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Abstract The genus Pseudomonas has gone through many
taxonomic revisions over the past 100 years, going from a
very large and diverse group of bacteria to a smaller, more
refined and ordered list having specific properties. The
relationship of the Pseudomonas genus to Azotobacter
vinelandii is examined using three genomic sequence-based
methods. First, using 16S rRNA trees, it is shown that A.
vinelandii groups within the Pseudomonas close to Pseu-
domonas aeruginosa. Genomes from other related organ-
isms (Acinetobacter, Psychrobacter, and Cellvibrio) are
outside the Pseudomonas cluster. Second, pan genome
family trees based on conserved gene families also show A.
vinelandii to be more closely related to Pseudomonas than
other related organisms. Third, exhaustive BLAST compar-
isons demonstrate that the fraction of shared genes between
A. vinelandii and Pseudomonas genomes is similar to that
of Pseudomonas species with each other. The results of
these different methods point to a high similarity between
A. vinelandii and the Pseudomonas genus, suggesting that
Azotobacter might actually be a Pseudomonas.

Introduction

Pseudomonas bacteria are naturally widespread in the
environment. For example, the plant pathogen, Pseudomo-

Electronic supplementary material The online version of this article
(doi:10.1007/s00248-011-9914-8) contains supplementary material,
which is available to authorized users.

A. 1. Ozen - D. W. Ussery ()

Center for Biological Sequence Analysis,
Department of Systems Biology,

The Technical University of Denmark,
Lyngby, Denmark

e-mail: dave@cbs.dtu.dk

nas syringae has been linked to the environmental cycle of
water as an ice nucleus in the clouds and is found in rain,
snow, lakes, and plants [31]. Because of its abundance in
the environment, the Pseudomonas genus was first charac-
terized long ago, and over the past hundred years, it has
gone through many taxonomic revisions. The number of
organisms placed in the Pseudomonas group grew steadily
over a period of 60 years. However, through refinement of
defining criteria, many bacteria were moved to other genera
over the next 50 [24, 36, 42, 47].

Early studies based on rRNA-DNA hybridization
postulated five RNA subdivisions in the genus, where
rRNA group I, including the type species Pseudomonas
aeruginosa, was named after the genus as Pseudomonas
[34]. Studies on the determination and comparison of 16S
rRNA sequences of Pseudomonas species resulted in the
clustering of Pseudomonas into two groups: P. aeruginosa
and Pseudomonas fluorescens [32]. Later on, the extensive
study of Anzai and collaborators on more than 100
Pseudomonas species based on 16S rRNA sequence
comparison suggests seven clusters from the group of
species of Pseudomonas sensu stricto, which also agreed in
some parts with Palleroni’s report in 1973 [3]. Although it
is still a widely accepted method, debates on the poor
resolution of the phylogeny analysis with rrs gene
sequences lead to the idea of using other marker genes
to characterize and classify Pseudomonas, such as gryB,
rpoD, oprl, oprF, and rpoB sequences [2, 8, 13, 57]. In
another study, ten housekeeping genes were used to assess
the phylogeny of 2,4-diacetylphloroglucinol-producing
fluorescent Pseudomonas spp. [16]. Other phenotypic
methods, such as siderotyping, were also suggested for
the classification of plant-associated Pseudomonas [30].
Pseudomonas sensu stricto (rRNA similarity group I)
could be further divided into subgroups due to its
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considerable heterogeneity based on pathogenicity or
pigment production [35].

The current status of the Pseudomonas genus today
shows 202 species assigned to Pseudomonas on the
Approved Lists of Bacterial Names, where the classification
method depends on a combination of 16S rRNA, the
analysis of the cellular fatty acids, and differentiating
classical physiological and biochemical tests [52]. The
genus consists of a group of medically and biotechnolog-
ically important bacteria that are inhabitants of a wide
range of niches including soil and water environments,
in addition to plant and animal associations. Hence, they
are well known for having enormous metabolic versa-
tility [17, 18, 47]. They are non-sporulating, aerobic
Gram-negative rods that are found in biofilms or in
planktonic forms. Most of the pathogenic members are
related to plants, whereas several strains are pathogenic to
animals [35].

Azotobacter vinelandii, in this context, is interesting
because of its common metabolic characteristics with
Pseudomonas. A nitrogen-fixing member of Gammapro-
teobacteria, A. vinelandii is found mostly in soil environ-
ments where its nitrogen and energy metabolism is
significant to agriculture. Many years ago, this organism
was often used in biochemistry experiments for isolating
enzymes during the kinetics studies which resulted in
surprising yields and qualities [29]. It is a free-living
obligate aerobe known for having the highest respiratory
characteristics, but it can still fix atmospheric nitrogen
using a respiratory protection mechanism [23]. It also has
distinct properties, such as dramatic increase in chromo-
some numbers when reached at a stationary phase,
formation of cysts under carbon depletion that helps the
bacteria to resist dehydration [41], where alginate is a
structural component, and accumulation of poly-beta-
hydroxybutyrate at the end of the exponential growth as a
carbon and energy source storage [48]. Although the
Azotobacter genus has been studied over 100 years in
various experiments, currently, there is only one complete
genome sequence available on NCBI GenBank database—
A. vinelandii DJ [43]. There are no further ongoing projects
listed for this genus, out of several thousand bacterial
genome projects.

Azotobacter and Pseudomonas are members of the
Pseudomonadaceae family. They both have a significant
genomic diversity and genetic adaptability in a wide range
of niches. However, numerous studies show that they share
many biochemical metabolic pathways such as nitrogen
fixation, alginate production, and respiratory mechanisms,
and they are found in similar environments [11, 58]. It was
long thought that Pseudomonas species (sensu stricto) do
not have nitrogen fixation abilities; however, recently, it has
been demonstrated that some Pseudomonas strains can fix
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nitrogen and that their genes related to this machinery
closely resemble that of 4. vinelandii [39, 58, 59]. Another
similarity is the alginate production in A. vinelandii, which
is also a by-product in pathogenic P. aeruginosa infections
in the lungs of cystic fibrosis patients [20]. However, other
phenotypic characteristics of Pseudomonas have been
shown to be different from Azotobacter species, such as
cell morphology and motility [35]. This suggests that the
diversity in some phenotypic characteristics might be the
outcome of their adaptive properties since the two genera
share the same set of core housekeeping genes or other
conserved genes [59]. In this context, analysis of 16S
rRNA gene sequences by Rediers and collaborators
showed that A. vinelandii was in the P. aeruginosa clade,
sharing 96% identity with P. aeruginosa PAO!1 strain.
Owing to the low resolution in 16S rRNA sequences for
these genomes, they conducted a phylogenetic analysis of
25 protein-coding genes, some of which were housekeep-
ing genes. Phylogenetic trees generated with their dataset
again revealed that A. vinelandii homologues are clustered
within or close to the Pseudomonas group. The consensus
tree out of these 25 topologies showed A. vinelandii
phylogeny being closest to P. aeruginosa PAO1, conclud-
ing A. vinelandii to belong to the Pseudomonas genus
[39]. Young and Park [59] use a broader approach to this
idea, taking into account all the morphological differences,
concluding that Azofobacter species can be transferred to
Pseudomonas along with a change in the criteria used for
classification.

In this article, we analyze the evolutionary relationships
of the Pseudomonas genus to A. vinelandii, discussing
whether or not this species is actually a Pseudomonas,
using comparative genomic methods such as phylogeny
trees, pan—core genome analysis, and protein BLAST across
the whole genomes. Genomes from related genera—
Acinetobacter, Psychrobacter, and Cellvibrio—were also
used for the analysis to provide a better resolution. All
genomes are therefore members of Pseudomonadales order,
where Pseudomonas, Azotobacter, and Cellvibrio belong to
the Pseudomonadaceae family and Acinetobacter and
Psychrobacter are members of Moraxellaceae in the same
order.

Materials and Methods
Gathering Genomes and Gene Annotation

All of the 29 genomes used in the analysis are complete
sequences downloaded from GenBank [6]. The list consists
of A. vinelandii, 17 Pseudomonas species (including P,
aeruginosa, Pseudomonas putida, Pseudomonas entomo-
phila, Pseudomonas mendocina, P. fluorescens, P. syringae,
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and Pseudomonas stutzeri), 7 Acinetobacter, 3 Psychro-
bacter, and one Cellvibrio genome.

Gene annotations for the sequences were extracted from
the GenBank files of each genome. Annotations from the
GenBank files for the full genomes (including plasmids
when present) were used. The properties of all the strains
are listed in Table 1, and the color coding in this table is
used throughout the paper.

Phylogenetic Analysis—16S rRNA and Pan Genome
Family Trees

Phylogenetic analysis was performed in two stages, one
using 16S rRNA sequences and the other using the pan
genome protein families. For the first method, 16S rRNA
sequences were predicted from the whole genome sequence
using RNAmmer [26]. Single and full sequences that have
the highest scores from the RNAmmer predictions for each

genome were aligned in CLUSTALW [27] program, and
with this alignment, the 16S rRNA tree was generated using
a neighbor-joining method with 1,000 bootstrap resam-
plings and viewed with MEGA4 [50] (Fig. 1). An
additional tree was generated with partial 16S rRNA
sequences of Azotobacter strains partial sequences of
Azotobacter strains—A. vinelandii 1AM 15004 (type
strain), Azotobacter tropicalis KBS, A. tropicalis RBS,
Azotobacter nigricans 1AM 15005 (type strain), Azotobac-
ter armeniacus DSM 2284 (type strain), Azotobacter
salinestris ATCC 49674(type strain), A. vinelandii ISSDS-
384, Azotobacter beijerinckii ICMP 8673 (type strain), A.
beijerinckii ICMP 4032, Azotobacter chroococcum 1AM
12666(type strain), A. chroococcum ICMP 4031, Azomonas
macrocytogenes ICMP 8674, Azorhizophilus paspali ATCC
23833, and Rhizobacter dauci H6—which are retrieved
from the Ribosomal Database Project (RDP) [12], where
the same procedure as above was performed, aligned with

Table 1 List of genomes used in the comparative analysis (the colors of the groups are the same throughout all the figures)

Row  Organism Project ID  Total size (bp) No. of genes 16S rRNA % GC  Reference

1 Acinetobacter baumannii AYE 28921 4,048,735 3,789 6 39.3 [54]

2 Acinetobacter baumannii AB307-0294 30993 3,760,981 3,458 6 39 [1]

3 Acinetobacter baumannii AB0057 21111 4,059,242 3,801 6 39.2 [1]

4 Acinetobacter baumannii ACICU 17827 3,996,761 3,759 6 38.9 [19]

5 Acinetobacter baumannii ATCC 17978 17477 4,001,457 3,368 5 38.9 [46]

6 Acinetobacter sp. ADP1 12352 3,598,621 3,325 7 40.4 [5]

7 Acinetobacter baumannii SDF 13001 3,477,996 3,577 5 39.1 [54]

8 Psychrobacter arcticus 273-4 9633 2,650,701 2,147 4 42.8 GenBank CP000082
9 Psychrobacter cryohalolentis K5 13920 3,101,097 2,511 4 422 [4]

10 Psychrobacter sp. PRwi-1 15759 2,995,049 2,385 5 44.8 GenBank CP000713
11 Cellvibrio japonicus Uedal07 28329 4,576,573 3,754 3 52 [14]

12 Pseudomonas mendocina ymp 17457 5,072,807 4,594 4 64.7 [10, 22]

13 Pseudomonas stutzeri A1501 16817 4,567,418 4,128 4 63.9 [58]

14 Pseudomonas fluorescens Pf-5 327 7,074,893 6,138 5 63.3 [37]

15 Pseudomonas fluorescens Pf0-1 12 6,438,405 5,736 6 60.5 [44]

16 Pseudomonas fluorescens SBW25 31229 7,147,633 6,487 5 60.1 [44]

17 Pseudomonas putida KT2440 267 6,181,863 5,350 7 61.5 [33]

18 Pseudomonas putida F1 13909 5,959,964 5,252 6 61.9 [38]

19 Pseudomonas putida GB-1 17629 6,078,430 5,409 7 61.9 GenBank CP000926
20 Pseudomonas putida W619 17053 5,774,330 5,182 7 61.4 GenBank CP000949
21 Pseudomonas entomophila 1.48 16800 5,888,780 5,168 7 64.2 [55]

22 Pseudomonas aeruginosa PAO1 331 6,264,404 5,568 4 66.6 [49]

23 Pseudomonas aeruginosa LESB58 31101 6,601,757 5,965 4 66.3 [56]

24 Pseudomonas aeruginosa UCBPP-PA14 386 6,537,648 5,892 4 66.3 [28]

25 Pseudomonas aeruginosa PA7 16720 6,588,339 6,286 4 66.4 [40]

26 P, syringae pv. tomato str. DC3000 359 6,538,260 5,614 5 58.3 [9]

27 P, syringae pv. syringaec B728a 323 6,093,698 5,136 5 59.2 [15]

28 P. syringae pv. phaseolicola 1448A 12416 6,112,448 5,171 5 57.9 [21]

29 Azotobacter vinelandii DJ 16 5,365,318 5,051 6 65.7 [43]
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Figure 1 16S rRNA tree gener-
ated with the neighbor-joining
method with 1,000 bootstrap
resamplings. The tree shows the
evolutionary relationships of A.
vinelandii with the Pseudomo-
nas genus and other Gammap-
roteobacteria based on their 16S
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CLUSTALW, and viewed with MEGAA4 [50] (see Electronic
supplementary material (ESM) Fig. 1).

For the second method, the pan genome family tree
(Fig. 2) of all the genomes was generated using BLASTP
similarity between each proteome, as described in Snipen
and Ussery's method [45]. The “50/50 rule” was used to
define the homology, meaning that a protein is assumed to
be in the same family if 50% of its length shows 50%
sequence identity with the reference protein [51]. Accord-
ing to this criterion, genes that have a significant hit to each
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C.japonicus Uedal07

other are considered to be in one gene family. In order to
see the relations between the different gene families, a
matrix is constructed containing the gene families in
columns and the genomes in rows, assigning 1 for the
presence of that gene family in the corresponding genome
and 0 otherwise. Manhattan distances are calculated from this
matrix and hierarchical clustering is made. This tree shows the
similarities based on the shared gene families, excluding the

gene families that are represented only in one genome
(ORFans) [45].
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Pan—-genome family tree
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Figure 2 Pan genome family tree. The tree shows the phylogenetic relationships based on the gene families found in the pan genome, excluding
the families found in only one genome. Color coding is again based on Table 1

Core and Pan Genome Analysis

In order to make a pan—core genome analysis, BLASTP
similarity analysis was used and a pan—core genome plot
was generated based on the clustering from the pan genome
family tree (Fig. 3). Pseudomonas genomes were plotted
first, followed by the other genera. Azotobacter was added
after P. stutzeri and then Acinetobacter, Psychrobacter, and,
finally, Cellvibrio. The plot goes from the first to the last
column in an information accumulative manner. Each
column shows the BLAST hit results against all the
previous ones in terms of new genes, new gene families,
and pan and core genome sizes. The accumulative number
of all gene families found (blue line in Fig. 3) increases as
new genomes are added, leading to the pan genome in total,
whereas the number of common gene families found in all
genomes (red line in Fig. 3) decreases with genome
addition, leading to the core genome at the end [53].

BLASTMatrix

In this method, the protein BLAST identities were used
to compare the proteome of each genome against all the
other proteomes, pictured by a BLASTMatrix (Fig. 4),
showing the fraction of genes shared between different
genomes in the green cells [7]. The percentages in the
cells are calculated by the number of gene families shared
in two genomes over the union of the gene families found
in both. Similarity criterion was again the 50/50 rule for
the selection of significant hits and for the gene family
assignment as in the pan genome family tree method. The
term “homology” is also used to indicate the similarity
based on shared gene families between two genomes.
Protein BLAST results of a genome against itself
(excluding self-hits) were used to define the protein
homology within the same genome, as seen in the red
cells.
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Results
16S rRNA Tree

According to the 16S rRNA phylogenetic tree in Fig. 1, 4.
vinelandii has a close relationship with Pseudomonas. The
tree shows that the 16S rRNA sequence of this organism is
very similar to P. aeruginosa 16S rRNA sequences, even
more similar than the other Pseudomonas species as
mentioned before in Rediers et al. [39]. There are clear
clusters among the different strains of the same species,
with few exceptions, and as expected, genomes from the
genus Pseudomonas cluster together when compared with
the other Pseudomonadales, Acinetobacter, and Psychro-
bacter, which are more distantly related. In general, the
evolutionary relationships indicated in this tree are in
agreement with the known biology of these organisms.
Furthermore, alignment of sequences including more 16S
rRNA sequences obtained from RDP also shows the same
clustering results for Azotobacter (see ESM Fig. 1). All the
sequences from Azotobacter, Azorhizophilus, and Azomonas
genera cluster close to the P aeruginosa group, while other
Pseudomonas species are more distant and Rhizobacter is an
outgroup (note that it was not specifically selected as an
outgroup during the methods).

Pan Genome Family Tree

The pan genome family tree (Fig. 2) compares the presence
of gene families in each genome and measures the distances
for the tree depending on the common gene families found
between genomes, resulting in groups which share more
gene families clustering together. As expected, the Pseudo-
monas genus groups together and has clear clusters for each
species, this time with often 100% bootstrap values in the
main nodes for each species. Some positions of the
genomes are changed, such as Cellvibrio japonicus and P,
fluorescens, but, most importantly for this work, the A.
vinelandii now is in a different position on this tree. In this
figure, 4. vinelandii does not group with any individual
Pseudomonas species but with all of the Pseudomonas
clusters, still indicating that it shows a larger fraction of
conserved protein families with Pseudomonads than the
other Gammaproteobacteria.

Core and Pan Genome Analysis

The core and pan genome analysis is another method that
uses the proteomes of the genomes (Fig. 3). The plot shows
the change in the number of gene families that are common
to the compared genomes, the core genome, and the pan
genome [51]. The bars indicate the new genes and gene
families compared with a BLASTP against the genomes

that were previously added to the list. Hence, every new
gene family is accounted for in the pan genome, which
increases with the addition of each new genome (blue line
in Fig. 3), whereas the size of the core genome is reduced
(red line). The order of the genomes is related to the
evolutionary distance seen on the pan genome tree.

The overall result of the core and pan genome plot
shows that there are only 443 conserved core gene families
found in 29 genomes. The core genome size for just the
Pseudomonas genomes is 1,706, and after A. vinelandii is
added, it is reduced by 231 gene families, leading to 1,475
core gene families for the first 18 genomes. The pan
genome size for all the strains adds up to 29,626 gene
families. The increase in pan genome size after the addition
of A. vinelandii is 1,506 gene families, and there are
roughly 1,700 genes that are designated as new. It is also
seen that after the addition of Pseudomonas putida strains,
the core genome for Pseudomonads has a steep drop with
1,870 gene families and the pan genome has a sharp
increase of 1,969 more gene families. There is also a big
jump of 2,275 gene families in the pan genome after the
addition of Acinetobacter species, where the core genome
drops by 855 gene families.

BLASTMatrix

The BLASTMatrix shows the shared gene families between
and within the compared genomes (Fig. 4). There is a high
fraction of shared genes within the same species, as denoted
in darker green colors on the bottom of the matrix. The
genus Pseudomonas can readily be distinguished, and it is
highlighted with the dark red triangle. The results closely
resemble the relations in the pan genome tree where
Psychrobacter and Acinetobacter have a very low homol-
ogy with Pseudomonas species. Azotobacter on the other
hand shares as many gene families with Pseudomonas as
some of the other members of Pseudomonadaceae. More
specifically, it shares between 24% and 31% of its protein
families with Pseudomonas; the maximum homology is
seen with P stutzeri with 31.2%, where P. stutzeri is
homologous with other Pseudomonas between 28% and
34%. Also seen from the matrix is the homology within the
species which is on average 79% for P. aeruginosa, 66% for
P putida, 49% for P. fluorescens, 65% for P. syringae, and
72% for Acinetobacter baumannii. In contrast, homology
across various species within Pseudomonas indicates a
level between 30% and 50%.

Discussion

The results of using different comparative genomic methods
to understand the phylogeny of Pseudomonas indicate a
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considerably close evolutionary relationship with 4. vine-
landii. Both in the 16S rRNA tree and pan genome family
tree, A. vinelandii is clustered together or within the
Pseudomonas species. It is not as clear whether or not A.
vinelandii should be classified as being closest to P
aeruginosa. Although they are clustered together in the
16S rRNA tree, the low resolution of the 16S rRNA
phylogenetic analysis has been noted by others [39, 59]. It
does show, however, that they have a common ancestral r7s
gene that is closer to each other than to other species. The
outcome of the 16S rRNA tree also shows that members of
the Moraxellaceae family (Acinetobacter and Psychrobacter)
are clustered together and Pseudomonodaceae (Pseudomonas,
Azotobacter, and Cellvibrio) are on another clade. In the pan
genome family tree, on the other hand, clear clusters of each
species can be seen. For example, P. fluorescens strains are in
a group rather than separated as in the rRNA tree. Since this
tree shows the distances of each group according to how
many gene families they share, it is clear that 4. vinelandii
shares more gene families with the Pseudomonas group than
it does with the other Pseudomonadales members used in
this comparison, especially when compared with Cellvibrio,
which is also another genus in the same family. Since the
results are restricted to only one Azotobacter genome, other
supportive results are crucial in order to understand the true
relationship.

The core and pan genome analysis reveals the set of
conserved gene families (“core”) and the total number of
gene families (“pan genome”) for the set of sequenced
genomes compared. The core genome refers to the idea of a
backbone genome for organisms in the same genus; as more
species from the same genus are added, the core is expected
to approach a stable plateau in the same genus. The pan
genome is, however, very flexible in size and, for some
bacteria, can be quite large [53]. For instance, the pan
genome of Pseudomonas is more than ten times larger than
its core genome [25]. Figure 3 shows that the Pseudomonas
core genome size does not have a dramatic change with the
addition of A4. vinelandii. Although the pan genome has a
slight increase, such a small change in the core genome size
is not expected from an organism that is in a different
genus. The sharp decrease in the core genome when P
putida is added is due to its position on the list, being right
after P. aeruginosa, which is clearly in another group in the
phylogeny trees. However, after 18 genomes, the addition
of a new genus (in this case, an Acinetobacter species)
creates a big difference in the plot, reducing the core more
than half in size and expanding the pan genome clearly by
10%, which is an obvious result of the addition of a
different genus on the list.

The BLASTMatrix also strongly agrees with the pan
genome family tree and pan—core genome plot as they are
all comparing the gene families across the genomes.
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Among them, the BLASTMatrix provides more quantita-
tive results on the similarities such as percentages or
number of gene families. According to this, Azotobacter
has a high fraction of shared protein families with
Pseudomonas, mostly with P. stutzeri having 31%. They
also share a similar fraction of protein family levels with
other Pseudomonas, with A. vinelandii having on average
25% homology and P. stutzeri with on average 30%. The
relation between these two organisms might be because of
the similar functions that they have in their environment as
they are both free-living, root-associated, nitrogen-fixing
bacteria [58]. However, phylogenetic analysis, based on
16S rRNA in this paper and in the other works also based
on housekeeping genes, suggests that 4. vinelandii could
have a closer evolutionary relationship with P. aeruginosa.
Taking into account that P. aeruginosa is the type species
for Pseudomonas and that it shares a common evolutionary
history on the conserved genes with A. vinelandii, all of
these results strongly suggests that A. vinelandii has a
Pseudomonas-like backbone including the conserved
genes, while the diversity among them is caused by
adaptive strategies during their evolution which comes
from the transfer of genetic material.

It should be noted that complete genomes were chosen in
the dataset for the reliability of the methods. For many of the
incomplete genomes in the database, 16S rRNA sequences are
missing or partial, and so as the many protein sequences. In a
study where comparative analysis mostly relies on the BLAST
comparison on the proteomes, partial or poorly annotated
sequences cause artifacts in the search, which leads to
unreliable conclusions. Another aspect from the taxonomical
point of view is that in theory, a good classification method
should be able to show the relations of organisms regardless of
the number of data. Hence, having more Pseuodmonas
genomes should not be the effecting factor in the discrimina-
tion of the organisms, especially at the genus level. On the
other hand, having more Azotobacter genomes would be
more reliable in terms of reducing the effect of sequencing,
assembly, and annotation errors.

Concluding remarks

The increase in the availability of genome sequences of
different organisms makes comparative genomic analysis a
fundamental part of research on evolutionary relations
between organisms and the genetic basis of their diversity
[53]. This applies as well to Pseudomonas. Looking at the
comparative genomic analysis of nucleotide and the coded
protein sequences of Pseudomonas, we can easily see the
distinction between Pseudomonas species. This distinction
is supported by the physical and biochemical classification
that has been established over the last 100 years.
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Although there is only one Azotobacter genome
available, general assumptions from these comparative
analyses that rely on the extensively studied algorithms
and tools are worth examining. Support from similar
analysis on the comparison of these genera is also taken
into account. In conclusion, we suggest that A. vinelandii
has a Pseudomonas-like backbone genome where the core
functions of these groups are same. There are various lines
of evidence which lead to this: the finding that 4.
vinelandii has approximately a third of the same protein
families, clustering with the whole Pseudomonas clade on
the pan genome family tree rather than being in the P.
aeruginosa clade, and not causing a big drop on the core
genome size. All three of these observations are consistent
with the idea of having the same backbone, perhaps the
same origins, but different adaptations throughout their
evolution. This leads us to the question of the boundaries
of new member assignments in the Pseudomonas genus.
Where do we draw the line? We propose that based on
whole-genome analysis, it is possible to better differentiate
members of a genus by looking at their core genome
properties. The standards for classification should be set
using comparative methods on both DNA and protein
levels. If this is the case, the Azotobacter can be assigned
to the Pseudomonas genus. Perhaps, for future investiga-
tions, a detailed analysis of the core genes can be made
and functionally categorized to see the background of their
similarity.
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