complicated. We have shown here that, when the modeling is done
with enrichments, the elements of the matrix R are identifiable when all tracee input is into
the central pool. The other parameters, the removal rate constants r0i and the mass ratios Qi /
Q1 are indeed unidentifiable, but their bounds can be derived in a manner similar to what
was done here for the structure in Fig. 2, as shown in Fig. 3. Neither DiStefano nor Cobelli
and Toffolo (1984), who commented critically, noted that the structure could be analyzed in
a much simpler fashion by enrichment modeling if all tracee could be assumed to enter the
central pool.

DiStefano’s work on quasi-identifiability was followed by papers from his group on
algorithms for the identifiable parameter combinations and parameter bounds of
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unidentifiable mammillary structures (Landaw et al., 1984) of the type shown in Fig. 6B
here, and similarly for catenary structures (Chen et al., 1985; DiStefano 3rd et al., 1988), and
later on the effects of measurement errors (Lindell et al., 1988) and fixing some rate
constants (Vicini et al., 2000) on these parameter bounds. Chau (1985) considered more
general bolus-introduction and observation situations in mammillary structures of the type in
Fig. 6B. Cobelli and coworkers (Cobelli et al., 1984; Ferrannini et al., 1985; Gastaldelli et
al., 1997) studied glucose kinetics and developed relationships among unidentifiable
parameters in three-pool mammillary structures with all tracee input into the central pool.
The examples given in the glucose papers can all be studied much more easily by
enrichment modeling since the models are identifiable in the enrichment state space.

5.4. Utility in parameter estimation
Going beyond identifiability analysis, the knowledge that certain combinations of rate
constants in an activity model are identifiable is not helpful when the aim is to estimate
parameters for a given study, because a model has to be identifiable for an iterative
estimation algorithm to work well. Vajda (1984), Cobelli and Toffolo (1987), and Vajda et
al. (1989) suggested constructing “submodels,” typically obtained by setting some of the
outflows (k0i) to zero so that the model is made identifiable. Parameter estimates of the
identifiable submodels are used to construct bounds on the parameters of the original
unidentifiable model. In contrast, with the state space transformation approach proposed
here, the tracer enrichment data can be fitted by an identifiable enrichment model, and the
resulting parameter estimates for the elements of R used in Eqs. (5) to calculate identifiable
rate constants, and to develop bounds for the unidentifiable rate constants, in the activity
model, as illustrated in Section 2 and in Figs. 3 and 5. This approach is not feasible in the
activity state space, as seen in the many papers referenced above. It is to be noted that
enrichment modeling is quite different from, say, fitting enrichment data by sums of
exponentials.

5.5. Impact of pool mass measurements
If all pool masses are known through measurements, activity and enrichment models are
equivalent: if one is identifiable, so is the other; if one is not, the other is not as well. In all
four examples in Section 3, the activity model would be identifiable if all the pool masses
were known. Even in such structures, it may be of interest to know which parameters are
identifiable without the mass data, and which require mass measurements. We have
considered this question elsewhere (Ramakrishnan and Ramakrishnan, 2008). Enrichment
modeling can help answer the question, as in the examples considered here.

5.6. Prior use of enrichment modeling
Rubinow and Winzer (1971) described both activity and concentration models and used the
equivalents of the rate constants rij defined here, noting that it “represents the rate of
transport of material from the jth compartment to the ith compartment, per unit amount of
material in the ith compartment. Such a quantity is not of particular physical or
physiological interest, but it is mathematically convenient.” Bright (1973) allowed for the
state equations to be in terms of activities or enrichments, with the corresponding
equivalents of kij and rij defined here. Perl et al. (1975), while modeling indicator kinetics,
mentioned that the analog with tracers would be specific activities. Hearon (1974) used the
analog of the R matrix here to prove a result in open linear systems. Anderson (1983,
Section 25) derived the y-model and used it to study catenary structures. Jacquez (1985a)
worked out a number of examples with specific-activity modeling but using the k-rate
constants and mass ratios. A review of the literature since Hearon’s (1963) early observation
on the equivalence of activity and enrichment modeling turns up no other publication with
enrichment modeling in tracer kinetics outside of our group at Columbia University

Ramakrishnan and Ramakrishnan Page 20

Bull Math Biol. Author manuscript; available in PMC 2012 February 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(Ramakrishnan et al., 1981, 1984; Ramakrishnan, 1984; Arad et al., 1990; Berglund et al.,
1998; Nagashima et al., 2005). The use of activity models has been so universal that even
authors who have studied identifiability questions and made major contributions (Jacquez,
1985b; Berman et al., 1962; DiStefano 3rd, 1983; Chapman and Godfrey, 1985; Jacquez and
Simon, 1993; Eisenfeld, 1996) have not looked at enrichment modeling as an alternative
approach to the problem, including in a book devoted to identifiability (Walter, 1987) or in a
journal volume concerned with the work of Bellman (Jacquez, 1985a).

5.7. Relationship to pharmacokinetics
A major distinction in pharmacokinetics is that, unlike in tracer kinetics, there is no tracee.
Activity modeling is easily extended to pharmacokinetics since the quantity of a drug in a
pool is analogous to the quantity of a tracer in a pool. Rate constants are defined simply as
fractions of the amount of drug in the source pool, and Eq. (6) relates kii to kj i ; the equation
can be derived, without recourse to any tracee, from a balance between the drug flux leaving
the ith pool (= kii qi) and the total of all the drug fluxes from the ith pool to the other pools
and to the outside (= kji qi summed over j). State equations are similar to Eqs. (15) except for
S.

The analog of enrichment modeling in pharmacokinetics is to model drug concentrations,
but the r-parameters are not useful. Since there is no tracee and consequently no tracee
steady state, Eq. (7) relating rii to rij does not hold. Without this equation, there is no
simplification and the matrix R will always have more parameters than the matrix K. Thus,
Evans et al. (2004) modeled drug concentrations in cell studies with k-rate constants and
volume ratios.

While it is risky to speculate on the development of ideas, it seems to us that one reason for
researchers not pursuing enrichment modeling in tracer kinetics may be that
pharmacokinetics was a major area of modeling. Early books on kinetics covered drugs as
well as tracers (Jacquez, 1985b; Rescigno and Segre, 1966; Shipley and Clark, 1972).
Models were written for the tracer; arrows in figures denoted tracer fluxes. Unlabeled tracee
fluxes into the structure were not even shown since they did not appear in differential
equations for the tracer (Brown and Godfrey, 1978; Cobelli and DiStefano 3rd, 1980;
Chapman and Godfrey, 1985).

5.8. Nature of observations and choice of model
Anderson (1983, Section 9) remarked: “In the first and probably most common type of
experiment, the concentration of tracer in one or more compartments is followed and
sampled over time. Thus, it is preferable to have our basic tracer model in a form involving
tracer concentrations rather than amounts.” So, tracer enrichments should be the natural
choice as state variables in order to keep the modeling straightforward, with the minimum
number of parameters needed to solve for the observed variables. The commonly used state
variables are total tracer quantities. The differential equations involve pool masses in tracer
entry expressions and also in calculating the observed enrichments from the total tracer
quantities. As a consequence, total activity modeling involves more parameters, making the
model unidentifiable and estimation more complex. By modeling enrichments directly,
studying identifiability is facilitated.

The main reason for total activity modeling is that the rate constants have a natural physical
meaning. But we have seen that the rate constants from enrichment modeling are related to
those from activity modeling through mass ratios, as given in Eqs. (5). In particular, as
shown there, fractional catabolic rates (FCR), fractional synthetic rates (FSR) and pool
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turnover rate constants, which are the rate constants of greatest biological relevance, are the
same with either type of model:

Further, Eqs. (5) express the other k parameters in terms of the identifiable r parameters and
mass ratios.

It may also be noted that, with the increasing use of precursor tracers, FSR’s are routinely
estimated and reported in the protein literature; FSR is a rate constant expressing a synthetic
or input flux as a fraction of the destination pool. Thus, rate constants as defined in
enrichment models are in fact considered to have physical meaning.

5.9. Conclusion
A number of general linear, stationary structures were analyzed here. When there are
multiple exit pathways, the q-model for total activities has many more parameters, whether
the tracer is introduced as an exogenous bolus or by endogenous labeling through a
precursor. The only situation in the linear, stationary setting where q-modeling has fewer
parameters, and is the preferred approach, is with an exogenous tracer and multiple
unlabeled tracee entry pathways. Tracer methodology in humans increasingly makes use of
mass isotopes and highly sensitive mass spectrometry so that there are now hardly any
radiotracer studies in humans. Mass isotopes are often introduced in a precursor—amino
acids to study proteins, for example. The resulting structures are of the type described above
under endogenous modeling, where most or all the entry pathways are labeled. It was seen
that total activity modeling offers no benefit—enrichment modeling has fewer parameters
and is to be preferred. SAAM, a popular modeling program, does only total activity
modeling and finds the structure in Fig. 2 to be unidentifiable.

To conclude, when the data to be fitted are of enrichments, and especially when the activity
model is unidentifiable for the chosen model structure, it may be helpful to write the model
with enrichments as the state variables, defining rate constants as fluxes divided by the
masses of destination pools. This unconventional definition facilitates modeling enrichment
data from linear, stationary structures.

Acknowledgments
This work was supported by grants HL55638 from the National Heart, Lung, and Blood Institute. The authors
would like to acknowledge discussions with Henry Ginsberg.

Abbreviations

F flux

f vector of rate constants for entry from outside

FCR fractional catabolic rate

FSR fractional synthetic rate

g vector of rate constants for exit to outside

K,R system matrix of rate constants

k,r rate constant

P diagonal matrix of pool masses
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Q total mass or activity of tracer+tracee

q mass or activity of tracer

q-model model for tracer activities or amounts

S synthetic flux

s synthetic rate constant

t time

u a vector whose every element is 1

w precursor enrichment

y tracer enrichment

y-model model for tracer enrichments or specific activities

z observed tracer enrichment
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Fig. 1.
A simple one-pool structure for a product of interest, with the tracer entering by a synthetic
pathway from a precursor whose enrichment, w(t), is known. The precursor is denoted by a
square to indicate an arbitrary model structure for the precursor. The synthetic rate is S, the
mass of the product pool is Q, the tracer activity or amount in the product pool is q(t), the
tracer enrichment or specific activity in the product pool is y(t), and the fractional synthetic
(or catabolic) rate is k.
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Fig. 2.
A two-pool cascade structure with precursor feeding both pools and material exit from both
pools. Two experimental designs are considered in the text, one with a bolus tracer injection
into pool 1, and the other with a labeled precursor at constant enrichment as in Fig. 1. With
data available on enrichments in both pools, the activity model is unidentifiable, but the
enrichment model is identifiable. Next to each arrow is a definition for the corresponding
rate constant in the activity model (k’s) and in the enrichment model (r’s).
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Fig. 3.
For the structure in Fig. 2, the dashed line shows how two unidentifiable parameters, the
direct removal rate constant from pool 1 and the ratio of the two pool masses, can vary
together. The removal rate constant, k01, can take any value between 0 and k11, while the
mass ratio Q2/Q1 goes from a high of k11/r21 down to zero.
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Fig. 4.
A simple two-pool exchange structure with tracee input into pool 1 alone but with removal
from both pools. A bolus injection of tracer is made into pool 1, and the enrichment in pool
1 is observed. The activity model is unidentifiable, but the enrichment model is identifiable.
Next to each arrow is a definition for the corresponding rate constant in the activity model
(k’s) and in the enrichment model (r’s).
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Fig. 5.
For the structure in Fig. 4, the curve, a rectangular hyperbola, shows how k12 and k21, two
unidentifiable parameters in the activity model, vary together. Their product is fixed (equal
to the product r12r22). The smallest and largest values possible for each are indicated on the
axes.
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Fig. 6.
An n-pool mammillary structure studied by a bolus tracer injection into the central pool 1,
and tracer enrichment measured in the same pool. Three possibilities are shown for material
entry and exit in the peripheral pools 2, …, i, …, n. Figure 6A has all entry and exit solely in
the central pool. Figure 6B has possible exit from all the pools but entry solely into the
central pool. Figure 6C has possible entry into all the pools but exit solely from the central
pool.
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Fig. 7.
An example of duality as defined here: each structure is obtained from the other by reversing
all the pathways. The flux balances for an activities model are the same as those for the
enrichment model of its dual, and vice versa.
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