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Abstract
Scientists who use animals in research must justify the number of animals to be used, and
committees that review proposals to use animals in research must review this justification to
ensure the appropriateness of the number of animals to be used. This article discusses when the
number of animals to be used can best be estimated from previous experience and when a simple
power and sample size calculation should be performed. Even complicated experimental designs
requiring sophisticated statistical models for analysis can usually be simplified to a single key or
critical question so that simple formulae can be used to estimate the required sample size.
Approaches to sample size estimation for various types of hypotheses are described, and equations
are provided in the Appendix. Several web sites are cited for more information and for performing
actual calculations.
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In the United States and in most European countries, an investigator must provide the animal
care committee with an explanation for the number of animals requested in a proposed
project to ensure appropriateness of the numbers of animals to be used. This article is
written for animal care committee members and veterinarians and for researchers who are
asked to provide statistical calculations for the proposed number of animals to be used in
their project. The project’s purpose may be to obtain enough tissue to do subsequent
analyses, to use a small number of animals for a pilot experiment, or to test a hypothesis. In
the text below, we discuss the statistical bases for estimating the number of animals (sample
size) needed for several classes of hypotheses. The types of experiments that an investigator
might propose and the methods of computing sample size are discussed for situations where
it is possible to do such a computation.

Types of Experiments
Types of experiments include pilot and exploratory, those based on success or failure of a
desired goal, and those intended to test a formal hypothesis. Each type is discussed briefly
below.

Pilot and Exploratory Experiments
It is not possible to compute a sample size for certain types of experiments because prior
information is lacking or because the success of the experiment is highly variable, such as in
producing a transgenic animal. For other types of experiments, complicated statistical
designs can be simplified to an important comparison wherein the sample size should be
large enough to have a good chance of finding statistical significance (often called power;
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see Effect Size, Standard Deviation, Power, and Significance Level). Pilot experiments are
designed to explore a new research area to determine whether variables are measurable with
sufficient precision to be studied under different experimental conditions as well as to check
the logistics of a proposed experiment. For example, suppose the investigator wishes to
determine whether a certain factor, x, is elevated in an animal model of inflammation. The
laboratory has developed an assay for factor x and now wishes to determine the variation of
factor x in a population of mice. In the protocol, the investigator proposes measuring the
concentration of factor x in 10 animals before and after the induction of inflammation. In a
pilot experiment such as this, the number of animals to be used is based on experience and
guesswork because there are no prior data to use in estimating the number of animals needed
for the study. The experiment is performed to provide a rough idea of the standard deviation
and the magnitude of the inflammatory effect.

A statistical analysis of the results yields estimates of the mean and standard deviation of
factor x concentration before and after the induction of inflammation as well as estimates of
the mean difference and its standard deviation. Such estimates can then be used to compute
the sample size for further experiments. The investigator would be encouraged if the
standard deviation of factor x in the 10 animals is relatively small compared with the
concentration of the factor. Suppose that the mean concentration of factor x increased
twofold after inflammation was induced, a change that should be easily detected if the
variation of the change in the population is low. Then the pilot experiment will have been
encouraging in that the investigator may be able to track the increase in the concentration of
factor x over time and determine changes in the concentration of the factor with various
forms of therapy. The results of the pilot experiment can be used to estimate the number of
animals needed to determine time trends and to study the effect of various interventions on
the concentration of factor x using methods described below.

Sometimes “exploratory” experiments are performed to generate new hypotheses that can
then be formally tested. In such experiments, the usual aim is to look for patterns of
response, often using many different dependent variables (characters). Formal hypothesis
testing and the generation of p values are relatively unimportant with this sort of experiment
because the aim will be to verify by additional experiments any results that appear to be of
interest. Usually the number of animals used in such experiments is based on a guess based
on previous experience. Data collected in exploratory experiments can then be used in
sample size calculations to compute the number of animals that will be needed to test
attractive hypotheses generated by the exploration.

Experiments Based on Success or Failure of a Desired Goal
In experiments based on the success or failure of a desired goal, the number of animals
required is difficult to estimate because the chance of success of the experimental procedure
has considerable variability. Examples of this type of experiment are production of
transgenic animals by gene insertion into fertilized eggs or embryonic stem cells. Large
numbers of animals are typically required for several reasons. First, there is considerable
variation in the proportion of successful gene or DNA incorporation into the cell’s genome.
Then there is variability in the implantation of the transferred cell. Finally, the DNA
integrates randomly into the genome and the expression varies widely as a function of the
integration site and transgene copy number.

Compounding this variability, different strains of mice react differently to these
manipulations, and different genes vary in their rates of incorporation into the genome. It is
often necessary to make several transgenic lines (see the discussion of transgenic animals in
the ARENA/OLAW Institutional Care and Use Committee Guidebook [ARENA/OLAW
2002]). Using equation 1 below (Single-Group Experiments) and assuming that the success
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rate for all of the steps just mentioned is 5%, then one would need to use 50 animals,
whereas a success rate of 1% would require using 300 animals. These numbers accord with
the experience of investigators in the field and are usually the range of numbers of mice
required to produce a single transgenic line.

In the case of knockout or knockin mice produced by homologous recombination, there is
much less variability in the results and fewer animals may have to be produced. Again, it is
difficult to predict the number required, especially if investigating the effects of regulatory
sequences rather than of protein expression. The number of animals required is usually
estimated by experience instead of by any formal statistical calculation, although the
procedures will be terminated when enough transgenic mice have been produced. Formal
experiments will, of course, be required for studying the characteristics of the transgenic
animals requiring yet more animals.

Experiments to Test a Formal Hypothesis
Most animal experiments involve formal tests of hypotheses. In contrast to pilot experiments
and the other types of experiments described above, it is possible to estimate the number of
animals required for these experiments if a few items of information are available. Broadly,
there are three types of variables that an investigator may measure: (1) dichotomous
variable, often expressed as a rate or proportion of a yes/no outcome, such as occurrence of
disease or survival at a given time; (2) continuous variable, such as the concentration of a
substance in a body fluid or a physiological function such as blood flow rate or urine output;
and (3) time to occurrence of an event, such as the appearance of disease or death. Many
statistical models have been developed to test the significance of differences among means
of these types of data. Detailed discussions of the models can be found in books on statistics
(Cohen 1988; Fleiss 1981; Snedecor and Cochran 1989), in manuals for various computer
programs used for statistical analyses (Kirkpatric and Feeney 2000; SAS 2000), and on
websites that present elementary level courses on statistics (e.g.,
<http://www.ruf.rice.edu/~lane/rvls.html>). In this article, we describe methods for
computing sample size for each of these types of variables.

Defining the Hypothesis to Be Tested
Although experimental designs can be complicated, the investigator’s hypotheses can
usually be reduced to one or a few important questions. It is possible then to compute a
sample size that has a certain chance or probability of detecting (with statistical significance)
an effect (or difference) the investigator has postulated. Simple methods are presented below
for computing the sample size for each of the three types of variables listed above. Note that
the smaller the size of the difference the investigator wishes to detect or the larger the
population variability, the larger the sample size must be to detect a significant difference.

Effect Size, Standard Deviation, Power, and Significance Level
In general, three or four factors must be known or estimated to calculate sample size: (1) the
effect size (usually the difference between 2 groups); (2) the population standard deviation
(for continuous data); (3) the desired power of the experiment to detect the postulated effect;
and (4) the significance level. The first two factors are unique to the particular experiment
whereas the last two are generally fixed by convention. The magnitude of the effect the
investigator wishes to detect must be stated quantitatively, and an estimate of the population
standard deviation of the variable of interest must be available from a pilot study, from data
obtained via a previous experiment in the investigator’s laboratory, or from the scientific
literature. The method of statistical analysis, such as a two-sample t-test or a comparison of
two proportions by a chi-squared test, is determined by the type of experimental design.
Animals are assumed to be randomly assigned to the various test groups and maintained in
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the same environment to avoid bias. The power of an experiment is the probability that the
effect will be detected. It is usually and arbitrarily set to 0.8 or 0.9 (i.e., the investigator
seeks an 80 or 90% chance of finding statistical significance if the specified effect exists).
Note that 1-power, symbolized as β, is the chance of obtaining a false-negative result (i.e.,
the experiment will fail to reject an untrue null hypothesis, or to detect the specified
treatment effect).

The probability that a positive finding is due to chance alone is denoted as α, the
significance level, and is usually chosen to be 0.05 or 0.01. In other words, the investigator
wishes the chance of mistakenly designating a difference “significant” (when in fact there is
no difference) to be no more than 5 or 1%. Once values for power and significance level are
chosen and the statistical model (e.g., chi-squared, t-test, analysis of variance, linear
regression) is selected, then sample size can be computed using the size of the effect the
investigator wishes to detect and the estimate of the population standard deviation of the
factor to be studied, using methods outlined below.

Several websites contain discussions of the principles of sample size calculations or have
programs that will permit the user to make sample size calculations using various
techniques. A few of these are

• <http://www.biomath.info>: a simple website of the biomathematics division of the
Department of Pediatrics at the College of Physicians & Surgeons at Columbia
University, which implements the equations and conditions discussed in this article;

• <http://davidmlane.com/hyperstat/power.html>: a clear and concise review of the
basic principles of statistics, which includes a discussion of sample size
calculations with links to sites where actual calculations can be performed;

• <http://www.stat.uiowa.edu/~rlenth/Power/index.html>: a site where sample size
calculations can be made for many different statistical designs;

• <http://www.zoology.ubc.ca/~krebs/power.html>: a review of several software
packages for performing sample size calculations; and

• <www.lal.org.uk/hbook14.htm> references an excellent handbook on experimental
design and includes links to several statistical packages.

Also available are specialized computer programs such as nQuery Advisor, and statistical
packages such as SPSS, MINITAB, and SAS, which will run on a desktop computer and can
be used both for sample size calculations and for performing statistical analysis of data.

It should be noted that in the following discussion of sample size calculations, the aim is to
simplify the question being addressed so that power calculations can be performed easily.
There is no need to alter the actual design of the experiment and data analysis. Using, for
example, randomized block, Latin square and/or factorial experimental designs, and the
analysis of variance, it is possible to control for the effect of strain differences on a factor
such as survival or response to an intervention and to obtain a more significant result than
using more elementary methods. However, the simplified designs discussed here yield
sample sizes close to what would be obtained with more complex analyses and hence should
help the investigator be self-sufficient in planning experiments.

Experiments can be classified in a variety of ways. Many are carried out in two (or more)
groups of animals. In the text below, these types are considered first, followed by single-
group experiments.
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Sample Size for Dichotomous Data
An experiment can involve measurement of dichotomous variables (i.e., occurrence of an
event, expressed as rates or proportions). Sample size calculations for dichotomous variables
do not require knowledge of any standard deviation. The aim of the experiment is typically
to compare the proportions in two groups. In such a case, a relatively simple formula
(Appendix Equation 1) will give the required sample size, given values for power,
significance level, and the difference one wishes to detect. If more than two groups are
studied, it is often possible to identify two rates that are more important to compare (or
closest to each other) than any other pair.

Many books on statistics have tables that can be used to compute sample size, and nearly all
statistical computer programs also yield sample size when power, significance level, and
size of difference to be detected are entered. As an example, suppose previous data suggest
that the spontaneous incidence of tumors in old rats of a particular strain is 20% and an
experiment is to be set up to determine whether a chemical increases the incidence of
tumors, using the same strain of rats. Suppose also that the scientist specifies that if the
incidence increases to 50%, he/she would like to have an 80% chance of detecting this
increase, testing at p = 0.05. Using Appendix Equation 1 and entering p1 = 0.2, p2 = 0.5 (for
power = 0.8 and α = 0.05), we learn that this experiment would require 43.2 or roughly 45
rats per group.

Note that the equations in the Appendix (also used in the calculations that can be carried out
on the <www.biomath.info website) give sample sizes large enough to detect an increase or
decrease in the variable (i.e., for a two-tailed test). Even when the postulated effect is an
increase, it can be argued that a statistically significant change in the opposite direction is
interesting and may merit further study. Nearly all clinical trials are now designed for two-
tailed tests. In the carcinogenicity rat assay described above, it might be interesting and
warrant further study if the test compound resulted in a significant fall in the spontaneous
tumor rate. Also note that Appendix Equation 1 contains a continuity correction for the fact
that the distribution of discrete data is being approximated by a continuous distribution
(Fleiss 1981). Many computer programs used for sample size calculation do not include the
continuity correction and hence will yield somewhat smaller sample size values.

Sample Size for Continuous Variables
Experiments are often designed to measure continuous variables such as concentration of a
substance in a body fluid or blood flow rate. Although the statistical analytical models may
be complex, it is often critical to detect the difference in the mean of a variable between two
groups if that difference exists. In this case (Appendix Equation 2), a simple formula can be
used to compute sample size when power, significance level, the size of the difference in
means, and variability or standard deviation of the population means are specified. Again,
the calculations are available in most modern statistical packages.

Suppose that in previous experiments the mean body weight of the rats used at a certain age
is 400 g, with a standard deviation of 23 g, and that a chemical that reduces appetite is to be
tested to learn whether it alters the body weight of the rats. Assume also that the scientist
would like to be able to detect a 20 g reduction in body weight between control and treated
rats with a power of 90% and a significance level of 5%, using a two-tailed unpaired t-test
(two-tailed because the chemical might increase body weight). A computer program, or
calculations based on Appendix Equation 2, suggests that 28.8 rats per group or roughly 60
(30 animals per group times 2 groups) rats are required for the whole experiment.
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Single-Group Experiments
If the aim is to determine whether an event has occurred (e.g., whether a pathogen is present
in a colony of animals), then the number of animals that need to be tested or produced is
given by:

(1)

where 1−β is the chosen power (usually 0.10 or 0.05) and p represents the proportion of the
animals in the colony that are not infected. Note that the proportion not infected is used in
the formula. For example, if 30% of the animals are infected and the investigator wishes to
have a 95% chance of detecting that infection, then the number of animals that need to be
sampled (n) is

A total of nine animals should be examined to have a 95% chance of detecting an infection
that has affected 30% of the animals in the colony. If the prevalence of infection is lower
(e.g., 10%), then

Roughly 30 animals should be sampled. Thus, many more animals need to be sampled if the
prevalence of the pathogen is low.

Proportion
The result described above is for a case in which the occurrence of an event in even one
animal is of interest. In other single-group experiments, the researcher is interested in
establishing that the postulated proportion is nonzero, or different from a prespecified value
(known from prior studies, from physiological considerations, or as a value of clinical
interest). It can be shown that the number of animals required for such an experiment is
simply half the number given by Appendix Equation 1. In this case, pe is the postulated
proportion, and pc is 0 or the prespecified value.

Continuous Variable
In a similar fashion, the researcher may measure a continuous variable in a single group and
wish to establish that it is nonzero or different from a prespecified value. As with a
proportion, it can be shown that the number of animals required for such an experiment is
simply half the number given by Appendix Equation 2. In this case, d is the difference
between the prespecified value and the postulated mean experimental value.

Controlling Variability by Repeat Study
Estimates of the required sample size depend on the variability of the population. The
greater the variability, the larger the required sample size. One method of controlling for
variability in the level of a continuous variable such as blood flow is to measure the variable
before and after an experimental intervention in a single animal. In this case, instead of
using an estimate of the variability of the population mean, the variability of the difference
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is estimated. The standard deviation of the difference in a measurement in an individual is
lower because it does not include inter-individual variability. Stated in other terms, each
animal is its own control. The number of animals needed to test a hypothesis will be reduced
because the effect of animal-to-animal variation on the measurement is eliminated. Such an
experiment is normally analyzed using a paired t-test. Appendix Equation 3 provides sample
size calculation for such an experimental design. Crossover designs in which different
groups of animals may have several different treatments in random sequential order are a
generalization of this example. Such designs are also used to eliminate interindividual
variability. In determining sample size, it is probably best to base the estimates on two
chosen treatments.

Correlation Between Two Variables
If two continuous variables are measured in a single group, the question may be whether
they are correlated significantly. For an assumed or postulated correlation coefficient, it is
possible to calculate the number of animals needed to find a significant correlation.
Appendix Equation 4 provides the necessary formula.

Considerations of Normality
The sample size calculations for continuous variables (Appendix Equations 2–4) assume that
the variables are normally distributed (i.e., the values fall on a bell-shaped curve). The
calculations are fairly robust: Small departures from normality do not unduly influence the
test of the hypothesis. However, if the variable has a long tail in one direction (usually to the
right), then the deviation from normality becomes important. A common method for making
a distribution more normal is to use the log or square-root or some other transformation in
the analyses. Such a transformation will often result in a variable that is closer to being
normally distributed. One then uses the transformed variable for sample size calculations
and for further statistical analysis.

Sample Size for Time to an Event
Simple Approaches

The statistical analysis of time to an event involves complicated statistical models; however,
there are two simple approaches to estimating sample size for this type of variable. The first
approach is to estimate sample size using the proportions in the two experimental groups
exhibiting the event by a certain time. This method converts time to an event into a
dichotomous variable, and sample size is estimated by Appendix Equation 1. This approach
generally yields sizes that are somewhat larger than more precise calculations based on
assumptions about the equation that describes the curve of outcome versus time.

The second approach is to treat time to occurrence as a continuous variable. This approach is
applicable only if all animals are followed to event occurrence (e.g., until death or time to
exhibit a disease such as cancer), but it cannot be used if some animals do not reach the
event during the study. Time to event is a continuous variable, and sample size may be
computed using Appendix Equation 2.

Unequal Number of Animals in Different Groups
Studies of transgenic mice often involve crossing heterozygous mice to produce
homozygous and heterozygous littermates, which are then compared. Typically, there will
be twice as many heterozygotes in a litter as homozygotes, although the proportions may be
different in more complicated crosses. In such experiments, the researcher wishes to
estimate the number of animals with the expected ratio between the experimental groups.
The equations provided in the Appendix become considerably more complex. The reader is
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directed to our website for unequal sample size calculations (the expected ratio of group
sizes is entered in place of the 1.0 provided on the chi-squared test on proportions web
page): <http://www.biomath.info>.

Summary
In this article, we have discussed simple methods of estimating the number of animals
needed for various types of variables and experiments. The thrust of the argument is that
although analysis of the final set of data may involve sophisticated statistical models, sample
size calculations can usually be performed using much simpler models. The aim of the
calculation is to estimate the number of animals needed for a study, a value that is usually
rounded up to yield an adequate number of animals for the study.

It is frequently true, in the authors’ experience, that investigators err on the side of using too
few animals rather than too many. This propensity results in a study that has too little power
to detect a meaningful or biologically significant result. Roberts and colleagues (2002) did a
meta-analysis of 44 animal experiments on fluid resuscitation and found that none of them
had sufficient power to reliably detect a halving of death rate. To avoid this error, it is
necessary to choose the power, the significance level, and the size of the effect to be
detected, and to estimate the population variability of the variable being studied. Although
the design of the experiment is simplified for the purposes of estimating sample size, it
should be noted that using a more sophisticated design and statistical analysis usually yields
the most power to detect any difference.
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Appendix

Dichotomous Variables (Rates or Proportions)
Let rc be the number of outcomes (an outcome is an event of interest such as occurrence of
disease, death, or presence of a trait like coat color) in the control group, and re is the
outcome in the experimental group.

Define
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where rc is the number of events and Nc is the total number of animals in control group or
group c, and re, Ne for the experimental group or group e.

The investigator’s hypothesis is that pe is different from pc. This hypothesis can be stated as
a null hypothesis, H0 (i.e., there is no difference between the two proportions), and a
statistical test is devised to test that hypothesis. If the null hypothesis is rejected, then the
investigator can conclude, at significance level α, that there is a difference between the two
proportions. If the null hypothesis is not rejected, then the alternative hypothesis is rejected
with the probability that a false-negative of β has occurred. These hypotheses can be stated
as follows:

The formula for determining sample size is derived from a common statistical test for Ho.
Usually the investigator knows or can estimate the proportion of the control group, which
will have the outcome being observed, and can state a difference between the control group
and the experimental group that he/she wishes to detect. The smaller this difference, the
more animals will be needed. Thus, given estimates for pc and pe, sample size n for each
group can be estimated:

Equation
1

(Fleiss 1981) where qc = 1 − pc; qe = 1 − pe; and d = | Pc − Pe |. d is the difference between
pc and pe, expressed as a positive quantity. C is a constant that depends on the values chosen
for α and β. There is seldom justification for one-sided tests. The following list provides
values of C for two levels of α and β for two-sided tests (i.e., detection of any significant
difference if the experimental group is either higher or lower than the control group):

If the observed pc = 0.5 and the investigator wishes to detect a rate of 0.25 (pe = 0.25), then
d = .25. Further choose α = 0.05 and 1−β = 0.9 so C = 10.51. Then

in each group, which when rounded off is 85 in each group for a total number of animals of
170.

Continuous Variables
Studies Comparing Two Group Means

To compute sample size for continuous variables, it is necessary to obtain an estimate of the
population standard deviation of the variable (s) and the magnitude of the difference (d) the
investigator wishes to detect, often called the effect. Sample size is given by
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Equation
2

(Snedecor and Cochran 1989) where s is the standard deviation, d is the difference to be
detected, and C is a constant dependent on the value of α and β selected. C can be
determined from the table above, which gives values for C for two levels of α and β. Note
that for α = 0.05 and 1−β = 0.9, C is 10.51 and 2C would be 21. If s is 4, d is 3, α = 0.05,
and 1−β = 0.9 (i.e., C = 10.51 and 2C = 21), then

in each group or roughly 80 animals for the whole study.

A useful rule of thumb is to multiply

(i.e., the quantity standard deviation divided by the difference to be detected squared) by 20

to obtain sample size for each group. For the example above, the rule of thumb 
yields 35.5 or roughly 36 in each group.

Paired Studies
Paired studies compare values before and after an intervention in the same animal. In this
case, data are analyzed by a paired t test, and the sample size is computed by

Equation
3

(Snedecor and Cochran 1989) Note that

is multiplied by C in paired studies rather than 2C showing that paired studies are more
powerful than comparison of two independent means.

Correlation Coefficient Between Two Continuous Variables in a Single Group
A correlation coefficient r (from n observations) does not have a normal distribution;
however, the transformation
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produces a normal approximation with standard error approximately 1/√(n−3) (Snedecor and
Cochran 1989). From this calculation, the number of animals needed to show that a
postulated (positive) correlation coefficient r is different from a specified r0 is given by

Equation
4

where C is given in the list of C values above.

All four equations are implemented on our departmental web page. The web page also
allows calculations of detectable effect size when the number of animals is given, in addition
to allowing the number of animals to be different in the two study groups, as can happen in
comparing heterozygous and homozygous littermates. As noted in the text, the link to the
web page is <http://www.biomath.info>.
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