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Abstract
As the role of the environment – diet, exercise, alcohol and tobacco use and sleep among others –
is accorded a more prominent role in modifying the relationship between genetic variants and
clinical measures of disease, consideration of gene-environment (GxE) interactions is a must. To
facilitate incorporation of GxE interactions into single-gene and genome-wide association studies,
we have compiled from the literature a database of GxE interactions relevant to nutrition, blood
lipids, cardiovascular disease and type 2 diabetes. Over 550 such interactions have been
incorporated into a single database, along with over 1430 instances where a lack of statistical
significance was found. This database will serve as an important resource to researchers in
genetics and nutrition in order to gain an understanding of which points in the human genome are
sensitive to variations in diet, physical activity and alcohol use, among other lifestyle choices.
Furthermore, this GxE database has been designed with future integration into a larger database of
nutritional phenotypes in mind.
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Introduction
Human genome sequence data and affiliated databases are growing in size at tremendous
rates [1]. This treasury of sequence information has greatly enhanced the discovery of
genetic variation [2] and vastly amplified the ability to relate a particular genetic variant to a
disease phenotype [3]. Although the number of genetic association tests, whether by single
gene or genome-wide, performed in the last few years has exploded, especially since 2007, a
significant limitation in those studies can be summarized as only a small portion of genetic
heritability has been described [4].

In many cases onset of diseases such as cardiovascular disease, coronary artery disease,
hypertension and type 2 diabetes can be prevented or greatly delayed with adjustments to
lifestyle. In addition, once such a metabolic disease or other disease with a metabolic basis
has been diagnosed, clinical biomarkers of disease status can often be ameliorated also with
adjustments to lifestyle. Such lifestyle factors include diet, physical activity, alcohol and
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tobacco use, sleep, latitude and altitude of residence (seasonality and oxygen tension,
respectively), as well as many others. Numerous genes involved in homeostasis of these
disease biomarkers have alleles that either associate with the biomarker at baseline or have
alleles showing gene-environment (GxE) interactions [5,6]. A GxE interaction is
exemplified by a point of sequence variation in the genome where one version or allele
associates with an adverse health risk only when an environmental factor passes a given
threshold. There are two implications of this phenomenon. One, a risk allele actually may
not be risk in all individuals. Two, a test of genetic association undertaken in the absence of
information on diet, exercise and other lifestyle choices is or can be rather incomplete. Thus,
cataloging GxE interactions will provide the basis of which lifestyle factors an individual
could adopt and to what degree prior to taking a pharmaceutical therapeutic, which itself
may have harmful side effects [7].

Currently, there is much discussion, even that bordering on outright debate, on where the
missing heritability is to be found [4,8-10]. Possibilities offered include: a sample size too
small to detect variants of small effects, the disease marker is not in complete linkage
disequilibrium with the causal variant and thus underestimates heritability [11],
overestimation of heritability based on family-based populations, rare or even “private”
mutations, inherited patterns of epigenetic marks [12], epistasis [13], gene-gene interactions
[14] and gene-environment interactions [5,6]. It is indeed evident that the environment
affects the human genome. For example, the emergence of the hemoglobin S variant
coincided with resistance to malaria as has lactose tolerance with dairy farming in Europe
and Africa. Many other examples are known or hypothesized. Unfortunately, genome-wide
association studies (GWAS) have not incorporated GxE interactions for any of a number of
reasons. One, appropriate environmental factors have not been collected for many GWAS
cohorts, often because of oversight or the costs involved. Two, many measures of
environmental exposure are difficult to quantify and standardize, especially across cohorts,
and some measures are met with skepticism. Three, thus there is a requirement of GxE
interaction studies for much larger sample sizes but effective sample size is reduced because
either the environmental factor of interest has not been measured in all GWAS participants
or data from multiple studies cannot satisfactorily be merged. Four, there is no strong
consensus on how to assess genome-wide significance in the face of multiple GxE tests but
the limited amount of heritability explained by genetic association studies strongly supports
the need for GxE interaction analysis. Hence, building a database of GxE interactions gives
the potential to tease apart the process of how such variants interact with their respective
environmental cues and find common threads that, taken together, will help describe the
interplay between alleles and environmental factors. We believe that cataloging GxE
interactions offers great potential to understand which genes and biological pathways are
sensitive to variation in a manner that elicits an altered phenotype, particularly toward
greater risk of disease. From another perspective, this database provides a means to
corroborate assertions of genetic tests. As personal genomics and personalized medicine and
nutrition move into the fore, a full catalog of GxE interactions will be required for
appreciating the intricacies of the human genome.

Materials and Methods
Literature mining

In order to identify the publications that present statistically significant interactions between
a genetic variant, typically a single nucleotide polymorphism (SNP) and an environmental
factor, we searched the scientific literature via PubMed at the National Center for
Biotechnology Information with certain keywords. One specific strategy employed a genetic
variation keyword (polymorphism, variant or SNP) and either “interaction” or an
environmental factor keyword (diet, exercise, alcohol, tobacco/cigarette or sleep). Another
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search strategy used the terms “gene” and “interaction” coupled with a specific
environmental factor (e.g., alcohol or exercise). Searches were also conducted for authors
based on the results of the above keyword searches. The abstracts of the identified papers
were culled to those focusing on metabolic diseases and obesity. The articles were retrieved
for close examination of the reported results from which we retained those GxE interactions
restricted to statistical interactions in epidemiologic studies. Reports on studies involving
children and adolescents were not parsed for GxE data.

Tabularizing the data
Data were manually extracted from a reading of the collected articles. Several data fields
were established for the placement of these data: Gene, SNP accession, aliases or common
names of the SNPs, risk allele, phenotype, environmental factor, condition of environmental
factor, gender (in which the interaction was observed), population, first author, PubMed ID
and year of publication. The field “condition of environmental factor” describes the value of
the environmental factor above or below which the GxE interaction was observed as passing
statistical significance. Although P-values of the published GxE interactions are sensitive to
characteristics of a particular study or population and are not listed here, only those GxE
interactions described as statistically significant, generally with a P-value ≤ 0.05, were
retained from the literature mining.

Due to difficulties in assigning interactions to one variant that is a member of a haplotype
that shows an interaction, such haplotype-environment interactions, although very few in
number, were selectively not added to this database. The only exception to this is the epsilon
haplotype of APOE defined by SNPs rs429358 and rs7412.

Pathway analysis
Significant over-representation of biochemical pathways from KEGG and Reactome as well
as gene ontology terms were taken from the output of g:Profiler, http://biit.cs.ut.ee/gprofiler/
[15]. Lists of genes (n > 10) pertaining to a given type of GxE interaction, i.e., either a
particular phenotype or environmental factor, served as input to the pathway/ontology tool.
g:Profiler was run with default settings.

Results
Building the database

Mining the scientific literature allowed identification of a large number of articles presenting
results on gene-environment interactions involving candidate genes from longitudinal, cross-
sectional, interventional and clinical studies. Studies examining effects on less than 20
individuals were not included. 554 different gene-environment interactions pertinent to
nutrition, metabolic disorders such as type 2 diabetes, cardiovascular disease, obesity and
dyslipidemia and reaching statistical significance were collected from literature reports
published from 1994, the earliest example, to 2010 (Table 1 provided as supplementary file).
These are described by gene, SNP, risk allele (when known), phenotype, environmental
interaction factor, population (origin/location, gender) and PubMed ID. In addition, we
collected 1439 examples where the test for a GxE interaction failed to reach statistical
significance.

When the environmental factor (EF) involved in a gene-environment interaction was
described as a continuous variable, close examination of the published data revealed the
value of the EF where there is a change in risk allele. A hypothetical example shown in
Figure 1 indicates that when dietary protein, as percent total energy intake, is below 15,
individuals who are AA at a hypothetical genetic locus show higher levels of serum LDL-
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cholesterol. At the same time, when protein intake levels are above 15, individuals carrying
the other allele at this same locus (either AG or GG genotypes) show higher levels of LDL-
cholesterol. The data on gene-environment interactions presented here reflect these changes
in risk allele(s) observed at such inflection points.

Standardization of terms
Because the genetic variants of many older examples of gene-diet and other gene-
environment interactions were analyzed with low-throughput methods and in a time before
wide acceptance of standard databases of human variation, SNP accession numbers are not
available in those publications. We therefore traced through the literature to a source that
fully described the genotyping assay in order to unequivocally identify the polymorphism
with an rs accession number. We were successful in providing an rs accession in nearly all
such cases but there are a few data rows where the SNP rs identifier is unknown. A few
other variants, mostly short insertions/deletions, have no dbSNP accession. In order to
maintain such nomenclature connections, the database also includes the older, common
names of the variants under the column “SNP alias.” We also sought to standardize terms
used to describe the phenotypes and to a lesser degree the environmental factors constituting
the gene-environment interaction. Thus, different publications regarding, for example, GxEs
for “high-density lipoprotein,” “HDL,” “HDL-C” and “HDL-cholesterol” were all classified
under the term HDL-C.

The database
Mining available scientific reports yielded 554 different gene-environment interactions of
relevance to metabolic diseases and biomarkers of their progression. These interactions
involve 146 different SNPs and short insertion/deletions that map to 88 different genes. Of
the 554 GxE interactions, HDL-C as a phenotype and physical activity as an environmental
factor have the highest number of examples in their respective categories at 85 and 109. An
assortment of different phenotypes serving as indicators of obesity number 98 GxE
interactions, of which 40 are for BMI. Summary characteristics of the collected gene by
environment interactions are provided in Table 2. The assembled data, taken from 184
published reports plus one unpublished observation, as well as future updates will be
accessible at the dbNP website (http://www.dbnp.org). The numbers of unique genes and
SNPs involved in GxE interactions for each of several main phenotypes are listed in Table 3.
For most of the phenotypes listed, the most commonly observed environmental term in the
GxE interaction represents about 20-25% of all GxEs for that phenotype. Plasma TG levels
are different in this respect, only five of 44 GxEs involve a high-fat challenge, the most
common environmental factor, suggesting added complexity to the relationship between
genetic variation, environment and triglyceride levels.

Pathway analysis of GxE genes
Pathway analysis on those genes carrying variants that are sensitive to a particular
environmental term or relate to a given phenotype will give insight into which biochemical,
physiological or disease pathways, or sub-networks thereof, are more sensitive in an allele-
specific manner to variation in the environment. Results from such pathway analysis for
selected phenotypes and environmental factors are listed in Table 4. It is noteworthy that of
those sets of genes containing SNPs that show GxE interactions involving either obesity
phenotypes in general, BMI specifically, HDL-C, triglycerides, total cholesterol, physical
activity, dietary fat or dietary saturated fat all contain an abundance of genes mapping to the
PPAR signaling pathway. While this result could arise from research bias, it does underscore
the immense importance of genetic variation within the three genes central to this pathway:
PPARA, PPARD and PPARG, as well as two co-regulators PPARGC1A and PPARGC1B.
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Replicated gene-environment interactions
Replication of gene by environment interactions in other, independent studies gives
confidence that such interactions are more universal and less specific to the particulars of
one population. Replication is not often observed because of inherent differences between
populations and a multitude of environmental factors, some of which may confound, exert
influence on or contribute to a given GxE in an unknown manner. Nonetheless, a scan
through the GxE database described here allows identification of interactions that in some
cases appear rather strongly to replicate. Although there is danger in such literature-based
meta-analysis [16], we still consider it of value to identify GxE interactions that show a high
degree of similarity in terms of gene, variant, associated phenotype and the environmental
factor modifying that relationship. These are results deserving of further attention. We have
extracted from the database 13 different phenotype-risk allele-environmental factor
combinations that replicate and involve nine different markers in seven distinct genes (Table
5). This effort does, however, illustrate the conundrum of replication of GxE studies. For
example, the APOA5 marker rs662799 (−1131T>C, −600T>C, S13) is reported by three
different groups to form a GxE with plasma TG levels, but in different populations the
environmental factor is either total fat from a high-fat challenge (measured as percent
energy), percent energy from dietary PUFA, or percent energy from dietary N-6 PUFA
[17-19].

Interactions not replicated
Instances where an observed interaction was not found in a second study can be determined.
Examples include the Gln380His variant of APOA4 on both HDL-C and LDL-C with
dietary saturated fat [20,21], APOA5 promoter SNP rs662799 on TG and dietary fat in two
distinct populations [18,19], SNP rs708272 of CETP with changes in total cholesterol and
dietary saturated fat [21,22], LIPC SNP rs1800588 with HDL-C and dietary saturated fat
and with conflicting risk alleles [23-25], LPL variant rs328 with cholesterol and dietary
saturated fat [21,22] but which did not replicate in African Americans [25]. Other examples
are rs662 of PON1 with heart disease and smoking [26,27], PPARG SNP rs1801282 with
type 2 diabetes and physical activity [28,29], and PPARGC1A SNP rs8192678 [28,30] and
rs1800849 of UCP3 both with obesity and physical activity [31,32]. Although different in
composition, two different low-calorie diets gave conflicting risk alleles with FABP2 SNP
rs1799883 for glucose measures [33,34] as did CETP variant rs708272 with coronary heart
disease and alcohol consumption [35,36].

Replicated lack of interaction
Repeated observations of a lack of GxE interaction can also be extracted from this database.
It has been reported twice that APOB SNP rs1042031 shows no interaction with dietary
cholesterol on LDL-C levels [21,37]. Two studies showed a lack of GxE interaction for
obesity and physical activity involving MC4R variant rs17782313 [38,39]. Lastly, the
APOE and CETP genes offer several instances where GxE interactions were not replicated
in some populations where such an interaction was examined (Table 1 provided as
supplementary file). Overall, tests for GxE interaction that fail in some but not other studies,
or in all studies for which we could find information to that effect, provide a means to focus
statistical analysis in a new study or to investigate important differences between
populations.

GxE genes found in important nutrigenomics datasets
Recently, nutrigenomics datasets have detailed both the PPARA and PPARG networks, as
well as described genes differentially expressed after consumption of either phenol-rich
(extra virgin) olive oil or a mixture of compounds with known or proposed anti-
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inflammation properties (AIDM) [40-43]. This allows asking which genes contain
polymorphisms associating with metabolic syndrome traits in a manner modified by
environmental factors and which phenotypes and environmental factors are most often found
in the interactions involving those shared genes. In other words, we can begin to identify the
central players, in terms of phenotypes and environmental factors, which are subject to
allele-specific sensitivity to diet, exercise, or other environmental factors within each of
these four gene networks. For example, the AIDM regimen was proposed to exert anti-
atherogenic effects by reducing inflammation. Integration with our GxE database shows that
certain AIDM genes tend to modulate allele-specific effects on HDL-C, LDL-C and total
cholesterol in a manner influenced by dietary MUFA. Epidemiological evidence shows that
olive oil and the Mediterranean diet of which it is a central component are enriched in
MUFA, and importantly that these exert anti-inflammatory effects [43,44], but this may be
confounded by other olive oil components like polyphenolics, which are also anti-
inflammatory. A second notable result of this comparison is the finding that 28 of 224
PPARA network genes [41] show significant allele-specific interaction(s) in the GxE
database. This is a 26-fold enrichment given a genome size of 22000 genes and 87 identified
GxE genes. Comparison of the four datasets to the GxE database, including highly
represented phenotypes and environmental factors of the shared genes, is given in Table 6.

Discussion
In order to better and more fully comprehend the interplay between genome, environment
and measures of disease or health status, we sought to populate a database with published
gene-environment interactions that pertain to blood lipids, obesity and affiliated diseases
such as atherosclerosis, heart disease and diabetes mellitus (Table 1 provided as
supplementary file). In essence, these are phenotypes under the umbrella of metabolic
syndrome. The database described here contains 554 such examples involving diet, physical
activity, alcohol and tobacco use, as well as other environmental factors in a manner altering
the genotype-phenotype relationship with clinical measures of metabolic syndrome.
Furthermore, growing interest in the use of allele-specific pathway fluxes and differential
networks [45] both necessitate that an extensive cataloging of gene-environment interactions
be undertaken. Such pathway fluxes and network associations that depend on or are
sensitive to genetic variation are already described with respect to therapeutic regimens,
particularly anti-oncogenic [46,47], and the number of these examples is increasing. Here,
we describe collecting gene-environment interaction data from published sources and
cataloging that information. We also provide a few short examples of mining those data
which serve to illustrate the utility of such a database. The PPAR signaling pathway is
highly represented by genes containing variants that show association with an array of
phenotypes and environmental factors. Cholesterol and triglyceride homeostasis are also
biological functions common to many phenotypes and environmental factors (Table 4).
Comparison with some key nutrigenomics data indicates that genes within a PPARA
network tend to be sensitive to dietary fat, PPARG network genes tend to be sensitive to
physical activity, and many MUFA-sensitive genes are shared with those showing altered
expression in response to administration of an anti-inflammation diet mix (Table 6). In
addition, we also note a number of GxE interactions observed in more than one study (Table
5).

MicroRNA-based regulation of cholesterol metabolism and transport genes is an emerging
and intriguing development. Control of cholesterol homeostasis via SREBP1 and SREBP2,
sterol regulatory element-binding proteins which function as transcriptional regulators, in
concert with intron-encoded microRNA MIRN33 occurs by acting upon cholesterol
transporter ABCA1 [48,49]. Interestingly, the results of our g:Profiler analysis, which
provides data on enrichment of putative microRNA-mRNA interactions, indicate that
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MIRN768, or SNORD71, is enriched in genes containing SNPs constituting GxE
interactions involving total fat and saturated fat in the diet. SNORD71 was upregulated
during adipocyte differentiation and more highly expressed in both pre-adipocytes and
subcutaneous fat tissue from obese over lean individuals [50]. Thus, mining the GxE data
can generate new hypotheses and allows us to speculate that SNORD71 is involved in the
allele-specific response to dietary fat.

In order to maximize the potential of applying “omics” technologies to nutrition research so
as to encourage optimal health in the individual, a federated and openly available database,
termed the nutritional phenotype database (dbNP), has been established [51]. Two keys to
this effort are collection of data types that are specific and important to nutrition research
and offering standard annotation of the included data entries. With regard to genetics, those
data will reside within the “analytical technology” segment of the dbNP, along with data on
biological information, such as food intake, transcriptome, metabolome, proteome, imaging
and biomarkers. A significant aspect of this genetics component is the gene by diet or gene
by environment interaction. With this in mind, the GxE data described here have been
incorporated into dbNP.

A GxE database can serve as a launching pad to begin experiments in genetics, population
genetics, molecular biology, or computational analysis (e.g., motif analysis) in order to
uncover the mechanisms by which the environment is sensed by the genome or alters the
response at the level of the cell, organ or organism. Such a perspective is being applied to
the genetics of cancer and metabolic diseases as we found that these are by far the two broad
disease categories with the greatest number of publications describing gene-environment
interactions. There are also studies of the impact of socio-economic status as an
environmental variable on access to health care, health outcomes and achievement in school.
Lastly, there are also some studies of the influence of environment on cognitive function,
mainly dominated by the role of APOE.

The limitations of this database deserve discussion. First, the environmental factors collected
in the current database may not be comprehensive in terms of broader areas in sociology
(e.g., psychosocial factors and social environment) [52] and environmental science (e.g.,
pollution). However, we believe that this database contains most of the important GxE
interactions pertaining to metabolic syndrome and related traits. Second, some interactions
are biologically significant, but they may not be statistically significant [53]. Although the
primary interest of current research has focused on statistical interactions, more effort needs
be applied to biological interactions. Third, the data included here all emanate from
candidate gene studies. The case of CYP1A2 variants, caffeine intake and myocardial
infarction, where an association was not observed until dual stratification of genotype and
caffeine intake was considered [54], illustrates a potential shortcoming of such studies, but
does suggest that still many other GxE interactions may be described with careful
incorporation of accurate data on environmental exposures. Fourth, the assessment methods
of environmental exposures and outcomes are often different in each study, and so some
data terms may include a mixture of data with different levels of confidence. An example of
this is a value based on self-report compared to a direct measurement. In addition, small
sample sizes may contribute to false positive gene-environment interactions. Last, with
regard to the nature of epidemiological studies, different levels of evidence generated from
diverse study designs, quality of the study, statistical analyses, and sample size have been
combined when cataloging the studies.

Despite some weaknesses, this database does provide unique strengths, including indication
of risk alleles in each condition of environmental factors; study populations sampled, and
even examples of lack of interaction. This information is important for investigators to
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extract evidence and generate a new hypothesis and can offer corroboration of claims
asserted by genetic tests. By collecting and mining published results, we believe that such
data can serve as a useful resource to explore a research interest with a broader scope (e.g.,
across genes, environmental factors, or phenotypes) as we demonstrate in this report. This
database should be used as a tool during analysis of genotype association data. Researchers
will be able to query this database prior to statistical analysis as a means to focus those
analyses to a particular gene, phenotype or environmental factor. Doing so will reduce the
number of multiple comparisons and lead to more robust significance values. In conclusion,
by making this database available and integrating it into the broader dbNP, it is our hope that
interested researchers will be able to more easily pursue questions of how the human
genome senses and responds to lifestyle choices. Furthermore and perhaps most importantly,
this database can be one of many items to be implemented in research questions of health in
the context of nutrition.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A hypothetical gene-environment interaction presented with dietary protein intake as a
continuous variable affecting LDL-cholesterol levels. At a protein intake of about 15% of
total energy, there is a switch in risk genotype from AA to G carriers.
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