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Abstract

The light-harvesting chlorophyll a/b binding proteins (LHCB) are perhaps the most abundant membrane proteins in

nature. It is reported here that the down-regulation or disruption of any member of the LHCB family, LHCB1, LHCB2,

LHCB3, LHCB4, LHCB5, or LHCB6, reduces responsiveness of stomatal movement to ABA, and therefore results in

a decrease in plant tolerance to drought stress in Arabidopsis thaliana. By contrast, over-expression of a LHCB
member, LHCB6, enhances stomatal sensitivity to ABA. In addition, the reactive oxygen species (ROS) homeostasis

and a set of ABA-responsive genes are altered in the lhcb mutants. These data demonstrate that LHCBs play

a positive role in guard cell signalling in response to ABA and suggest that they may be involved in ABA signalling

partly by modulating ROS homeostasis.

Key words: Abscisic acid signalling, Arabidopsis thaliana, light-harvesting chlorophyll a/b binding protein, reactive oxygen

species, stomatal movement.

Introduction

The light-harvesting chlorophyll a/b-binding (LHCB) pro-

teins are the apoproteins of the light-harvesting complex of

photosystem II (PSII), which are normally complexed with

chlorophyll and xanthophylls and serve as the antenna
complex (Jansson, 1994, 1999). As important components

of the major light-harvesting complex, the PSII outer

antenna proteins LHCBs are perhaps the most abundant

membrane proteins in nature. Expression of the LHCB

genes is regulated by multiple environmental and develop-

mental cues, including mainly light (Silverthorne and Tobin,

1984; Sun and Tobin, 1990; Peer et al., 1996; Millar and

Kay, 1996; Weatherwax et al., 1996; Yang et al., 1998;
Humbeck and Krupinska, 2003), oxidative stress (for

reviews, see Nott et al., 2006; Staneloni et al., 2008),

chloroplast retrograde signal (for review, see Nott et al.,

2006), circadian clock (Paulsen and Bogorad, 1988; Strayer

et al., 2000; Alabadi et al., 2001; Thain et al., 2002;

Andronis et al., 2008), and the phytohormone abscisic acid

(ABA) (Bartholomew et al., 1991; Chang and Walling,
1991; Weatherwax et al., 1996; Staneloni et al., 2008).

Previous studies showed that exogenously-applied ABA

down-regulates LHCB gene expression in tomato leaves

(Bartholomew et al., 1991), Arabidopsis seedlings (Staneloni

et al., 2008), Lemna gibba cells grown on liquid medium

(Weatherwax et al., 1996), and developing seeds of soybean

(Chang and Walling, 1991), whereas a recent report showed

that the treatments of the 6-d-old Arabidopsis seedlings with
low levels of ABA (from 0.125 to 1 lM) enhanced

LHCB1.2 mRNA levels (Voigt et al., 2010). The regulation

of the LHCB expression is considered to be one of the
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important mechanisms for plants to modulate chloroplast

functions (Nott et al., 2006; De Montaigu et al., 2010;

Pruneda-Paz and Kay, 2010; Thines and Harmon, 2010).

ABA is a vital phytohormone to regulate many aspects of

plant growth and development, and especially to modulate the

plant response to stressful conditions (Finkelstein et al., 2002;

Adie et al., 2007). ABA signal transduction has been

extensively studied, and numerous signalling components
have been identified, which include plasma membrane and

intracellular ABA receptors (Shen et al., 2006; Fujii et al.,

2009; Ma et al., 2009; Pandey et al., 2009; Park et al., 2009;

Wu et al., 2009; Cutler et al., 2010; Shang et al., 2010).

Previous reports showed that the members of the LHCB

family play an important role in plant adaptation to

environmental stresses (Andersson et al., 2001, 2003; Ganeteg

et al., 2004; Kovacs et al., 2006), as well as their expression
being regulated by ABA (Bartholomew et al., 1991; Chang

and Walling, 1991; Weatherwax et al., 1996; Staneloni et al.,

2008). However, it remains unknown whether the decline of

plant stress tolerance due to a lack of the LHCB proteins is

associated with the plant response to ABA under environ-

mental stresses. It is reported here that the Arabidopsis

LHCBs are positively involved in guard cell signalling in

response to ABA, and they may affect ABA signalling partly
by modulating ROS homeostasis. These findings help un-

derstand the complex mechanism of ABA signalling and the

positive role of LHCB proteins in plant stress tolerance.

Materials and methods

Plant materials

Arabidopsis thaliana ecotype Columbia (Col-0) was used in the
generation of transgenic plants. The open reading frame (ORF)
cDNA of the LHCB6 gene (At1g15820) was introduced into Col
plants as a green fluorescence protein (GFP)-fusion protein to
generate LHCB6-over-expressing transgenic lines. The cDNA was
isolated by polymerase chain reaction (PCR) using the forward
primer 5#-GCTCTAGAATGGCGATGGCGGTCTCC-3# and re-
verse primer 5#-CGGTCGACTCACAAACCAAGAGCACCGAG-
3#. The cauliflower mosaic virus (CaMV) 35S::LHCB6 chimeric gene
construct was generated by ligating the ORF (777 bp) of the LHCB6
gene into the pCAMBIA1300 vector by XbaI and SalI sites. The
construct was confirmed by sequencing, and introduced into the
GV3101 strain Agrobacterium tumefaciens and transformed into
plants by floral infiltration. The homozygous T3 seeds of the
transgenic plants were used for analysis. More than 20 LHCB6-
over-expressing transgenic lines were screened, all of which showed
ABA hypersensitivity in stomatal movement, and four representative
lines have been shown (see Supplementary Fig. S2 at JXB online).
The T-DNA insertion mutants lhcb1.1 (SALK-134810) in the

LHCB1.1 gene (At1g29920; referred to as LHCB1 and representa-
tive of LHCB1.1, LHCB1.2, LHCB1.3, LHCB1., and LHCB1.5),
lhcb2.2 (SALK-005614) in the LHCB2.2 gene (At2g05070; referred
to as LHCB2 and representative of LHCB2.1, LHCB2.2,
LHCB2.3, and LHCB2.4), lhcb3 (SALK-036200) in the LHCB3
gene (At5g54270), lhcb4.3 (SALK-032779) in the LHCB4.3 gene
(At2g40100; referred to as LHCB4 and representative of
LHCB4.1, LHCB4.2, and LHCB4.3), lhcb5 (SALK-139667) in the
LHCB5 gene (At4g10340), and lhcb6 (SALK-074622) in the
LHCB6 gene (At1g15820) were used in this study and the seeds of
these mutants were obtained from the Arabidopsis Biological
Resource Center (ABRC). The screening for the knockout or
knockdown mutants was done following the recommended proce-

dures. The sequences of the primers for the screening are presented
in Supplementary Table S1 at JXB online. The T-DNA insertion
in the mutants was identified by PCR and DNA gel-blot analysis
and the exact position was determined by sequencing. The mutants
lhcb1.1 (SALK-134810), lhcb2.2 (SALK-005614), lhcb4.3 (SALK-
032779), lhcb5 (SALK-139667), and lhcb6 (SALK-074622) are also
knockdown mutants in their corresponding genes except for the
mutant lhcb3 (SALK-036200) that is a knockout mutant in the
LHCB3 gene. DNA gel-blot analysis showed that all the mutants
have one single copy of T-DNA in their genome.
All the double mutants were generated by genetic crosses and

identified by PCR genotyping.
Plants were grown in a growth chamber at 19–20 �C on

Murashige-Skoog (MS) medium (Sigma) at about 80 lmol photons
m�2 s�1, or in compost soil at about 120 lmol photons m�2 s�1

over a 16 h photoperiod.

Complementation of the lhcb mutants

The ABA-related phenotypes of the lhcb1, lhcb2, lhcb3, lhcb4,
lhcb5, and lhcb6 mutants were complemented by introducing into
the mutant plants, respectively, the LHCB1, LHCB2, LHCB3,
LHCB4, LHCB5, and LHCB6 ORF cDNAs driven by the 35S
promoter integrated into the pCAMBIA1300-221 vector. The
primers for cloning the LHCB1, LHCB2, LHCB3, LHCB4,
LHCB5, and LHCB6 ORF cDNAs are listed in Supplementary
Table S1 at JXB online.

Protein extraction and immunoblotting

The extraction of the Arabidopsis total proteins was performed
essentially according to procedures proposed by the LHCB-
antibody supplier Agrisera. The plant tissues were frozen in liquid
N2, ground in a pre-chilled mortar with a pestle to a fine powder
and transferred to a 1.5 ml tube. The extraction buffer consists of
50 mM TRIS-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.1%
(v/v)Triton X-100, 10% (v/v) glycerol, and 5 lg ml�1 protein
inhibitor cocktail. The extraction buffer was added to the tube
(buffer:sample¼4:1), which was immediately frozen in liquid N2.
The mixture was carefully subjected to sonication just until the
sample was thawed, and was re-frozen immediately in liquid N2 to
avoid heating. The sonication step was repeated three times. The
mixture was centrifuged for 3 min at 10 000 g to remove insoluble
material and unbroken cells and the supernatant was transferred to
a new tube for use. The SDS-PAGE and immunoblotting assays
were done essentially according to our previously described
procedures (Wu et al., 2009; Shang et al., 2010). The specific
antibodies against, respectively, LHCB1, LHCB2, LHCB3,
LHCB4, LHCB5, and LHCB6 were purchased from Agrisera
(Stockholm, Sweden; website:www.agrisera.com; product No.
AS08300).

Real-time PCR analysis

Total RNA was isolated from leaves of 2-week-old Arabidopsis
seedlings using a Total RNA Rapid Extraction Kit (BioTeke),
treated with RNase-free DNase I (TAKARA) at 37 �C for 30 min
to degrade genomic DNA and purified by using an RNA
Purification Kit (BioTeke). A 2 lg aliquot of RNA was subjected
to first-strand cDNA synthesis using M-MLV reverse transcriptase
(Promega), and an oligo (dT21) primer. The primers used for real-
time PCR are listed in Supplementary Table S1 at JXB online.
Analysis was performed using the Bio-Rad Real-Time System
CFX96TM C1000 Thermal Cycler (Singapore). All experiments
were repeated at least three times along with three independent
repetitions of the biological experiments.

Chlorophyll measurements

The contents of chlorophyll were assayed essentially by the
previously described procedures (Shen et al., 2006).
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ROS measurements

ROS detection in whole leaves was conducted by nitroblue
tetrazolium (NBT) staining, essentially as described previously by
Lee et al. (2002). Leaves were sampled from 3-week-old plants and
preincubated in a medium composed of 50 mM KCl, 10 mM
MES-TRIS (pH 6.15) supplemented with different concentrations
of (6)-ABA (as indicated) under light at 200 lmol m�2 s�1 for 1 h,
and then the leaves were vacuum-infiltrated with 0.1 mg ml�1 NBT
(Amresco, Solon, OH, USA) in 100 mM potassium phosphate
buffer, pH 7.6. Samples were incubated at room temperature in the
dark for 2 h. To remove chlorophylls, the stained samples were
transferred to boiling 80% ethanol for 10 min.
ROS production from guard cells was examined by loading

epidermal peels with H2DCF-DA (Molecular Probes) essentially as
previously described by Miao et al. (2006). The epidermal strips
were preincubated for 2 h under conditions promoting stomatal
opening in the MES-TRIS buffer (the same as mentioned above)
supplemented with 0 (ethanol, as a control) or 5 lM (6)-ABA,
and were incubated in the loading buffer with 50 mM TRIS-KCl
(pH 7.2) containing 50 mM H2DCF-DA in the dark for 20 min,
and then the epidermal tissues were washed with the same MES-
TRIS preincubation buffer to remove excess dye. Examinations of
peel fluorescence were performed using fluorescence microscopy
(Olympus, BX51, Japan). Fluorescent optical sections were
collected from dye-loaded guard cells with the following settings:
excitation, 488 nm; emission, 525 nm.

Stomatal aperture assay

Stomatal aperture was assayed as previously described (Wu et al.,
2009; Shang et al., 2010). Leaves sampled from 3-week old plants
were used. To observe ABA-induced stomatal closure, leaves were
floated in the buffer containing 50 mM KCl and 10 mM MES-
TRIS (pH 6.15) under a halogen cold-light source (Colo-Parmer)
at 200 lmol m�2 s�1 for 2.5 h followed by the addition of different
concentrations of (6)-ABA. Apertures were recorded on epidermal
strips after 2.5 h of further incubation to estimate ABA-induced
closure. To study ABA-inhibited stomatal opening, leaves were
floated on the same buffer in the dark for 2.5 h before they were
transferred to the cold-light for 2.5 h in the presence of ABA, and
then apertures were determined.

Accession numbers

Sequence data from this article can be found in the Arabidopsis
Genome Initiative database under the following accession num-
bers: At5g13630 (ABAR/CHLH), At1g29920 (LHCB1), At2g05070
(LHCB2), At5g54270 (LHCB3), At2g40100 (LHCB4), At4g10340
(LHCB5), and At1g15820 (LHCB6). Germplasm identification
numbers for mutant lines and SALK lines: lhcb1.1 (SALK-
134810), lhcb2.2 (SALK-005614), lhcb3 (SALK-036200), lhcb4.4
(SALK-032779), lhcb5 (SALK-139667), and lhcb6 (SALK-074622).

Results

Down-regulation or disruption of LHCB genes reduces,
but up-regulation of LHCB6 gene enhances, ABA
sensitivity in stomatal movement

AT-DNA insertion mutant for each of the LHCB genes was

isolated (Fig. 1A–F). The lhcb1, lhcb2, lhcb4, lhcb5, and

lhcb6 are knockdown alleles and the lhcb3 is a knockout
allele (Fig. 1G). It was observed that down-regulation of

one LHCB gene altered the expression of other LHCB

members (Fig. 1G). This may be due to a feedback effect in

the LHCB family, where a decrease or the removal of one

protein in a multiple protein complex can result in the

decreased stability of the others (Andersson et al., 2001;

Ganeteg et al., 2004; Kovacs et al., 2006). The levels of

chlorophyll, ABA, and dry substances and the growth

of these lhcb mutants were not significantly affected in any

of these mutants (Fig. 1H; see Supplementary Fig. S1at

JXB online). It is noteworthy, however, that a knockout

lhcb6 mutation significantly affected seedling growth

(Kovacs et al., 2006), while the present lhcb6 knockdown-
mutant allele did not significantly alter plant growth,

probably because the LHCB6 level in this knockdown

mutant is still sufficient for normal plant growth.

All the T-DNA insertion lhcb mutants showed ABA-

insensitive phenotypes, but the over-expression lines of the

LHCB6 gene showed ABA-hypersensitive phenotypes in

the ABA-induced promotion of stomatal closure and in the

inhibition of stomatal opening (Fig. 2A, B; see Supplemen-
tary Fig. S2Aat JXB online). The stomatal apertures of the

mutants were only slightly reduced at 20 lM or 30 lM
(6)ABA that reduced dramatically stomatal apertures of

the wild-type plants (Fig. 2A, B). The double mutant lhcb1

lhcb6 showed substantially the same extent of ABA-

insensitive phenotypes in stomatal movement (Fig. 2D).

This enhanced resistance of stomatal closure to ABA

suggests that the lhcb mutants should be more susceptible
to drought. Indeed, it was also observed that the detached

leaves of the lhcb mutants lost more water than those of

wild-type plants under dehydration conditions (Fig. 3A),

and that both young seedlings and mature plants of the lhcb

mutants had a lower capacity to conserve their water during

drought stress compared with wild-type plants (Fig. 3B–D).

A chlorophyll b-deficient mutant ch1-1, which results in

low expression of the LHCB genes (Espineda et al., 1999),
was used to assess the relationships between chlorophyll-

deficiency-caused LHCB decrease and ABA responsiveness.

The ch1-1 mutant did not show any ABA insensitive

phenotype (Fig. 2A, B).

The transgenic complementation lines of all the lhcb

mutants displayed the wild-type ABA phenotypes in the

ABA-induced promotion of stomatal closure and the in-

hibition of stomatal opening (see Supplementary Fig. S3 at
JXB online), showing that the phenotypes of the lhcb

mutants did indeed result from the down-regulation or

disruption of the LHCB genes. The LHCBs are expressed

ubiquitously in different tissues/organs except for dry seeds

and the LHCB mRNA is detectable even in roots, although

the expression levels are low in roots (see Supplementary

Fig. S4 at JXB online). This suggests that the LHCB

members can function at the whole plant level. It is
noteworthy, however, that the function of LHCB members

in roots remains to be determined.

Double mutation in LHCB and ABAR genes confers
ABA-insensitivity, and over-expression of LHCB6 partly
restores the ABA sensitivity of the cch mutant

It was previously reported that the Mg-chelatase H subunit

(CHLH/ABAR) functions as a chloroplast/plastid ABA

receptor (Shen et al., 2006; Wu et al., 2009; Shang et al.,
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Fig. 1. Molecular and biochemical characterization of the lhcb mutants (from lhcb1 to lhcb6). (A–F) T-DNA insertion sites in lhcb1.1

(SALK_134810) (A), lhcb2.2 (SALK_005614) (B), lhcb3 (SALK_036200) (C), lhcb4.3 (SALK_032779) (D), lhcb5 (SALK_139667) (E), and

lhcb6 (SALK_074622) (F). LP, left genomic primer, and RP, right genomic primer with the suffix numbers corresponding to the numbers

of the LHCB genes (1 to 6). LBa1, left border primer, and RBa1, right border primer for the flanking sequences of the T-DNA. Boxes and

lines represent exons and introns, respectively. The locations of the primers for the identification of the mutants are indicated by arrows.

LB and RB represent the left and right border of the T-DNA insertion, respectively; T-DNA1 and T-DNAn, first and last copy of the

inserted T-DNAs, respectively, noting that the two or more than two copies were inserted in an inverted manner. (A) One single copy of

the T-DNA was inserted into the promoter region at nt –592 to –523 in the 5#-upstream region of the translation start codon (ATG) of the

LHCB1.1 gene with a 70 bp fragment deleted in the lhcb1-1 mutant. (B) Tandem T-DNA of two copies (or more than two copies) was

inserted into the promoter region in an inverted fashion at the same locus for the lhcb2 mutant, which generates a 24 bp deletion from nt

–126 to –102 in the 5#-upstream region of the translation start codon (ATG) of the LHCB2.2 gene. (C) One single copy of T-DNA was

inserted into the first exon at nt 120 to 125 of the LHCB3 gene with a 6 bp fragment deleted in the lhcb3 mutant. (D-F) Tandem T-DNA

of two copies (or more than two copies) was inserted into the promoter region in an inverted fashion at the same locus for lhcb4.3 (D),

lhcb5 (E), and lhcb6 (F) mutants, which generates a 17 bp deletion from nt –1263 to –1247 for lhcb4.3, a 7 bp deletion from nt –483 to
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2010). A possible relationship between CHLH/ABAR- and

LHCB in guard cell signalling in response to ABA was

assessed. Using a strong stomata-ABA-insensitive mutant

allele of the CHLH/ABAR gene, cch (Shen et al., 2006; Wu

et al., 2009; Fig. 2A–D), the double mutant lhcb6 cch was

generated and it was observed that the lhcb6 cch double

mutant showed ABA-insensitive phenotypes in the ABA-

induced promotion of stomatal closure and the inhibition of
stomatal opening, and the strength of the ABA-insensitive

phenotypes was comparable with that of the cch mutant,

stronger than that of the lhcb6 single mutant and lhcb1 lhcb6

double mutant (Fig. 2C, D). Interestingly, it was observed

that over-expression of the LHCB6 gene partly restored the

wild-type phenotype of the cch mutant in the stomatal

responses to ABA (Fig. 2C; see Supplementary Fig. S2B at

JXB online), suggesting that LHCBs function downstream
of the ABAR-mediated ABA signalling pathway.

Down-regulation or disruption of LHCB members
affects homeostasis of reactive oxygen species

It has been well known that reactive oxygen species (ROS)

are involved in ABA signalling (Pei et al., 2000; Murata

et al., 2001; Mustilli et al., 2002; Kwak et al., 2006; Miao

et al., 2006; Zhang et al., 2009), and chloroplasts are major

sites of ROS production (Kwak et al., 2006; Nott et al.,

2006; Galvez-Valdivieso and Mullineaux, 2010) where
LHCBs play a key role (Jansson, 1994, 1999; Galvez-

Valdivieso and Mullineaux, 2010). Thus, ROS production

was investigated in the lhcb mutants using techniques of

NBT-leaf-staining and CFDA-guard-cell staining. The

results showed that the ROS levels increased in all the lhcb

mutants compared with wild-type plants, which was

observed in both the whole leaves and in guard cells

(Fig. 4A–C). It was found that ABA treatments at relatively
low concentrations (1–5 lM) stimulated ROS levels in the

wild-type plants (Fig. 4A, B) which is consistent with

previous observations (Pei et al., 2000; Murata et al., 2001;

Mustilli et al., 2002; Kwak et al., 2006; Miao et al., 2006;

Zhang et al., 2009), but high levels of ABA had no

significant stimulating effect (10 lM) or, inversely, reduced

ROS levels (50 lM) in these wild-type plants (Fig. 4A). In

all the lhcb mutants, however, ABA treatments at low
concentrations reduced ROS levels in both whole leaves

(1–10 lM ABA application; Fig. 4A, B) and guard cells (5 lM
ABA application; Fig. 4C). The stomatal apertures of the lhcb

mutants were not significantly affected by the higher levels of

ROS in the absence of ABA, but showed resistance to ABA

when exogenous ABA was applied (Fig. 2; see Supplementary

Fig. 5 at JXB online) which, by contrast, reduced ROS levels

in these mutants (Fig. 4A–C). In addition, experiments were

conducted with 3,5-diaminobenzidine (DAB) staining which
detects H2O2 production and substantially the same results

were obtained as those with NBT staining (see Supplementary

Fig. S6 at JXB online). These data demonstrate that down-

regulation or disruption of the LHCB members alters the

homeostasis of ROS and ABA responsiveness of ROS in plant

cells.

Down-regulation or disruption of LHCB genes alters the
expression of a set of ABA responsive genes

The expression of the following ABA responsive genes was
assayed in the lhcb mutants: ABF1, ABF2/AREB1, ABF3,

and ABF4/AREB2 (Choi et al., 2000; Uno et al., 2000), ABI1

(Leung et al., 1994; Meyer et al., 1994; Gosti et al., 1999),

ABI2 (Leung et al., 1997), ABI3 (Giraudat et al., 1992),

ABI4 (Finkelstein et al., 1998), ABI5 (Finkelstein and

Lynch, 2000), ERD10 (Kiyosue et al., 1994), KIN1 and

KIN2 (Kurkela and Borg-Franck, 1992), MYB2 and MYC2

(Abe et al., 2003), OST1 (Mustilli et al., 2002), RAB18 (Lang
and Palva, 1992), and RD29A (Yamaguchi-Shinozaki and

Shinozaki, 1994). Expression of ten ABA-positively-

responsive genes, ABI4, ABI5, ERD10, KIN1, KIN2,

MYB2, MYC2, OST1, RAB18, and RD29A, was signifi-

cantly repressed in all the lhcb mutants (from lhcb1 to lhcb6,

Fig. 5). Expression of three genes encoding important

transcription factors that positively regulate ABA signalling,

ABF1, ABF4, and ABI3, was also significantly repressed in
the lhcb mutants except for lhcb1, lhcb3, and lhcb6 (Fig. 5).

However, expression of two genes that encode negative

regulators of ABA signalling acting directly downstream of

the ABA receptor PYR/PYL/RCAR (Fujii et al., 2009),

ABI1 and AB12, was not altered in any of the lhcb mutants

(Fig. 5). By contrast, expression of two genes coding for two

transcription factors positively involved in ABA signalling,

ABF2 and ABF3, was up-regulated in the lhcb mutants
except for lhcb5 and lhcb6 (Fig. 5). This expression profile of

–477 for lhcb5, and a 46–bp deletion from nt –391 to –346 in the 5#-upstream region of the translation start codon (ATG) of the

corresponding genes LHCB4.3, LHCB5, and LHCB6, respectively. (G) Quantitative real-time PCR analysis (columns) and immunoblotting

(protein bands below the columns) for LHCB gene expression in the mutants (from lhcb1 to lhcb6). Actin was used as a loading control

for immunoblotting. Relative protein band intensities, normalized relative to the intensity of Col, are indicated by numbers in the box below

the bands. Expression of all the six numbers of LHCBs (from LHCB1 to LHCB6) was assessed in each mutant, and the red arrow

indicates the level of the corresponding mutated LHCB gene. Note that lhcb1-1, lhcb2, lhcb4, lhcb5, and lhcb6 are knockdown mutants

in their corresponding genes, while lhcb3 is a knockout mutant in the LHCB3 gene. The immunoblotting assays were repeated three

times with independent biological experiments which gave similar results. Each value for real-time PCR is the mean 6SE of three

independent biological determinations. (H) The chlorophyll a/b contents are not significantly affected in the mutants (from lhcb1 to lhcb6).

Left panel, the concentrations of chloroplast a (Chla) and b (Chlb) and total chlorophyll in the different mutants. Each value is the mean

6SE of three independent biological determinations. Right panel, the status of the seedlings of the different mutants, showing that no

chlorophyll-deficient phenotype can be seen for these mutants.
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the ABA-responsive genes is essentially consistent with the

idea that LHCBs are positively involved in ABA signalling

but with a complex underlying mechanism.

Gene expression of two major members of the NADPH

oxidases was also analysed, termed respiratory burst

oxidase homologues (Rbohs), RbohD and RbohF, which
are plasma membrane-associated proteins and involved in

ABA-induced stomatal closure (Kwak et al., 2003; Bright

et al., 2006). The results showed that expression of RbohD

and RbohF genes was not significantly affected in the lhcb

mutants in comparison with wild-type plants (Fig. 5).

Discussion

LHCB members are positively involved in guard cell
signalling in response to ABA

Genetic evidence is provided here that the members of the

LHCB family are positively involved in guard cell signalling

in response to ABA and so LHCB members have been

identified as new players in ABA signalling in stomatal

movement. Consistently, previous studies showed that

down-regulation of the LHCB members reduced plant

Fig. 2. Down- or up-regulation of members of the LHCB family alters ABA sensitivities in stomatal movement. (A) ABA-induced stomatal

closure (top) and inhibition of stomatal opening (bottom) in wild-type Col, ch1-1, cch, lhcb1, lhcb2, and lhcb3 mutants and

a complemented line of the lhcb3 mutant (lhcb3/LHCB3). (B) ABA-induced stomatal closure (top) and inhibition of stomatal opening

(bottom) in wild-type Col, ch1-1, cch, lhcb4, lhcb5, and lhcb6 mutants and a transgenic LHCB6-over-expressor (LHCB6, line OE5 as

described in Supplementary Fig. S2at JXB online). (C) ABA-induced stomatal closure (top) and inhibition of stomatal opening (bottom) in

wild-type Col, cch and lhcb6 mutants and a transgenic LHCB6-over-expressiing line in the cch mutant (cch/LHCB6). (D) ABA-induced

stomatal closure (top) and inhibition of stomatal opening (bottom) in wild-type Col, cch and lhcb6 single mutants, and lhcb1 lhcb6, and

lhcb6 cch double mutants. Values presented in (A) to (D) are the means 6SE from three independent experiments; n¼60 apertures per

experiment.
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tolerance to environmental stresses with lowered seed pro-
duction (Andersson et al., 2001, 2003; Ganeteg et al., 2004;

Kovacs et al., 2006) except for the lhcb3 mutant that

showed comparable seed production with that of wild-type

plants (Damkjaer et al., 2009). The differences observed in

the lhcb3 mutants between our present observations and the

previously reported data (Damkjaer et al., 2009) may be due

to the characteristics of the different lhcb3 mutants: in the

lhcb3 mutant used here (SALK_036200 or N536200), the
protein levels of the other LHCB members were not

affected (Fig. 1) while in the lhcb3 mutant used by

Damkjaer et al (2009) (N520342 or SALK_020342), the

protein levels of LHCB1 and LHCB2 were significantly up-

regulated (Damkjaer et al., 2009), which may partly

compensate for the disruption of the LHCB3 protein.
Nevertheless, the defects in ABA signalling in stomatal

movement in the lhcb mutants, among other defects in the

photosynthesis apparatus (Andersson et al., 2001, 2003;

Ganeteg et al., 2004; Kovacs et al., 2006; Damkjaer et al.,

2009), are at least partly responsible for the previously-

observed decline of the plants’ ability to adapt to environ-

mental stresses (Andersson et al., 2001, 2003; Ganeteg et al.,

2004; Kovacs et al., 2006).
The concentrations of ABA, dry substances and chloro-

phyll a/b were not affected in the lhcb mutants used in the

present experiments (Fig. 1; see Supplementary Fig. S1 at

JXB online), which shows that the ABA-insensitive pheno-

types of these mutants in stomatal movement were

Fig. 3. Down-regulation of members of the LHCB family reduces the ability of plants to conserve water. (A) Water loss rates during a 6 h

period from the detached leaves of wild-type Col and different lhcb mutants. Values are the means 6SE of five individual plants per

genotype. (B, C) Water loss assays with young seedlings for wild-type Col, lhcb1, lhcb3, and lhcb6 mutants (B) or for wild-type Col,

lhcb2, lhcb4, lhcb5, and lhcb6 mutants (C). Plants were well watered (Control) or drought-stressed by withholding water for 18 d and

then the drought-stressed plants were rewatered (Water recovery) and growth status was recorded 2 d later. The entire experiment was

replicated three times with similar results. (D) Assays with mature plants for wild-type Col and lhcb6 mutants. Plants were drought-

stressed by withholding water for 21 d and then the plants were rewatered and growth status was recorded 2 d later. The entire

experiment was replicated three times with similar results.
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associated neither with ABA biosynthesis nor with photo-

assimilate accumulation and, in particular, that down-

regulation of the LHCB members could affect ABA

signalling without altering chlorophyll homeostasis. How-

ever, the stability of the LHCB proteins is associated with
chlorophyll a/b, of which the deficiency may result in ac

decrease of the LHCB proteins (Adam, 1996; Espineda

et al., 1999). The chlorophyll b-deficient mutants ch1-1 and

ch1-2, which results in low expression of the LHCB genes

(Espineda et al., 1999), showed slight or no ABA insensitive

phenotype in the stomatal response to ABA (Fig. 2; Shen

et al., 2006). The possible explanation of this phenomenon is

that chlorophyll deficiency may induce more complex

consequences than degradation of the LHCB proteins,

which may compensate for the effects of the LHCB protein
deficiency.

The lhcb double mutants showed ABA-insensitive pheno-

types similar to the lhcb single mutants (Fig. 2), suggesting

that a compensatory feed-back mechanism to maintain the

LHCB homeostasis may function in the LHCB-related

Fig. 4. ROS homeostasis is altered in lhcb mutants. (A) ROS production in leaves in response to different concentrations of ABA (from

0–50 lM for Col and 0–10 lM for lhcb mutants), detected by nitroblue tetrazolium staining in wild-type Col and different lhcb mutants.

The entire experiment was replicated five times with similar results. (B) Quantitative estimation of the ROS production described in (A).

Relative ROS-staining intensities estimated by scanning the staining profiles, are normalized relative to the ROS-staining intensity of Col

(taken as 100%). Each value is the mean 6SE of five independent biological determinations. (C) ROS production from guard cells in

response to ABA (5 lM), examined by H2DCF-DA imaging in wild-type Col and different lhcb mutants. The entire experiment was

replicated three times with similar results. For the stomatal apertures of the treated plants, see Supplementary Fig. S5 at JXB online.
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ABA signalling in guard cells. Each of the six lhcb single

mutants showed similar ABA-insensitive phenotypes in

stomatal movement and similar drought-hypersensitive

phenotypes (Figs 2, 3), suggesting that each of the LHCB

members is necessary for building the antenna complex and

keeping the complex intact, which functions as a whole both

in photosynthesis and ABA signalling in guard cells. So,

deficiency of any of the LHCB members may damage this
core molecular complex of the PSII antenna machinery, and

thus affect ABA signalling in stomatal movement. This

point of view is consistent with the previous reports, which

showed that each member of the LHCB family plays

a specific role in the regulation of the photosynthetic

machinery (Andersson et al., 2001, 2003; Ganeteg et al.,

2004; Kovacs et al., 2006; Damkjaer et al., 2009).

How do the LHCB proteins work in guard cell signalling
in response to ABA?

The mechanism by which the LHCB members are involved

in ABA signalling in guard cells may be highly complex.

The ABA insensitivity of the cch mutant in stomatal
movement was partly suppressed by LHCB6-over-

expression, suggesting that CHLH/ABAR may function

upstream of the LHCB members. It was observed that

down-regulation of the LHCB members altered both the

ROS homeostasis and the ABA responsiveness of ROS in

plant leaves (Fig. 4). Expression of two major plasma

membrane-associated NADPH oxidase genes, RbohD and

RbohF, which are involved in ABA-induced stomatal
closure (Kwak et al., 2003; Bright et al., 2006), was not

affected in the lhcb mutants (Fig. 5), suggesting that the

alteration in ROS levels in these lhcb mutants is mainly

caused by a deficiency of the LHCB members, but may not

involve the plasma-membrane NADPH oxidases. Under

normal conditions, higher amounts of ROS accumulated in

the lhcb mutants compared with wild-type plants (Fig. 4),

which suggests that an imbalanced antenna complex
reduces its efficiency, thus leading to ROS accumulation. In

the presence of ABA, however, ROS levels in all the

mutants decreased compared with the wild type in which

ABA stimulates ROS production (Fig. 4), suggesting that

ABA probably enhances the already activated ROS-

detoxifying systems, thus lowering ROS levels that are

abnormally enhanced by lhcb mutation. It is possible that

LHCBs are involved in ABA signalling in guard cells partly
by modulating ROS homeostasis. It will be of importance

to elucidate upstream- and downstream-events of LHCBs to

understand the complex mechanism of ABA signalling in

guard cells and the positive role of LHCB proteins in plant

stress tolerance.

Supplementary data

Supplementary data can be found at JXB online.

Supplementary Fig. S1. Concentrations of endogenous

ABA and accumulation of dry substances of the different
lhcb mutant plants.

Supplementary Fig. S2. Real-time PCR analysis of the

LHCB6-RNAi and over-expression lines.

Supplementary Fig. S3. Expression of the 35S-promoter-

driven LHCBs rescues ABA sensitivity of the lhcb mutants.

Supplementary Fig. S4. Different members of LHCBs are

expressed ubiquitously in different tissues/organs except for

dry seeds.
Supplementary Fig. S5. ROS homeostasis is altered in

lhcb mutants.

Supplementary Fig. S6. Stomatal aperture of Col plants

and lhcb mutants when assaying ROS levels in stomata.

Supplementary Table S1. Primers used in this study.

Fig. 5. Expression of a set of ABA-responsive genes is altered in

lhcb mutants. Gene expression was assayed by real-time PCR.

Each value is the mean 6SE of three independent biological

determinations.
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