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ABSTRACT Estimating the line origin of chromosomal sections from marker genotypes is a vital step in
quantitative trait loci analyses of outbred line crosses. The original, and most commonly used, algorithm can
only handle moderate numbers of partially informative markers. The advent of high-density genotyping with
SNP chips motivates a new method because the generic sets of markers on SNP chips typically result in long
stretches of partially informative markers. We validated a new method for inferring line origin, triM (tracing
inheritance with Markov models), with simulated data. A realistic pattern of marker information was
achieved by replicating the linkage disequilibrium from an existing chicken intercross. There were approx-
imately 1500 SNP markers and 800 F2 individuals. The performance of triM was compared to GridQTL,
which uses a variant of the original algorithm but modified for larger datasets. triM estimated the line origin
with an average error of 2%, was 10% more accurate than GridQTL, considerably faster, and better at
inferring positions of recombination. GridQTL could not analyze all simulated replicates and did not esti-
mate line origin for around a third of individuals at many positions. The study shows that triM has compu-
tational benefits and improved estimation over available algorithms and is valuable for analyzing the large
datasets that will be standard in future.
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Analysis of experimental line crosses using genetic markers has been
successful in identifying quantitative trait loci (QTL) for a wide range
of physical, behavioral, and disease traits in plants, model organisms,
and livestock species (Corva and Medrano 2001; Mackay 2001; Maloof
2003; Hocking 2005; Rothschild et al. 2007). Ultimate aims of QTL
analyses include determining the number of genes influencing a trait
and the nature and size of their effects, identification of important
pathways in disease, and discovery of genes that may be useful in
breeding programs. Resolving QTL to the level of the causative gene
has been challenging, although there are some notable examples: IGF2
affecting muscle growth in pigs (Van Laere et al. 2003), ORFX for fruit

size in tomatoes (Frary et al. 2000), and achaete-scute influencing
bristle number in Drosophila melanogaster (Long et al. 2000). An
obstacle to identifying the underlying genes has been the relatively
large size of QTL regions, which can encompass hundreds of genes.
For line crosses, ultimately the lower limit on the size of QTL regions
is set by the number of recombinations that have occurred in the
pedigree. However, to achieve the best resolution and statistical power
within this constraint, it is important to extract the maximal possible
information from the genetic markers.

In linkage-based QTL analyses, such as with line crosses, marker
genotypes are used to infer the inheritance of chromosomal segments
through the pedigree. For line crosses, the key factor is the line origin
of segments (i.e. whether they are inherited from a founder individual
of line 1, or a founder individual of line 2). Most analyses apply
interval mapping (Lander and Botstein 1989) where an association
between line origin and phenotype is tested at regularly spaced posi-
tions along the genome. Many of these positions will not coincide with
markers that unambiguously indicate the line origin (fully informative
markers), in which case the probability of having each line origin is
estimated based on the genotypes of available markers and the
expected frequency of recombination between these markers and
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the test position. With inbred lines, all selected markers are fully in-
formative, and only the genotypes of the two markers flanking the test
position are needed. For outbred lines, however, many markers are
likely to be only partially informative (more than one line origin is
compatible with the genotype although at least one line origin can be
excluded) because the same marker alleles are segregating in both
lines. Haley et al. (1994) showed that for outbred lines, the genotypes
of all partially informative markers up to the nearest fully informative
marker on each side should be considered. They proposed an algo-
rithm that separately evaluates the probability of each possible com-
bination of line origins between fully informative markers, then sums
and normalizes the results. To date, this algorithm, or variants of it,
has been the most commonly used method for estimating line origin
probabilities in outbred line crosses.

The use of SNPs has become standard in QTL mapping, and
because of their high frequency in the genome, the number of scored
markers has increased considerably from older technologies. A recent
advance is the SNP chip, which allows parallel genotyping of hundreds
of thousands of selected SNPs. These SNPs are typically chosen from
a few populations of interest. As a result, some will not be fully
informative in studies involving other populations. However, because
so many SNPs are included, there will still be many that are at least
partially informative. The advantage of the chips is that they remove
the need for time-consuming development, selection, and testing of
markers for each study and provide a standard set of markers with
known location, allowing direct comparisons between studies. Chips
of at least 50,000 SNPs are currently available for cow, pig, dog,
chicken, sheep, mouse, and maize, for example. The Haley et al.
(1994) algorithm worked well for the small numbers of markers that
were used at the time. However, the maximum number of calculations
required by the algorithm scales exponentially with the number of
partially informative markers in stretches with no intervening fully
informative markers. On most computers, the algorithm crashes when
there are more than 20 partially informative markers in such stretches
(Nettelblad et al. 2009). Therefore, it is not suitable for handling SNP
chip datasets. To utilize all the information available from SNP chips,
a new method is needed.

We recently developed a new tool for estimating line origin
probabilities. The algorithm scales logarithmically with the number of
markers included, making analysis of very large datasets feasible. We
have designated this method triM (tracing inheritance with Markov
models), which is implemented in the existing codebase cnF2freq
(Nettelblad et al. 2009). Here we evaluate the performance of triM
on simulated datasets of approximately 1500 SNPs of mixed informa-
tion content. Although the original Haley et al. (1994) algorithm
cannot deal with such datasets, they can be analyzed if the algorithm
is modified to include information from only a subset of markers. We
compare the behavior of triM to one such modified version of the
Haley et al. (1994) algorithm incorporated in the web-based tool
GridQTL (Seaton et al. 2006). The size of these datasets is at the
reported upper limit for GridQTL, but we emphasize that triM can
easily analyze much larger datasets than this.

METHODS

triM
triM employs an algorithm developed for hidden Markov models
(Rabiner 1989). Using these models to track the parental origin of
alleles in linkage mapping was introduced by Lander and Green
(1987). Specific application of hidden Markov models to QTL analysis
in intercrosses was implemented in R/QTL (Broman et al. 2003) but

limited to the cases of inbred or haplotyped data. The underlying
genetic model assumed by triM is the same as for the Haley et al.
(1994) algorithm, but the advance in triM is full exploitation of the
Markov property. Results from triM are expected to be identical to
those that would be obtained from the Haley et al. (1994) algorithm,
were the calculations possible.

A Markov model consists of a series of states where the state at any
point depends only on the immediately preceding state and not any of
the states before that. Line origin along a chromosome is a Markov
process if the frequencies of recombination in each interval are
independent of each other. triM therefore applies Haldane’s mapping
function, which fulfills the Markov property by assuming no interfer-
ence between crossovers. The extension to a hidden Markov model is
that the states themselves are not observable but influence the values
of a second variable, which is observed. In this context, the state is the
line origin and the output variable is the marker genotype. The line
origin probability at a test position is calculated by iteratively building
up the probability of each line origin at successive marker positions,
working forward and backward from both ends of the chromosome.
For each marker position, only the probabilities of moving from the
possible line origins at the preceding marker are needed; all the pre-
vious transition probabilities are contained in the line origin proba-
bilities at the preceding marker. The calculation therefore collapses
back to a limited number of operations at each marker, which is the
basis of its efficiency. The forward and backward probabilities for each
test position are multiplied together and normalized by the product
summed over all origins. The principle of the algorithm is illustrated
in Figure 1, and additional details are given in Nettelblad et al. (2009).
triM is available for download at http://www.computationalgenetics.se
under “Software.” We are currently developing a software package in
the statistical environment R, incorporating triM, that will perform the
complete process of QTL analysis for crosses between outbred lines.

Simulation
To evaluate triM with a realistic pattern of marker information, the
simulation was based on data from a three-generation chicken
intercross (Kerje et al. 2003) where dense SNP genotypes were avail-
able for two families (Groenen et al. 2009). These families originated
from one Red Junglefowl male and three White Leghorn females and
contained 23 and 25 F2 individuals, respectively. We simulated a single
chromosome using the data from chromosome 1. Markers with miss-
ing genotypes in the parents or grandparents were removed. Some
additional markers were also removed because of inheritance errors or
uncertainty in their order, and a small number of genotype corrections
were made, leaving a total of 1508 markers covering 451 cM. Genetic
positions of markers were taken from the sex-averaged consensus
linkage map (Groenen et al. 2009) where possible. The linkage posi-
tions were not used in a few cases where the order of one or two
markers differed between the linkage map and the genome assembly.
Remaining genetic positions were estimated from the nearest flanking
markers in the linkage map, assuming a linear relationship between
genetic and physical positions over the interval. Markers that had the
same genetic position x were separated by spacing them evenly from
x-0.05 to x+0.049 cM. The average distance between markers was
0.3 cM. The biggest gap between markers was 8 cM, between the second
and third, and the third and fourth markers. There were 28 gaps of
1-4 cM; the remaining distances between markers were less than 1 cM.

The pattern of marker information in an F2 individual depends on
both the genotypes of the grandparents and how often successive
markers that are heterozygous in a grandparent or parent, are
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heterozygous in their offspring. Essentially, it is determined by which
alleles occur together on the same copy of a chromosome (the hap-
lotypes) in the grandparents. It was not possible to unambiguously
haplotype the grandparents because they had too few genotyped off-
spring. Therefore, we instead haplotyped the parents, and treated the
haplotype transmitted to the parent as one haplotype in the grand-
parent, with the remaining alleles forming the second haplotype.
When there were several parents that could be haplotyped for a given
grandparent, one was chosen at random. Haplotyping was performed
by the following procedure. First the allele originating from each
parent was determined for the straightforward cases of markers that
were homozygous or heterozygous with at least one parent homozy-
gous. For the other heterozygous markers, the parental origin was
inferred by looking at the combination of F2 genotypes at the marker
and a second heterozygous marker where the origin was known. The
second marker was chosen so that the set of F2 genotypes would differ
according to which alleles were inherited together from the same parent.

Genotypes of parents and then F2 individuals were simulated from
the grandparent haplotypes. The number of crossovers was sampled
from a Poisson distribution with mean equal to the chromosome
length in Morgans. The positions of each crossover were then sampled
from a uniform distribution covering the length of the chromosome.
A starting haplotype was chosen at random. Moving along the chro-
mosome, alleles were taken from this haplotype until a recombination
position was reached. Then alleles were taken from the second hap-
lotype. This continued, with the sampled haplotype changing after
each crossover, to the end of the chromosome. Individuals were gen-
erated using the pedigree structure of the original three-generation
intercross (Kerje et al. 2003). There were four male and 37 female
parents and 773 F2 individuals.

ANALYSIS
Line origin probabilities were estimated at 1-cM intervals. Both
methods estimate four probabilities for each F2 individual and posi-
tion, the product of two possible line origins for each haplotype. triM
was used to obtain probabilities for 1000 replicates of the complete
dataset. Attempts were then made to analyze the data using GridQTL,
version 1.4.1. We were unable to obtain results from GridQTL for
several tested replicates although the online documentation stated that
GridQTL could handle around this number of markers. Therefore, we
experimented with datasets of reduced size, produced by successively
removing the last 100 markers. With 1200 markers, GridQTL pro-
duced results for nine of the first 10 replicates. Because of the diffi-
culties in obtaining results from GridQTL, we compared triM and
GridQTL for these nine replicates. To avoid possible artifacts at the
end of the chromosome, as triM estimates were based on all 1508
markers, we compared only the region covered by 1150 markers,
excluding the last 50 markers available to GridQTL, which was 333
cM. For many individuals, there were regions where GridQTL
reported all line origin probabilities as zero (i.e. where probability
estimates were missing). Even though these are the cases that have
the largest impact on the power and precision for subsequent QTL
analyses, we have not included these probabilities in our comparison.
Only data points for which there were estimates from both GridQTL
and triM were compared. Both methods were timed. For GridQTL,
timing estimates were less accurate, because the viewer window in

Figure 1 Outline of the forward-backward algorithm used in triM. (A)
Schematic of line origin states along a section of chromosome flanked
by two fully informative markers. Positions 1-5 are markers, and t is the
position being tested as a QTL. Circles represent the possible line
origins, where i,j symbolizes that the maternal haplotype originates
from line i and the paternal haplotype from line j. Black filled circles
show line origins that are compatible with the marker genotypes and
pedigree. At t, all line origins are treated as compatible, shown by the
gray filled circles. (B) Calculation of apði; jÞ, the combined probability
of having line origin i,j at position p and the observed marker geno-
types from positions 1 to p, in the forward step. rp is the recombination
frequency between position p and the next position. Only ap21 and
rp21 are needed in each iteration. For clarity, calculations are only
shown for one line origin. Although only compatible line origins are
included in the example, triM considers incompatible origins with
a low probability to allow for genotyping errors. (C) Calculation of
bpði; jÞ, the probability of having the observed marker genotypes from
position p +1 to the end, given that the line origin is i,j at position p, in
the backward step. Only bp21 and rp are needed in each iteration.
Again, calculations are shown for only one line origin. Having
obtained ap and bp, the probability of line origin i,j at the test posi-
tion is given by atði; jÞbtði; jÞ=

P
k;l atðk; lÞbtðk; lÞ. (D) Representation

of the number of operations needed for the forward-backward algo-

rithm in this example. (E) For comparison, a representation of the
number of operations required under the original algorithm for the same
example.
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GridQTL had to be manually refreshed to check if an analysis had
finished. The following two aspects of the results were considered.

Line origin error
From the probabilities estimated by each method, we calculated the
overall probabilities that each haplotype originates from line 1. The
probabilities given by triM are, in order, (i) both haplotypes originate
from line 1, (ii) the maternal haplotype originates from line 1 and the
paternal haplotype from line 2, (iii) the maternal haplotype originates
from line 2 and the paternal haplotype from line 1, and (iv) both
haplotypes originate from line 2. In the results from GridQTL, the
order of probabilities (ii) and (iii) are switched. Probabilities (i) and
(ii) were summed for the maternal haplotype, and (i) and (iii) were
summed for the paternal haplotype. The true line origins are specified
in the simulation. For each haplotype, we define the line origin error
at position i, eðiÞ, as

eðiÞ ¼ 12 p1ðiÞ when the true origin is line 1;

eðiÞ ¼ p1ðiÞ when the true origin is line 2;

where p1ðiÞ is the probability of line 1 origin at position i. The
average and standard deviation in line origin error was calculated
over both haplotypes for all individuals.

Positions of recombination
Inferred recombination events in the parents can be seen as changes in
haplotype line origin probabilities from close to zero to nearly one and
vice versa. Only such switches that covered the range of probabilities
from 0.025-0.975 were considered; the positions where the probabil-
ities exceeded 0.975 and fell below 0.025 were called the end points of
the switch. Switches from GridQTL were not included if there were
missing probability estimates within the switch. We defined two
summary measures: imprecision and inaccuracy. Imprecision in an
estimated recombination position is the distance between the end
points of a switch. It quantifies the amount of uncertainty in the
estimated position; high imprecision means the method locates a broad
region in which recombination has occurred, low imprecision that an
interval or short stretch has been pinpointed. Inaccuracy in an
estimated recombination position is the distance between the true
recombination position and where the line origin probabilities cross
0.5. Occasionally, several consecutive positions had a probability of
0.5; in these cases, the distance to the central position was used.
The minimum possible imprecision is 1 cM; the minimum inaccuracy
is 0 cM. Most of the largest line origin errors are likely to be where
recombination positions have been estimated with high imprecision
or inaccuracy.

RESULTS
The average line origin error for triM over 1000 simulation replicates
ranged from 0.0009 to 0.04 for most of the simulated chromosome
(Figure 2A). The error was higher at the start of the chromosome,
where the distance between the markers was largest, reaching an
average of 0.12 at 12 cM. This position is halfway between one of
the pairs of markers that are separated by 8 cM, with the second

Figure 2 Line origin error for triM. (A) Average line origin error at each
position over both haplotypes and all individuals. Dots show the
average for 1000 simulation replicates, and gray bars indicate
the minimum and maximum average line origin error obtained for
a single replicate. (B) Standard deviation in line origin error at each
position. Dots show the average standard deviation for 1000 simula-
tion replicates, and gray bars indicate the minimum and maximum
standard deviations obtained for a single replicate.

Figure 3 Average difference in line origin error at each position
between GridQTL and triM. Only values from triM that were also
estimated by GridQTL are included. The end of the chromosome was
excluded to avoid artifacts due to the additional marker information
used by triM. Positive values mean that the average line origin error
was higher for GridQTL than triM; dashed line indicates zero. Dots
show averages for nine replicates. Gray bars indicate the minimum and
maximum difference in line origin error obtained for a single replicate.
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marker being homozygous for the same allele in all four grandparents,
and the low marker information limits how accurately line origin can
be estimated. The average line origin error across all positions was
0.017. The actual haplotype line origin corresponds to a probability of
either 1 or 0; therefore, the average error is 2% of the range of possible
values. The average standard deviation in line origin error within
a replicate was 0.08 (Figure 2B). As with the average error, the average
standard deviation in the error was higher at the start of the
chromosome.

GridQTL had a higher average line origin error over nine replicates
than triM at all positions (Figure 3). The difference varied from
0.00001 to 0.007, with an average across all positions of 0.0019. This
is equivalent to a 10% higher average error for GridQTL than triM.

The percentage of individuals missing probability estimates from
GridQTL at each position is shown in Figure 4. It was between 15 and
52%, with an average over all positions of 35%. For every replicate,
over 30% of individuals had missing probabilities in at least 2/3 of the
positions.

The analysis times for triM and GridQTL are shown in Table 1.
triM completed each analyses in seconds whereas GridQTL took sev-
eral hours. Table 1 also shows the number of replicates that GridQTL
was able to analyze for different numbers of markers.

In total, 46,520 recombinations were simulated over the first
333 cM in the nine simulations. We found switches in line origin
probabilities for 88% of these using triM and 53% using GridQTL.
Most of the recombination positions not found by GridQTL were in
regions with missing probability estimates. GridQTL only identified
14 recombination events that were not found by triM. Imprecision in
estimated recombination positions was nearly always higher for
GridQTL than triM (Figure 5A), and inaccuracy was also higher on
average for GridQTL (Figure 5B, Table 2). triM estimated more re-
combination positions with minimum imprecision than GridQTL and
more with zero inaccuracy (Table 3).

Examples of cases where triM and GridQTL substantially differed
in estimating recombination positions are given in Figure 6. In the few
cases where the imprecision was much higher for triM than GridQTL,
it was often when there were recombinations from line 1 to 2 in one
parent and line 2 to 1 in the other, within a few cM, and although
GridQTL was less imprecise in the estimate of one recombination, it
failed to detect the other at all (Figure 6D). In contrast, cases where
imprecision was much higher for GridQTL seemed to be when there
were recombinations in the same direction in both parents (i.e. both
line 1 to line 2 or vice versa), around 40 cM apart (Figure 6A and C).
There were other times when the parental line origin probabilities
estimated by GridQTL changed more slowly than the estimates from
triM (Figure 6B). When inaccuracy was higher for triM than GridQTL
by more than 2 cM, either imprecision was also higher for triM
(Figure 6D), or triM was less imprecise, so that the number of sur-
rounding positions with a high line origin error was lower for triM
(Figure 6E). Cases where GridQTL estimates were much more in-
accurate tended to be cases where they were also more imprecise
(Figure 6C).

DISCUSSION
Our study clearly illustrates the need for new algorithms to calculate
line origin probabilities in outbred line cross experiments. The
algorithm that is the basis of the most commonly used methods
today (Haley et al., 1994) was not designed to handle dense SNP
marker datasets and cannot be used for these in its original formula-
tion. The GridQTL project (Seaton et al. 2006) provides a modified
implementation of the Haley et al. (1994) algorithm that is reported to
be useful for analyses of intermediate density SNP markers (up to
1500 markers per chromosome). Our comparisons however, illustrate
that such extensions are not optimal, because for the GridQTL imple-
mentation (i) there are problems with the stability of the algorithm
leading to either a significant portion of the analyses terminating
before results are obtained or probabilities not being calculated for
many individuals in large parts of the genome; (ii) the computational
load, despite considerable computational resources, is approximately

Figure 4 Missing probability values at each position from GridQTL.
The percentage of individuals given zero probabilities for all four line
origins is shown. Dots show the average for nine replicates. Gray bars
indicate the minimum and maximum percentage of individuals with
missing values for a single replicate.

n Table 1 Timing comparisons for triM and GridQTL

Number of
Markers

GridQTL triM
Number of Replicates

Completed
Number
Timed

Average Time (range)
(hr:min)

Average Time (range)
(sec)

1508 7 2 9:10 (7:20–11:00) 45 (43–47)
1400 6 3 4:39 (4:35–4:41)
1300 7 4 3:47 (3:13–4:16)
1200 9 9 2:33 (2:02–2:58)

Methods were tested on 10 replicates. Smaller datasets were produced by successively removing the last 100 markers. triM was able to
analyze all replicates of the complete dataset with 1508 markers. GridQTL results are from version 1.4.1, running on the ECDF grid in March
and April 2010. triM was run on a machine with a 2.66 GHz Intel Core i7 CPU. The current version of the cnF2freq codebase was used with
OpenMP support disabled, compiled with gcc 4.2.1 and no specifically tuned optimization flags.
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two orders of magnitude greater for intermediate size datasets and
increases rapidly with the number of additional markers included in
the analyses; and (iii) accuracy in estimates of line origin probabilities
and inference of recombination positions is lower as a result of not
using all the available genetic information. Although the stability of
the algorithm might be resolved and it is possible that the time
requirements could be somewhat improved, further development
based on the Haley et al. (1994) algorithm is not recommended, as
the algorithm is inherently less efficient than alternative algorithms

and discarding marker information will inevitably give lower accuracy
in estimates of line origin probabilities.

This study involved datasets of 1200-1500 markers, which was
close to the maximum that could be handled by the modified Haley
et al. (1994) algorithm implemented in GridQTL. This is, however,
much lower than the number of markers that can currently be gen-
otyped with SNP chips, for example, the chicken 60K SNP chip has
approximately 8600 markers on chromosome 1. triM will be able to
use all the marker information in such large datasets and complete the
analyses rapidly.

A result that is of major concern for those attempting to analyze
moderately dense SNP datasets with GridQTL is the large number of
missing probability estimates; over 30% of the individuals had no
estimates for the majority of the genome. Using GridQTL estimated
probabilities rather than a complete set of probabilities to test for an
association with phenotype will substantially reduce the power to
detect QTL.

Data were simulated to closely reflect the pattern of marker
information in real intercrosses. This was achieved by using founder
haplotypes that were as near as possible to those in a well-studied
chicken intercross and replicating the marker distances and pedigree
structure. Therefore, the linkage disequilibria observed should closely
resemble those that can be seen in real data. A series of replicates were
created to ensure that findings were not due to peculiarities in specific
runs; results showed relatively little variation across replicates. Hence,
we believe that the findings in this study are representative of other
large datasets.

triM was able to analyze the full set of markers and all replicates
and give probability estimates for every position. Theoretically, the
number of calculations performed by triM scales logarithmically with
the number of markers, not exponentially as in the Haley et al. (1994)
algorithm. This manageable increase in memory required means that
triM should be capable of analyzing much larger marker datasets than
those simulated here, including those that might become available in
the future as SNP genotyping technology develops. There is no need
for extensive preprocessing of the data; all the marker genotypes can
be submitted so that no information is lost. In this study, triM was
shown to be considerably faster than the modified Haley et al. (1994)
algorithm implemented in GridQTL, taking seconds to complete the
analyses rather than hours. The gain in speed was at least a factor of
80. The online documentation for GridQTL gives an estimated run-
time of 48 hr for data from 1500 markers on one chromosome in 1000

Figure 5 Estimation of recombination positions by triM and GridQTL.
Imprecision and inaccuracy were measured as described in the
METHODS. The size of the circles is in proportion to the number of
data points at each pair of values. Points above the diagonal represent
cases where imprecision or inaccuracy in the estimated position of
recombination was greater for GridQTL than for triM; points below the
diagonal, cases where imprecision or inaccuracy was greater for triM
than GridQTL; and points on the diagonal, cases where imprecision or
inaccuracy was the same for both methods. The further the points are
from the diagonal, the bigger the difference between the results. (A)
Imprecision in estimated positions of recombination. (B) Inaccuracy in
estimated positions of recombination.

n Table 2 Differences between triM and GridQTL in estimating
recombination positions

Method Higher Imprecision Higher Inaccuracy

triM 20 626
GridQTL 3502 2250

Results show the number of times one method performed less well than the
other from 24,879 recombination positions that were found by both methods.

n Table 3 Best estimates of recombination positions
by triM and GridQTL

Method Minimum Imprecision Zero Inaccuracy

triM 1081 9318
GridQTL 693 8398

Results show the number of recombination positions estimated with the lowest
possible imprecision and inaccuracy out of 24,879 cases that were found by both
methods. The minimum imprecision is 1 cM.
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individuals. As with memory, the time required by triM should in-
crease moderately as more markers are included, so that data from
large SNP chips could still be completed in a reasonable time.

Our simulations show that the average line origin error is low,
around 2%, for both methods. The error was 10% larger for the
GridQTL algorithm than for triM. Although the difference is small in
absolute terms, triM did perform better and therefore should be
preferred. It should also be noted that the observed difference in
accuracy probably underestimates the true difference between the
methods because only values that were estimated by GridQTL were
compared. The points that GridQTL failed to estimate presumably
included those where there were the longest stretches of partially
informative markers, and therefore where the difference between the
two methods could be greatest.

To gain a more detailed understanding of the differences between
the two methods, we explored how well they inferred positions of
recombination in the parents using measures of imprecision and
inaccuracy. High imprecision or inaccuracy in estimating recombi-
nation positions is likely to explain most of the largest errors in line
origin. GridQTL was nearly always more imprecise in estimating
recombination positions than triM. There was less difference between
the methods in the accuracy of the estimated positions, although
GridQTL was more inaccurate than triM considerably more times
than the other way round.

There is no detailed documentation of the changes made to the
Haley et al. (1994) algorithm in GridQTL. It is likely that it uses
a similar algorithm to that of QTL Express, the predecessor of
GridQTL, where partially informative markers were discarded if nec-
essary, so that there were no more than 15 partially informative
markers in a stretch without intervening fully informative markers.
Although these details are not available, we do not feel this affects our
conclusions, as the differences between GridQTL and triM are in line
with theoretical expectations.

We evaluated triM on a simulated F2 population. However, triM
can equally be used for backcross populations or full or half sib family
analyses. The codebase in which triM is implemented, cnF2freq, has
additional capabilities. First, the grandparental chromosome that a re-
gion originates from can be estimated. This information can be used
for more general analyses in a variance component framework with-
out assuming QTL are fixed for alternate alleles in the two lines
(Rönnegård et al. 2008). The functionality can also be extended into
a full scheme for haplotyping. Inferring parental haplotypes can pro-
vide additional information on line origin by considering inheritance
at linked markers. Second, different recombination rates can be ap-
plied for the two sexes. Although we simulated the same recombina-
tion rate in both sexes, sex differences in recombination rates of
autosomes have been found in chicken (Kerje et al. 2003, Groenen
et al. 2009) and other species. Use of the appropriate recombination

Figure 6 Examples of haplo-
type line origin probabilities.
Estimated probabilities that the
paternal and maternal haplo-
types originate from line 1 are
illustrated for examples where
there were large differences
between triM and GridQTL in
estimating recombination posi-
tions. The left two graphs show
results from triM, and the right
two graphs show results from
GridQTL. The paternal haplo-
type is shown on the left, and
the maternal haplotype is
shown on the right. Dashed
lines show the simulated line
origins. (A) The two cases where
GridQTL was most imprecise in
estimating the recombination
position in comparison to triM;
the simulated recombination
points were at 192 cM in the
father and 152 cM in the
mother. (B) Another case where
GridQTL had much higher im-
precision than triM; the simu-
lated recombination point was
at 303 cM in the mother. (C) The
two cases where GridQTL was
most inaccurate in estimating
the recombination position in
comparison to triM; the simu-
lated recombination points
were at 186 cM in the father
and 155 cM in the mother. (D)

The case where triM was most imprecise and inaccurate in estimating the recombination position in comparison to GridQTL; the simulated
recombination position was at 166 cM in the father. (E) One of the cases where triM was most inaccurate in estimating the recombination position
in comparison to GridQTL; the simulated recombination position was at 210 cM in the father.
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rates for each sex should improve the probability estimates in general
and is essential for correct analysis of the sex chromosomes. When the
physical location or ordering of markers is known, a maximum likeli-
hood fit of sex-specific recombination rates can also be computed,
where the sex-averaged distances can be used as a starting value.
Third, joint line origin probabilities, required for fitting models of
more than one locus per chromosome (for example, in testing for
epistasis) can be estimated. The line origin probabilities at two such
positions are not independent if there is no fully informative marker
between them and these dependencies have been included.

In conclusion, we have validated that triM provides accurate line
origin probabilities from large SNP datasets and is extremely fast. A
variant of the Haley et al. (1994) algorithm that has most commonly
been used for this purpose was shown to be inferior for such data.
triM was faster, more stable, provided more accurate line origin prob-
abilities, and was better at inferring recombination positions. triM is
therefore recommended as the method of choice for estimating line
origin probabilities in outbred line crosses. triM is under continued
development, and several useful additional functionalities are already
available that will enable QTL analyses to keep pace with advances in
genotyping technology.
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