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Abstract
Intervertebral disks support compressive forces because of their elastic stiffness as well as the
fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical
methods can quantify the relative contributions, but only if correct material properties are used. To
identify appropriate tissue properties, an experimental study and finite element analytical
simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine
published values of disk and endplate properties to optimize model fit to experimental data.
Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed
sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of
compressive force at constant height (force relaxation) was recorded over several hours after
equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential
force–time curve-fits for experimental and finite element analytical simulations were compared.
These experiments and finite element analyses provided data dependent on poroelastic and
osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue
material properties were used to obtain refined values of five key material parameters. The
relaxation of the force in the three bath concentrations was exponential in form, expressed as mean
compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78,
and 3.40 h. This behavior was analytically well represented by a model having poroelastic and
osmotic tissue properties with published tissue properties adjusted by multiplying factors between
0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most
sensitive to values of fixed charge density and endplate porosity.
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INTRODUCTION
Much of the understanding of intervertebral disk biomechanical function comes from finite
element analyses. The accuracy of these analyses requires that the material properties as
well as the geometry are correctly represented. The material properties used in finite element
models are obtained from tests of isolated tissue. Tests to determine time-dependent and
anisotropic elastic properties of these tissues are technically challenging to perform, thus
requiring that models be compared with whole disk tests under a range of testing conditions
to ensure their validity.

The time-dependent behavior of intervertebral disks is important because of the need to
maintain the separation between vertebrae. The disks creep under sustained loading, and
subsequently ‘recover’ when unloaded with time constants of several hours.26 Physical
activity and diurnal variations in spinal loading produce substantial changes in disk
hydration.32,33 The elastic and ‘swelling’ properties change with aging and degeneration,
and might be altered therapeutically. The relatively low permeability of the vertebral
endplates2,41 and of the annulus fibrosus result in slow decay of the compressive load
supported by a disk.

The behavior of hydrated soft tissues has been described by poroelastic constitutive
models34,43,44 and by swelling properties.20 In a triphasic representation of the disk, a
compressive force is supported by a combination of elastic stress and two components of
fluid pressure associated, respectively, with poroelastic behavior and osmotic pressure. The
osmotic effects are associated with fixed charges carried by proteoglycans within the extra-
cellular matrix. The swelling properties of tissues can be quantified by measuring hydration,
osmotic swelling, and creep behavior in baths having differing osmolarity.4,6,19,47,48 Disk
degeneration is associated with loss of proteoglycans and decrease in pH that both reduce
the fixed charge density (FCD).16,39,48

Neglecting ion flow in the tissue, poroelastic models have been extended to include osmotic
swelling pressure indirectly through volume changes3,35,36 and directly based on
FCD.28,38,51 The incorporation of electrochemical theory8 allows the representation of
osmotic swelling pressure by modeling the electrochemical interactions of the fixed
charges.7,10,13,21,22,27,42,50,52

This study addressed the material property values used in a triphasic finite element model of
the time-dependent behavior of the intervertebral disk under compression, and when
immersed in fluid baths of different salinities. Experiments with human disks that followed
the same experimental protocol as the simulations provided a dataset that permitted
adjustment of the elastic, poroelastic, and osmotic tissue property parameters to obtain the
best match between experiments and simulations. The time-dependent force relaxation
behavior with changes in bath salinity provided information about the osmotic (‘swelling’)
behavior. The human disk specimens were tested with adjacent hemi-vertebrae to
approximate in vivo boundary conditions. The purpose of this study was to obtain refined
values of the published tissue properties by minimizing the differences between the
analytical model and the actual disk specimens, taking into account the calculated sensitivity
of the model behavior to the values of these properties. This was intended to identify refined
values that would be preferable to originally published values for use in finite element
analyses.
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MATERIALS AND METHODS
Force Relaxation Experiments

Nine human lumbar intervertebral disks (T12-L5) were obtained from five lumbar spines
(four male spines and one female spine, mean age of 51 years, SD of 16 years, range 16–69
years) and the compression force relaxation behavior in phosphate buffered saline baths of
three different concentrations was recorded. Spines were stored at −80 °C until testing,
when they were thawed, and divided into sections by cutting transversely through the middle
of adjacent vertebrae. The posterior elements were removed to produce specimens
consisting of a disk and two adjacent hemivertebral bodies that were potted in
polymethylmethacrylate cement. These constructs were mounted in a mechanical testing
machine that controlled the specimen’s height during the force relaxation tests while
recording the applied force. The testing machines were either a custom machine45 or
uniaxial servohydraulic testing machine (Instron 8511, Instron Pty Ltd., High Wycombe,
UK).

The phosphate buffered saline bath had initial hypotonic concentration of 0.015 M, which
was increased in two steps to 0.15 M (normotonic), then 1.5 M (hypertonic) at room
temperature (21 °C). The hypo- and normo-tonic saline concentrations were obtained by
diluting 1.5 M phosphate buffered saline (Fischer Scientific, Fairlawn, NJ, USA) with
deionized water. Protease inhibitors (1 mM ethylenediaminetetraacetic acid, 1 mM
Iodoacetamide, 1 μg/mL Pepstatin-A, 1 mM Benzamadine) were added to minimize tissue
autolysis. Each bath change included fresh protease inhibitors to maintain their
effectiveness.

Prior to the force–relaxation experiments, specimens were equilibrated with axial
compressive preload of 300 N in a hypotonic (0.015 M) bath for 15 h (Fig. 1). The initial
force of 300 N was chosen because it was found from preliminary studies that the entire
subsequent experimental protocol could then be completed without the compressive force
reducing to zero. The 15 h equilibration time was selected since preliminary experiments
indicated minimal further loss of disk height after this time. Subsequently, the specimen
height was fixed and the constraining force (initially 300 N) was recorded in each of three
bath concentrations. The three relaxation phases were termed Relax-1: 9 h at 0.015 M
(hypotonic); Relax-2: 15 h after a bath concentration change to 0.15 M (physiological); and
Relax 3: 9 h after a bath concentration change to 1.5 M (hypertonic, i.e., 10 times
physiological). These times were selected based on the preliminary experiments indicating
that disks achieved slow rates of change of force (i.e., near equilibrium) after several hours.
Axial compressive force was recorded each minute.

Comparisons between the measurements of the time-dependent loss of compression force
during the force–relaxation experiments with the analytically derived values were performed
after fitting both force–time relationships with an exponential function. The exponential in
function was employed because the time-dependent behavior (visco-elastic, poroelastic, or
diffusion) can be considered as a first-order mechanical system. The experimental or
analytical values of compressive force f as a function of time t were fit with the function:

(1)

where A is the amplitude of force change, τ the time constant, and ff the asymptotic value.
The MATLAB function fminsearch (The MathWorks, Natick, MA, USA) was used to find
the parameter values that minimized the sum of squared differences between recorded and
exponential-fit values.

Stokes et al. Page 3

Ann Biomed Eng. Author manuscript; available in PMC 2012 February 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



After testing, the disks were sectioned transversely and graded for disk degeneration by the
method of Thompson et al.46 modified for transverse sections.

Finite Element Analytical Model
The experimental sequences were simulated in a 3D finite element model. This was an
adaptation of the 2D poroelastic and chemical-electric finite element representation of the
intervertebral disk22 with the addition of the adjacent hemi-vertebrae and endplates. The
tissues were represented as hydrated and charged porous media, thus each tissue was
assigned elastic properties (elastic modulus, shear modulus, and Poisson’s ratio),
permeability (porosity and solid–fluid friction coefficient) (Table 1), and FCD. The fluid
was assigned a bulk modulus, and displacements of ions were assigned solid-ion and fluid-
ion friction coefficients. The Galerkin finite element method with linear basis functions and
tetrahedral elements was used to develop the model equations. The equations were split into
two sets, the electrochemical equations and the solid–fluid equations, as in the previous 2D
model.22 For each implicit finite difference time step, the nonlinear electrochemical system
was solved by direct iteration using an assumed fixed set of nodal values of the fixed
charged density to achieve a solution with mass balance of ions and balanced electric
potential. This electrochemical solution was then used to solve the solid–fluid equations.
The initial equilibration to the 300 N compressive force was simulated with a time step of
600 s and the relaxation simulations used a time step of 216 s, these times steps being
selected to ensure adequate representation of the time-varying compression force relaxation
behavior. The constraining force acting on the hemi-vertebrae at each time step was
calculated by the summation of the stresses in each upper boundary element multiplied by
the corresponding area. The volume of the specimen (that varied because of fluid flow at the
boundaries) was calculated by summating all element volumes.

The primary coupled field variables in the analytical model were (1) solid displacements, (2)
relative fluid displacements, (3) electric potentials, and (4) negative (chloride) ion
concentrations. The secondary variables were (1) positive (sodium) ion concentration
obtained by assuming electro-neutrality, (2) relative fluid velocity, (3) solid and fluid
stresses, (4) the flux of positive and negative ions, (5) electrical current, and (6) fluid
pressure. The model equations were solved using custom code written in Matlab (The
MathWorks).

The intervertebral disk geometry was idealized with ‘kidney-shaped’ section in the axial
plane, peripheral disk bulge, annulus-nucleus boundary, and endplate shape as described by
Broberg3 (Fig. 2). Endplates were represented by a 1-mm thick layer of elements on the
inferior and superior surfaces of the disk. The hemi-vertebrae were represented by two
layers of elements aligned perpendicular to the endplates with a cortical bone external shell
and trabecular bone interior. Averaged dimensions (from measurements of radiographs of
each of the nine vertebra-disk-vertebra specimens) gave principal dimensions of the
modeled disk as 33.8 × 45.8 × 5.0 mm3; wedge angle 5°; distance between vertebral centers
36.3 mm.

Elastic and poroelastic material properties’ values for the five regions in the model (Fig. 2)
were obtained from the literature (see Table 1). Orthotropic elastic properties of the annulus
were obtained from ‘linear region’ values given by Elliott and Setton9 for the outer annulus.
The annulus shear moduli were obtained from Fujita et al.11 The circumferential-axial
Poisson’s ratio value was calculated from the orthotropic material relationship relating
moduli and Poisson’s ratios, ensuring that the material stress–strain relationships were
positive-definite (i.e., energy-conservative). Other materials were considered as isotropic.
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The distribution of the FCD in the nucleus and annulus was based on reported values for
proteoglycan content of healthy disks23 and assumed to be independent of the vertical
dimension. The values were in the range 0.03–0.13 M equivalents/L, with highest values in
the nucleus. The endplates and adjacent hemi-vertebrae were considered as poroelastic,
without electrical charge. Endplate permeability was calculated from pressure-flow
experiments reported by Ayotte et al.2 Solid–fluid friction coefficients were calculated from
the equation relating permeabilities, porosity, and ion friction coefficients given in Iatridis et
al.24 The variable concentration of phosphate buffered saline together with the (acidic)
protease inhibitors was found to give variable pH of the bath of 6.8 at 1.5 and 0.15 M, but
pH of 4.79 in the hypotonic 0.015 M bath. Since the more acidic pH in the hypotonic bath
would reduce the effective FCD in the disk, values were adjusted by an empirical factor
initially set to 0.67 for simulations with the hypotonic bath, this value derived from data for
articular cartilage.12

Boundary conditions were imposed such that all translations on the transverse mid-plane
surface of the inferior vertebra were constrained to be zero. Fluid flow at the mid-transverse
plane surfaces of the superior and inferior vertebrae was unconstrained (free-draining), to
represent the presumed experimental conditions (imperfect seal at potted surfaces), as well
as the likely in vivo conditions with venting of intraosseus fluid pressure via vascular
channels. The ionic concentrations of sodium and chloride were altered in stepped
increments to represent the bath changes. For each simulated bath change, the initial
potentials within the disk were set using Donnan equilibrium, and the electrochemical
solution was then iteratively solved to ensure equilibrium prior to the poroelastic solution.

Parameter refinement involved calculating adjustments to five selected tissue material
property values obtained from the literature to optimize model–experiment agreement.
These selected properties that represented elastic, poroelastic, and osmotic behaviors were
the three orthotropic annulus elastic moduli (E); nucleus and annulus FCD disk and bone
solid–fluid friction coefficients (fsw); factor to adjust FCD for the reduced bath solution pH
(pH_adj) at 0.015 M concentration, and endplate porosity (pore).

The parameter adjustments were based on model sensitivity to tissue properties. The
sensitivity of the model to these five property multipliers (factors) was determined by re-
running the model simulations after varying each factor by ±10%. Sensitivity was expressed
as the proportional change in model behavior (amplitude and time constant values from
simulations of each of the three force relaxation phases of the experiment) divided by the
proportional change in the multiplying factor (10%). The sensitivities obtained from the
positive and negative 10% adjustments were averaged. Hence, there were five multiplying
factors to be optimized, and six experimental values (goals) to be matched. The optimization
was performed in three steps: an initial empirical step, followed by two cost function
minimization steps employing the sensitivity values. For this optimization, the cost function
was calculated as the sum of squares of the proportional differences in each of the three
amplitudes and three time-constants expressed as a proportion of the corresponding
experimental values.29

RESULTS
There was a good fit subjectively and objectively (R2 ≥ 0.99) for recorded data to the simple
exponential in Eq. (1). Therefore, the values of the asymptotic amplitude A and the time
constant τ were used to quantify the experimental and analytical results.

In the three force relaxation experiments, there was a mean compressive force loss (A in Eq.
1) of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.4 h (Table
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2), and there was substantial variability between specimens (Fig. 3). The variability between
specimens in these measurements was expressed as standard deviations that were between
0.11 and 0.49 of the mean values (Table 2), and the inter-specimen variability was not
explained by differences in disk physical dimensions or Thompson grade46 (no significant
correlations were found). Two disks were Thompson grade II, five were grade III, and one
disk each was grades IV and V. Prior to the force relation experiments, the initial
equilibration for 15 h with the initial bath concentration of 0.015 M produced a mean
specimen height loss (creep) of 0.59 mm with a time constant (τ) of 4.87 h. The fact that
force relaxation was observed in the Relax-1 experiment indicated that the disks had not in
fact reached constant force in the initial equilibration, even though the displacement
appeared to be asymptotic.

The initial finite element analytical simulations with published values of the tissue material
properties were characterized by over-estimated swelling [3 mL disk volume gain during
equilibration, 38 N increase in compressive force during relaxation in the hypotonic (0.015
M) bath, and extremely rapid and overestimated loss of compressive force in the hypertonic
(1.5 M) bath]. These changes occurred in the analysis with much shorter time constants than
those experimentally observed. Therefore, empirical adjustments were made to the disk
principal elastic, swelling, and poroelastic properties by the use of multiplying factors for
Young’s modulus of the annulus (E) (2.0), the fluid–solid friction coefficient fsw (1.8) and
the FCD (0.6) and an adjustment factor to reduce FCD at reduced pH in the 0.015 M bath
(0.67), and endplate permeability (pore) (0.5). The subsequent ‘optimized’ adjustments in
the factorial adjustment multipliers were Young’s modulus of the annulus (E) (1.231), the
fluid–solid friction coefficient fsw (2.6), the FCD (0.65) and an adjustment factor to reduce
FCD at reduced pH (0.55), and endplate permeability (pore) (1.05).

After rerunning the analytical simulations with these refined values of the multiplying
factors, the overall agreement between analyses and experiments was improved to the values
given in Table 2, and as illustrated in Fig. 4. The simulations indicated fluid volumetric loss
of 0.3 mL after each of the bath changes. In the simulation of the prior equilibration with
300 N preload the volumetric gain was 0.5 mL together with 0.59 mm loss of height of the
specimen. The volume gain occurred because of peripheral bulging of the disk. The
sensitivities to positive and negative 10% changes in tissue properties were similar (less than
30% different in 24 of 30 cases), indicating relatively linear dependence of model behavior
on these factors. The mean values (Table 3) identify FCD (and its adjustment for pH) and
endplate porosity as the factors to which the relaxation behavior was most sensitive.

In the tests of convergence for time step and mesh refinement, the model having refined
property values was rerun after doubling the time step and after doubling of the number of
nodes. With the doubling of the time step there was less than 11 N differences in the
calculated forces, this observed during rapid changes in force occurring after a bath change.
A reanalysis with a refined mesh (4693 vs. 2353 nodes) gave force value differences
averaging 4.6 N, indicating adequate convergence prior to the mesh refinement.

DISCUSSION
The relaxation behavior of the disks with the three different bath concentrations showed the
expected exponential form, and the analytical model showed qualitatively similar behavior
that was improved substantially by making relatively small adjustments to five key groups
of tissue property parameters. These adjustments improved the agreement between
simulations and experiments, but an exact match to the six measures of force relaxation
(time constants and amplitudes in each the three bath concentrations) was not achieved by
this parameter optimization. The first two time constants were over-estimated in the
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simulations relative to the experimental results, producing a more rapid loss of force during
the relaxations, and consequently an accumulated over-estimate of the reduction in
compressive force.

There was a very large range of behaviors of the hemi-vertebra-disk-hemi-vertebra
constructs as shown in Fig. 3 for the nine specimens tested. Material property values were
adjusted to represent the averaged behavior. However, the initial (published) values when
used in the model did not match any observed behavior. The between-specimen variability
was not well explained by differing physical dimensions, implicating different material
properties that are not well correlated with degeneration grade. This study could be extended
to investigate this, and potentially provide a range of material properties (as well as the
‘average match’), but probably requiring a larger and more representative sample of spinal
segment specimens.

The analytical behaviors were numerically most sensitive to changes in values of the FCD
(or its adjustment for pH) and of the endplate porosity. These sensitivities draw attention to
likely effects of aging and degeneration of the disk on these properties—both the FCD and
the endplate permeability are reported to decrease, and pH becomes more acidic. Thus, the
aging changes would be expected to produce significant changes in the time-dependent load-
bearing behavior, according to these analytical predictions.

The adjustments of tissue properties that improved the analytical–experimental agreements
were by multiplying factors between 0.55 (for FCD) and 2.6 (for the solid–fluid friction
coefficient). The numerically smallest adjustment factor was 1.05 (for endplate porosity).
The approximately factor-of-two modifications of tissue properties that improved the
experimental–analytical agreement are considered to be small, relative to the variability in
the reported values of these properties, and the substantial variability of the measured
behavior of the nine disks tested (Fig. 3).

Improved agreement between analyses and experimental data was obtained by increasing
disk annulus moduli by a factor of 1.23 compared to published values for the ‘elastic-
region’9 that were used instead of the lower values for the ‘toe-region,’ suggesting that the
annulus tissue was in a tensile strained condition during the experiments. The FCD was
reduced from published values, and a further decrease was required to compensate for
reduced pH in the 0.015 M bath, and the amount of this pH adjustment was greater than
indicated by the data (for articular cartilage) reported by Grodzinsky et al.12 The reduction
in FCD was despite the initial values being at the low end of the range of published
values.23,48 The largest adjustment (increase in the solid–fluid friction by 2.6) was not
unexpected, since this property is difficult to measure, so the published values may be
unreliable and subject to uncertainties about the relatives roles of intra- and extra-fibrillar
water.20,40 The smallest adjustment was in the value for endplate porosity (increased from
0.1 to 0.105).

Including hemi-vertebrae and endplates adjacent to the intervertebral disk was considered
important, since these structures are significant contributors to the deformation and fluid
exchange that occur in motion segments.49 The bony and cartilaginous structures of the
endplate were combined in the representation of the endplate, with values taken from a study
that included both structures.2 The cartilaginous endplate tissue normally has a small effect
on flow properties relative to the bony component.41 The simulations did not include solid
phase viscoelastic properties of disk and bone. These properties are reported to have small
values for annulus tissue samples.18

The tissue properties were considered to be finite-strain independent since in the stress–
relaxation tests the tissue volumetric strains are quite small (approximately 0.6 mL volume
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change occurring in the simulations, corresponding to volumetric strains less than 6%).
Permeability is approximately proportional to small volumetric strains.17 The refined
estimates of tissue properties given here should therefore correspond to average effective
values for the state of volumetric strain (hydration) of the tissues, which in turn is not known
exactly either in the whole disk experiments or in the published tissue experiments from
which values were obtained for the analyses. At the beginning of the force relaxation tests
the compressive force was 300 N which corresponds to an intradiscal pressure of about 200
kPa, associated with the low end of the range of normal activities.

Results of this study emphasize the interactions among tissue FCD, stiffness, and
permeability in contributing to the axial poroelastic behaviors of the motion segment
behaviors.

The published values of disk tissue properties must be modified for use in a finite element
model to represent the time-dependent behavior that was recorded in the force–relaxation
experiments.

Findings also confirm the importance of FCD in ability of intervertebral disks to support
compressive forces and sensitivity studies indicated that endplate porosity and annulus
modulus were more important than tissue permeability in defining stress–relaxation
behavior. These studies show how disk degeneration involving loss of FCD and decreased
pH of the tissue can compromise the ability of disks to support compressive load.
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FIGURE 1.
Disk testing protocol showing (a) bath concentration (b) axial displacement, and (c) axial
force time histories. Initially the disks were subjected to equilibration for 14 h under a 300-
N preload in a 0.015-M (0.1 times physiological) saline bath. The disk heights were then
fixed for the force–relaxation sequences Relax-1, Relax-2, and Relax-3 at each of the three
bath concentrations 0.015 M (0.1 times physiological), 0.15 M (physiological), and 1.5 M
(10 times physiological) for 9, 15, and 9 h, respectively.
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FIGURE 2.
Mesh and material regions of the analytical model. Regions are cancellous bone, cortical
bone, endplate, disk nucleus, and disk annulus. Axis dimensions are in meter.
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FIGURE 3.
Exponential curve fits to experimental recordings of specimen height (initial equilibration)
and of compressive force (three force–relaxation experiments at different bath
concentrations). In each panel the lines are curve fits for individual specimens together with
a mean curve-fit (error bars are SEM).
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FIGURE 4.
Motion segment relaxation showing experimental behavior (and standard deviation error
bars) and simulated analytical behavior after factorial adjustment of the five selected tissue
material properties.
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TABLE 1

Material properties of the analytical model.

Material property Units Value Source

Annulus

 Radial modulus (Err) MPa 0.45 Elliott and Setton9

 Circumferential modulus (Ecc) MPa 17.45 Elliott and Setton9

 Axial modulus (Ezz) MPa 0.82 Elliott and Setton9

 Radial-circumferential Poisson’s ratio (νrc) 0.33 Elliott and Setton9

 Radial-axial Poisson’s ratio (νrz) 0.14 Elliott and Setton9

 Circumferential-axial Poisson’s ratio (νcz) 0.19a Elliott and Setton9

 Radial-circumferential shear modulus (Grc) kPa 25.3 Fujita et al.11

 Circumferential-axial shear modulus (Gcz) kPa 56.0 Fujita et al.11

 Axial-radial shear modulus (Gzr) kPa 32.1 Fujita et al.11

 Porosity (na) 0.68b Antoniou et al.1

 Solid–fluid friction coefficient (fswa) 1014 N s/m4 4.23c Gu et al.15

Trabecular bone

 Isotropic solid modulus (Et) MPa 220 Lim and Hong31

 Isotropic solid Poisson’s ratio (νt) 0.24 Lim and Hong31

 Porosity (nt) 0.82 Lim and Hong31

 Solid–fluid friction coefficient (fswt) 106 N s/m4 4.83 Lim and Hong31

Cortical bone

 Isotropic solid modulus (Ec) 1010 Pa 1.46 Cowin5

 Isotropic solid Poisson’s ratio (νc) 0.325 Cowin5

 Porosity (nc) 0.094 Li et al.30

 Solid–fluid friction coefficient (fswc) 1012 N s/m4 1.66 Li et al.30

Endplate

 Isotropic solid modulus (Ee) 1010 Pa 1.46 Cowin,5 cf. Cortical bone

 Isotropic solid Poisson’s ratio (νe) 0.325 Cowin,5 cf. Cortical bone

 Porosity (ne) 0.10 cf. Cortical bone

 Solid–fluid friction coefficient 1014 N s/m4 4.00d Ayotte et al.2

Nucleus

 Isotropic solid modulus (En) MPa 0.14e Périé et al.37 and Iatridis et al.24

 Isotropic solid Poisson’s ratio (νn) 0.40e Périé et al.37 and Iatridis et al.24

 Porosity (nn) 0.77b Antoniou et al.1

 Solid–fluid friction coefficient (fswn) 1014 N s/m4 6.7 Johannessen and Elliott25

Ions

 Positive ion-fluid friction coefficient 1014 N s/m4 1.97 Gu et al.14

 Positive (Na+) ion–solid friction coefficient 105 N s/m4 1.00

 Negative (Cl−) ion–fluid friction coefficient 1014 N s/m4 3.04 Scaled as (MWCl/MWNa)a Na+ coefficient
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Material property Units Value Source

 Negative (Cl−) ion–solid friction coefficient 105 N s/m4 1.00

a
Value calculated from the published data and after imposing orthotropic material relationships.

b
Average of values given for healthy and degenerated tissue.

c
Average of all disk degeneration grades and relative fluid flow directions.

d
Value calculated from the pressure drops for flow out of the disk.

e
Value calculated from the published data and after imposing isotropic material relationships.
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TABLE 2

Experimental mean (SD) and model results.

Time constant (τ h) Amplitude (A)

Experimental Simulation Experimental Simulation (N)

Relax-1 1.73 (0.48) 2.3 48.7 (17.4) N 50.1

Relax-2 2.78 (0.56) 3.6 55.0 (16.2) N 57.8

Relax-3 3.4 (0.86) 2.4 140 (15.7) N 150

With factorial adjustment of five key material properties.
Annulus Young’s modulus: ×1.23 (elastic property).
Fluid–solid friction coefficient: ×2.6 (poroelastic property).
Endplate porosity × 1.05 (poroelastic property).
FCD: ×0.65 at pH = 7 (osmotic property).
FCD: ×0.55 adjustment factor at pH = 5 (osmotic property).
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