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SUMMARY

Mixed models are commonly used to represent longitudinal or repeated measures data. An additional
complication arises when the response is censored, for example, due to limits of quantification of the
assay used. While Gaussian random effects are routinely assumed, little work has characterized the con-
sequences of misspecifying the random-effects distribution nor has a more flexible distribution been stud-
ied for censored longitudinal data. We show that, in general, maximum likelihood estimators will not be
consistent when the random-effects density is misspecified, and the effect of misspecification is likely to
be greatest when the true random-effects density deviates substantially from normality and the number of
noncensored observations on each subject is small. We develop a mixed model framework for censored
longitudinal data in which the random effects are represented by the flexible seminonparametric density
and show how to obtain estimates in SAS procedure NLMIXED. Simulations show that this approach
can lead to reduction in bias and increase in efficiency relative to assuming Gaussian random effects. The
methods are demonstrated on data from a study of hepatitis C virus.
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1. INTRODUCTION

Longitudinal or repeated measures data are commonly represented by mixed effects models. A compli-
cation occurs when the response is censored for some of the observations, which often arises when assay
measures are collected over time and the assay procedure is subject to limits of quantification (Hughes,
1999; Jacqmin-Gaddaand others, 2000; Wu, 2002, and references therein).

As an example, we consider data from the Individual Dosing Efficacy versus Flat Dosing to
Assess Optimal Pegylated Interferon Therapy (IDEAL) study, which tracked the viral load progression
of treatment-naive patients with hepatitis C (Thompsonand others, 2010). One objective was to char-
acterize the viral load decline in patients receiving standard treatment, pegylated interferon-alpha and
ribavirin, over the first 12 weeks of treatment. Within-subjects, the trajectory of the log10 viral load over
the first 12 weeks is approximately linear, but responses were censored from below at 1.431 log10 IU/mL,
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Fig. 1. Trajectory of log10 viral load of 25 randomly selected subjects with genotype CT from the IDEAL study. For
graphical purposes, the lower limit of quantification, 1.431 log10 IU/mL, was imputed for the censored responses.

the lower limit of quantification of the assay used. Over the first 12 weeks, 10.5% of all observations were
censored, and 35.2% were censored at week 12. The trajectories of 25 randomly selected subjects are
shown in Figure1.

A standard analysis would impute the censored responses as the limit or half limit of quantification
and then fit a mixed model for uncensored longitudinal data. However,Jacqmin-Gaddaand others(2000)
showed through simulation studies that such crude parameter estimators are badly biased even for mod-
est levels of censoring. A refined analysis would postulate a likelihood that accounts for the censoring
and obtain the maximum likelihood estimates. However, methods using this full-likelihood approach have
all assumed Gaussian random effects and intra-subject error (Hughes, 1999; Jacqmin-Gaddaand others,
2000; Wu, 2002; Vaida and Liu, 2009). While intra-subject error may be reasonably assumed to be nor-
mally distributed, the assumption of Gaussian random effects may be too restrictive in many applications.
In the IDEAL study, some patients do not respond to treatment, while others show marked declines in the
viral load, so the distribution of subject-specific slopes is unlikely to be approximately Gaussian.

For noncensored linear mixed-effects models, the maximum likelihood estimators for the fixed-effects
and covariance components are consistent under broad regularity conditions even when the random-effects
distribution is misspecified (Verbeke and Lesaffre, 1997). For nonlinear mixed-effects models, which in-
clude mixed models with censored responses and generalized linear mixed models, the maximum likeli-
hood estimators will not, in general, be consistent if the random-effects distribution is misspecified. The
effect of misspecification has been well studied in generalized linear mixed models (Neuhausand others,
1992; Heagerty and Kurland, 2001; Agrestiand others, 2004; Liti èreand others, 2008), but the potential
effect of misspecification of the random-effects distribution when the response is censored has not been
examined.

A variety of methods have been proposed to relax the Gaussian assumption for the random effects
(Magder and Zeger, 1996; Verbeke and Lesaffre, 1997; Kleinman and Ibrahim, 1998; Aitkin , 1999; Zhang
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and Davidian, 2001; Chenand others, 2002; Lee and Thompson, 2008); however, none of these meth-
ods has been implemented for censored longitudinal data. For linear mixed models,Zhang and Davidian
(2001) assumed that the random effects follow a “smooth” density that can be represented by the seminon-
parametric (SNP) formulation proposed byGallant and Nychka(1987). They showed the log-likelihood
can be written in a closed form leading to straightforward estimation.

We show how the SNP representation can be implemented for the random-effects density in linear
mixed models when the response is potentially censored. In Section 2, we formulate the censored-response
mixed model with Gaussian random effects and show that incorrectly assuming the random effects are
Gaussian leads to inconsistent estimators of model parameters. In addition, we suggest general scenarios
where estimation is likely to be particularly poor. In Section 3, we discuss the censored-response linear
mixed model, where the random effects are assumed to follow a smooth continuous density and introduce
the SNP representation. Section 4 describes how to fit the SNP model using SAS procedure NLMIXED,
how to select the degree of flexility in the model, and how to choose starting values. Section 5 presents
the results of several simulations. In Section 6, we illustrate the method by application to data from the
IDEAL study.

2. GAUSSIAN LINEAR MIXED MODEL WITH CENSORED RESPONSE

For ease of presentation, we assume that responses are potentially left censored, but developments are
easily generalized to right- or interval-censored data. LetYi j , i = 1, . . . , m and j = 1, . . . , ni be the j th
response for subjecti that would have been observed had there been no censoring. Consider the usual
linear mixed model for longitudinal data

Yi j = vT
i j δ + sT

i j ui + εi j = xT
i j β + sT

i j bi + εi j , (2.1)

wherevi j = (xT
i j , sT

i j )
T , δ = (βT , δT ), andbi = γ + ui ; β andγ are thep- andq-dimensional fixed-

effects parameters associated with covariatesxi j andsi j , respectively;ui are theq-dimensional, mean zero

subject-specific random-effects vectors associated with covariatessi j , independent acrossi ; andεi j
i id
∼

N(0, σ 2) are the intra-subject error, which are independent ofui . We adopt the rightmost representation
in (2.1) and note that the centered random effectsbi can be written asbi = μ+ RZi , whereμ is a(q × 1)
vector,R is a(q × q) lower triangular matrix, andZi is a(q × 1) vector of random effects. Typically,Zi

are assumed to follow a standardq-dimensional normal distribution, which implies thatbi are normally
distributed with meanμ = γ and covariance matrix var(ui ) = RRT .

As an example, a special case of (2.1) is the linear random coefficient model with baseline covariate
xi given by

Yi j = xi β + b0i + b1i ti j + εi j , (2.2)

wherebi = (b0i , b1i )
T andsi j = (1, ti j )T .

Due to left censoring, we observeQi j which takes the valueYi j for Yi j > l i j and takes the valuel i j ,
the known lower limit of quantification for thej th response on subjecti , otherwise. Lettingr = vech(R)
be the nonzero elements ofR, the parameters of interest areθ = (βT , μT , r T , σ 2)T , and the likelihood
assuming Gaussian random effects is

L(θ; Q) =
m∏

i =1

∫ ni∏

j =1

[

{81(mi j )}
I (Qi j =l i j )

{
1

σ
φ1(mi j )

}I (Qi j >l i j )
]

φq(zi )dzi , (2.3)

wheremi j = {Qi j − xT
i j β − sT

i j (μ + RZi )}/σ , Q is the vector of all responses observed, andφn(∙) and
8n(∙) are the standardn-dimensional normal density and distribution.
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Alternatively, we can express (2.1) asYi = Vi δ + Si ui + εi , whereVi {ni × (p + q)} andSi (ni × q)

are the matrices with rowsvT
i j andsT

i j , respectively, andYi =
(
Yi 1, . . . , Yini

)T and similarly forεi , l i ,
andQi .

To simplify the following argument, we assume that the design matrix is fixed,Vi = V andni = n for
i = 1, . . . , m and also suppress the indexi throughout. To express (2.3) using vector notation, letfY(y; θ)
andFY(y; θ) be the multivariate normal density and distribution, respectively, with meanVδ and covari-
ance matrix6 = SRRT ST +σ 2In. Define fY1|Y2(y1|y2; θ) andFY1|Y2(y1|y2; θ) to be the conditional mul-
tivariate normal density and distribution, respectively, of the vectorY1 given the vectorY2. There are 2n−2
patterns of censoring/noncensoring that could be observed for an individual with at least one censored and
one noncensored observation. Index each of these 2n − 2 distinct censoring patterns byk. Let Yk,o (Yk,c,
respectively) be the random vector containing elements ofY that would be observed (censored) under cen-
soring patternk. If the kth pattern were observed for a particular subject, then the likelihood contribution
from that subject assuming normal random effects is given byFYk,c|Yk,o(lk,c|Qk,o; θ) fYk,o(Qk,o; θ), where
Qk,o is the vector of noncensored responses andlk,c (lk,o, respectively) is the limit of quantification for the
censored observations (noncensored observations) under censoring patternk. The likelihood contribution
from one subject can now be written as

L(θ, Q) = fY(Q; θ)I (Q>l )FY(l ; θ)I (Q=l )
2n−2∏

k=1

{FYk,c|Yk,o(lk,c|Qk,o; θ) fYk,o(Qk,o; θ)}I (Qk,c=lk,c,Qk,o>lk,o).

If the random-effects distribution is incorrectly specified, the maximum likelihood estimatorθ̂ will
converge to value ofθ that solves E{∂/∂θ logL(θ; Q)} = 0, where the expectation is taken with respect
to the true random-effects distribution. Assuming that the covariance components are known and using
a first-order Taylor series expansion, we show in the supplementary material (available atBiostatistics
online) thatδ̂ will converge to the value ofδ that solves

0 = D(δ∗, V)(δ∗ − δ) +
∫ l

−∞
VT6−1(q − Vδ∗)

{
GY(l )

FY(l )
fY(q) − gY(q)

}
dq

+
2n−2∑

k=1

[∫ ∞

lk,o

∫ lk,c

−∞
V∗T

k,c 6∗−1
k,c {q∗

k,c − V∗
k,cδ

∗}

×
{

GYk,c|Yk,o(lk,c|qk,o)

FYk,c|Yk,o(lk,c|qk,o)
fYk,c|Yk,o(qk,c|qk,o) − gYk,c|Yk,o(qk,c|qk,o)

}
gYk,o(qk,o)dqk,cdqk,o

]

,

(2.4)

wheregY(q; δ∗) andGY(q; δ∗) are the true marginal density and distribution, respectively, ofY; all den-
sities in (2.4) are evaluated atδ∗, the true parameter value; andD(δ∗, V), Q∗

k,c, V∗
k,c, and6∗

k,c are given
in the supplementary material available atBiostatisticsonline.

While complex, the approximation reveals important insights on the asymptotic bias when the random
effects are incorrectly specified. In the likely case that the random-effects distribution is misspecified, the
bias is driven by the difference in the true conditional distribution of the censored response given the non-
censored response (i.e.gYk,c|Yk,o(qk,c|qk,o)) and the same conditional distribution induced by the Gaussian
random effects (i.e.fYk,c|Yk,o(qk,c|qk,o)), weighted by the likelihood of the noncensored response (i.e.
gYk,o(qk,o)). Practically, this suggests that small deviations from normality will lead to only slight asymp-
totic bias. If we have correctly specified the intra-subject error distribution, thengYk,c|Yk,o(yk,c|yk,o) will
be approximately normal if the dimension ofYk,o is large regardless of the true random-effects density.
Thus, if there is a large probability of observing many noncensored observations on each subject, then the
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asymptotic bias is likely to be slight. This suggests that the overall percentage of censored responses is
immaterial in determining the asymptotic bias. Instead, the absolute number of noncensored responses for
each subject is critical.

3. SEMIPARAMETRIC LINEAR MIXED MODEL WITH CENSORED RESPONSE

We offer a summary of semiparametric linear mixed models and refer the reader toZhang and Davidian
(2001) for a complete description. We now assume that the distribution ofZi belongs to the smooth
class of continuous densities described byGallant and Nychka(1987). This class is sufficiently flexible
to include skewed, thick- and thin-tailed, and multimodal distributions but does not include densities
with jumps, kinks, or oscillations. These densities can be represented as an infinite series but can be
approximated by a truncated series. The densities that are part of the truncated series are referred to as
seminonparametric (SNP).

We thus assume that the density ofZi can be approximated by the SNP representation with degree of
truncationK given by

hK (z) = P2
K (z)φq(z) =






∑

( j1+...+ jq)6K

aj1,..., jq(z
j1
1 ∙ ∙ ∙ z

jq
q )






2

φq(z), (3.1)

where jl > 0 for l = 1, . . . , q and K is the order of the polynomialPK (z). For example, withK = 2
andq = 2, PK (z) = a00 + a10z1 + a01z2 + a20z2

1 + a11z1z2 + a02z2
2. WhenK = 0, we show below that

a0,...,0 must equal 1, and the density ofZi is a standardq-dimensional normal.K controls the degree of
flexibility of the densityhK (z); we discuss in Section 4 how to selectK .

The coefficientsaj1,..., jq must be chosen so thathK (z) integrates to one. The constraint
∫

hk(z)dz = 1
is equivalent to imposing E{P2

K (U )} = 1, whereU follows a standardq-dimensional normal distribu-
tion (Zhang and Davidian, 2001). Let a be thed-dimensional vector of coefficients for the polynomial
PK (z) and let j1, . . . , jq be the subscripts corresponding to thej th element. Then the above constraint
can be rewritten as E{P2

K (U )} = aT Aa = 1, where A is the matrix with( j, k) element equal to

{E(U j1+k1
1 ) ∙ ∙ ∙ E(U

jq+kq
1 )} andU1 is distributed as a standard normal.

Rather than impose a constraint ona, we may rewrite the(d×1) vectora as a function ofd−1 parame-
ters. BecauseA must be positive definite, there exists a matrixB such thatA = B2. If we letc = Ba, then
aT Aa = 1 impliescT c = 1. As c and−c will result in the same densityhK (z), c = (c1, . . . , cd)T

must lie in the half-unit sphere ofRd. Therefore, we can expressc in terms of a polar coordinate
transformation, wherec1 = sin(ξ1), c2 = cos(ξ1) sin(ξ2), . . ., cd−1 = cos(ξ1) . . . cos(ξd−2) sin(ξd−1),
cd = cos(ξ1) . . . cos(ξd−1), −π/2 6 ξ j 6 π/2 for j = 1, . . . , d − 1, andξ = (ξ1, . . . , ξd−1)

T . The
vectora can be written asB−1c, which only involvesd − 1 parameters. The parameters of interest are
now θ K

SNP = (βT , μT , r T , σ 2, ξT )T , which includes an additionald − 1 parameters compared to when
normality is assumed.

Note that the SNP density does not impose E(Zi ) = 0, so that E(bi ) = γ = μ + R{E(Zi )} and
Var(bi ) = R{Var(Zi )}RT . The moments ofZi are linear combinations of the moments of a standard
normal density, which can be found using recursion formulas.

4. ESTIMATION USING SAS NLMIXED

In the case where there is no censoring of the response variable, the log-likelihood assuming the SNP
representation of the random effects can be expressed in a closed form (Zhang and Davidian, 2001).
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Censoring necessitates numerical integration. For a fixedK , the likelihood ofθ K
SNP is given by

L(θ K
SNP; Q) =

m∏

i =1

∫ ni∏

j =1

[

{81(mi j )}
I (Qi j =l i j )

{
1

σ
φ1(mi j )

}I (Qi j >l i j )
]

P2
K (zi )φq(zi )dzi . (4.1)

For each observationi , this requires evaluation of aq-dimensional integral, which, in practice, would
likely only have dimension 1 or 2. In contrast, we could integrate over the marginal density ofYi for
each censored observation. However, the dimension of that integral would equal the number of censored
observations for subjecti , which could be quite large and computationally intractable.

The SAS procedure NLMIXED has been developed to obtain maximum likelihood estimates for
mixed models with Gaussian random effects. Except whenK = 0, the SNP random-effects density will
not be normally distributed. However, if we consider

ni∏

j =1

[

{81(mi j )}
I (Qi j =l i j )

{
1

σ
φ1(mi j )

}I (Qi j >l i j )
]

P2
K (zi ) (4.2)

to be the likelihood forQi j conditioned on the random effects, then the random effectsZi can be thought to
follow a standardq-dimensional normal distribution (Liu and Yu, 2008). Example code to implement SNP
for left-censored mixed models is given in the supplementary material (available atBiostatisticsonline).
In practice, given that (4.2) is highly nonlinear, we have found optimization routines within NLMIXED to
obtain the empirical Bayes estimates ofZi , required for the default adaptive Gaussian quadrature used to
evaluate the integrals to be unstable and computationally intractable forq > 2. To approximate the integral
in (4.1), we recommend using nonadaptive Gaussian quadrature with quadrature points centered at the
empirical Bayes estimates ofbi from assuming Gaussian random effects. Among the optimization routines
available in NLMIXED, dual-quasi Newton optimization works well. The inverse Hessian matrix may be
used to obtain standard errors for the parameter estimates and is computed as part of the standard output in
NLMIXED.

The preceding discussion assumes a fixedK . We treatK as a tuning parameter and selectK by
visually comparing the estimated densities and computing information criteria evaluated at the estimates,
θ̂ K

SNP, of θ K
SNP from model fits for different values ofK (Zhang and Davidian, 2001). The information

criteria are of the form−2L(θ̂ K
SNP, Q) + C(m)p, where p is the number of parameters in the model.

For the Akaike information criterion (AIC),C(m) = 2; Hannan–Quinn information criterion (HQIC),
C(m) = 2 log logm; and Bayesian information criterion (BIC),C(m) = logm. Because the HQIC will
select a model that is of intermediate complexity compared to those chosen by AIC and BIC, this criterion
is often preferred (Davidian and Gallant, 1993). Prior research has shown thatK need not be greater than
2 to capture many complex densities (Davidian and Gallant, 1993; Zhang and Davidian, 2001; Chenand
others, 2002).

Optimization for SNP can be highly dependent on the starting values used forθ K
SNP and especially for

ξ . We suggest the following approach advocated byDoehler and Davidian(2008). Initial estimates ofβ,
E(bi ), var(bi ), andσ 2 should be obtained, perhaps by fitting a mixed model assuming Gaussian random
effects. The log-likelihood (4.1) can then be evaluated over a grid ofξ with starting values forβ andσ 2 set
to the initial estimates and starting values forμ andr selected to give the same value for E(bi ) and var(bi )
as the initial estimates. The sets of starting values that yield local maxima among all the grid points can
then be used for optimization.
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5. SIMULATION

We conducted a variety of simulation studies both to assess the impact of erroneously assuming Gaussian
random effects and to gauge the ability of SNP to represent a broad range of random-effects distributions.
We report on a subset of these withq = 2 here; results of additional simulations are included in the
supplementary material (available atBiostatisticsonline).

The first part of the simulation study examined the effect of misspecification of the random-effects
distribution on estimation and inference of model parameters. We considered (2.2) wherexi is equal to

0 or 1 with equal probability,εi j
i id
∼ N(0, σ 2), andti = (ti 1, . . . , ti 5)T = (0, 1, 2, 3, 4)T ≡ tA for all

i = 1, . . . , m. For all simulations,β = 0.5,σ 2 = 0.25, and(b0i , b1i )
T were generated from distributions

that were shifted and scaled so that E(b0i ) = 5.75, E(b1i ) = −0.60, var(b0i ) = 0.36, var(b1i ) = 0.9025,
and cov(b0i , b1i ) = −0.228.

The random effects,bi were drawn from 1 of 4 shifted and scaled distributions: (1) bivariate nor-
mal; (2) a bivariatet5 distribution; (3) a 70–30 mixture of normal densities with mean components
(5.6, −0.1071)T (70% component) and(6.1, −1.75)T , which gives a skewed marginal density forb1i ;
and (4) a 70–30 mixture of normal densities with mean components(5.6, −0.03)T (70% component)
and(6.1, −1.93)T , which produces a bimodal marginal density forb1i . For (3) and (4), the covariance
matrices of the components were equal to each other. For each of the 4 distributions, 500 Monte Carlo
simulations were generated with 500 subjects each. Here, we report the results for censoring levell i j ≡ 4
for all subjects and time points.

The models were fit using SAS procedure NLMIXED assuming Gaussian random effects. The like-
lihood (2.3) was approximated using adaptive Gaussian quadrature with the number of quadrature points
selected adaptively to achieve a tolerance of 10−4. Dual-quasi Newton was used for optimization with the
true values used as starting values.

Within each of the simulation scenarios, nearly all subjects had at least one noncensored measurement,
and approximately 90% had at least 2 noncensored observations. With the exception of the data generated
from the bimodal random-effects density (4) where 42.4% of subjects had at least one censored observa-
tion, a slight majority in each of the other scenarios had at least one censored observation. A complete de-
scription of the censoring pattern is given in the supplementary material (available atBiostatisticsonline).

The results are given in Table1. When the random effects are correctly specified, parameter estima-
tors are unbiased, and the coverage probabilities attain their stated level of confidence. When the random
effects have heavy tails (t5 distribution), parameter estimators are still unbiased although coverage prob-
abilities for the covariance components do degrade slightly. Equation (2.4) suggests that the asymptotic
bias in this scenario would be slight. When the random slope is slightly skewed, parameter estimators are
biased, especially for E(b1i ) (6.0%) and var(b1i ) (−10.0%). Coverage probabilities for these parameters
in particular are far from nominal. This illustrates that even slight departures from normality can lead to
erroneous inference when the number of noncensored observations for each subject is small. In the case
of severe misspecification with bimodal random slopes, the bias of all the parameter estimators increases
in comparison to that under skewed random effects; the bias in the estimators for E(b1i ) and var(b1i ) is
substantial (13.0% and−18.9%, respectively), and coverage probabilities for these parameters are poor.

We also examined the effect of adding design points where there was unlikely to be any censor-
ing and where censoring was likely. We generated 500 data sets with bimodal random effects, where
ti = (0, 1, 2, 3, 3.5, 4, 4.5)T ≡ tB andti = (−2, −1, 0, 1, 2, 3, 4)T ≡ tC for all subjects. With measure-
ments atti j = −2 andti j = −1, 99.9% and 90.5% of subjects had at least 3 and 4 noncensored measure-
ments, respectively. Adding measurements atti j = 3.5 andti j = 4.5 increased the overall percentage of
censored observations to 25.5% from 21.8%.

Simulation results with bimodal random effects and takingti to be each oftA, tB, andtC are shown in
Table2. When there are more design points where censored observations are unlikely, bias is mitigated
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Table 1. Simulation results when Gaussian random effects were assumed for all models regardless of the
true distribution of the random effects. The simulation included500data sets with500subjects each

Distribution E(b0i ) E(b1i ) β0 var(b0i ) cov(b0i , b1i ) var(b1i )

Truth 5.750 −0.600 0.500 0.360 −0.228 0.903
MC Avg Normal 5.749 −0.604 0.504 0.360 −0.230 0.907

t5 5.752 −0.599 0.498 0.349 −0.224 0.859
Skewed 5.736 −0.564 0.496 0.349 −0.202 0.813
Bimodal 5.718 −0.522 0.494 0.341 −0.180 0.732

MC SD Normal 0.043 0.047 0.060 0.037 0.037 0.074
t5 0.042 0.042 0.057 0.040 0.041 0.082

Skewed 0.045 0.046 0.058 0.035 0.036 0.065
Bimodal 0.045 0.048 0.058 0.035 0.036 0.067

Avg SE Normal 0.044 0.046 0.059 0.035 0.036 0.069
t5 0.044 0.044 0.058 0.034 0.035 0.065

Skewed 0.044 0.043 0.059 0.034 0.035 0.065
Bimodal 0.044 0.042 0.059 0.034 0.033 0.062

CP Normal 0.956 0.950 0.956 0.932 0.950 0.938
t5 0.952 0.962 0.949 0.869 0.905 0.786

Skewed 0.928 0.832 0.960 0.920 0.852 0.678
Bimodal 0.878 0.532 0.956 0.896 0.662 0.268

MC Avg, Monte Carlo average of the parameter estimates; MC SD, Monte Carlo standard deviation of the parameter estimates; Avg
SE, average of the standard error estimates; CP, Monte Carlo coverage probability of the 95% Wald-type confidence intervals.

Table 2. Simulation results when Gaussian random effects were assumed for the bimodal random effects
but ti in (2.2) was varied. The simulation included500data sets with500subjects each

Time points E(b0i ) E(b1i ) β0 var(b0i ) cov(b0i , b1i ) var(b1i )

Truth 5.750 −0.600 0.500 0.360 −0.228 0.903
MC Avg tA 5.718 −0.522 0.494 0.341 −0.180 0.732

tB 5.715 −0.520 0.496 0.337 −0.175 0.722
tC 5.757 −0.590 0.500 0.360 −0.234 0.886

MC SD tA 0.045 0.048 0.058 0.035 0.036 0.067
tB 0.046 0.048 0.059 0.033 0.034 0.066
tC 0.040 0.044 0.054 0.027 0.029 0.049

Avg SE tA 0.044 0.042 0.059 0.034 0.033 0.062
tB 0.043 0.041 0.058 0.032 0.032 0.061
tC 0.039 0.043 0.053 0.026 0.030 0.058

CP tA 0.878 0.532 0.956 0.896 0.662 0.268
tB 0.864 0.474 0.950 0.864 0.586 0.212
tC 0.944 0.930 0.948 0.938 0.962 0.960

tA = (0, 1, 2, 3, 4)T ; tB = (0, 1, 2, 3, 3.5, 4, 4.5)T ; tC = (−2, −1, 0, 1, 2, 3, 4)T ; MC Avg, Monte Carlo average of the parameter
estimates; MC SD, Monte Carlo standard deviation of the parameter estimates; Avg SE, average of the standard error estimates; CP,
Monte Carlo coverage probability of the 95% Wald-type confidence intervals.

substantially and coverage probabilities improve, which is consistent with the asymptotic results in Sec-
tion 2. Conversely, increasing the number of design points where censoring is likely has little effect on
parameter estimation, illustrating that the overall censoring level has little to do with the bias.

We also conducted simulation studies of the performance of SNP density estimation for censored
longitudinal data analysis. We considered the same simulation scenarios as above except for thet5



Mixed model analysis of censored longitudinal data 69

random-effects distribution, as assuming Gaussian random effects did not adversely affect inference. To
obtain estimates of parameters with SNP random effects, we again used SAS procedure NLMIXED. Mod-
els were fit forK = 0, 1, and 2, andK was chosen using HQIC. The likelihood (4.1) was approximated
using Gaussian quadrature with quadrature points centered at the empirical Bayes estimates ofbi derived
from assuming Gaussian random effects and with the number of quadrature points selected with a stated
tolerance of 10−4. Dual-quasi Newton was used for optimization. 500 Monte Carlo data sets were gener-
ated for each scenario. To obtain starting values, the log-likelihood was evaluated over a grid ofξ of 50
points forK = 1 and 150 points forK = 2 with starting values forβ andσ 2 set to the true values and for
μ andr set to the values that would give the true values for E(bi ) and var(bi ).

The results whenK was selected by HQIC are shown in Table3. When the random effects are normally
distributed, HQIC selectsK = 0 for 94.8% of the data sets. However, when the random-effects density
was skewed and bimodal,K = 0 was selected only 0.2% and 0.0% of the time, respectively, andK = 2
was selected for 95.2% and 36.4% of the data sets, respectively. This illustrates that even with a modest
sample size and loss of information due to censoring, the method is able to detect slight departures from
normality while not over-fitting models where the true random-effects density is Gaussian. A complete
table on the proportion of data sets that selectedK = 0, 1, and 2 by information criterion is given in the
supplementary material (available atBiostatisticsonline).

The SNP estimators when the random effects are not normally distributed are less biased than the
estimators when Gaussian random effects were assumed. When the random effects were skewed, the bias
for E(b1i ) and var(b1i ) is reduced to 0.5% and−0.3%, respectively, which leads to large efficiency gains
(Table3). The coverage probabilities for these parameters improve substantially although for bimodal
random effects are still below the stated level. BecauseK = 0 is selected so frequently when the random
effects are Gaussian, there is little loss in efficiency from considering a more flexible class of random

Table 3. Simulation results when SNP was used to estimate the random effects. Models with K= 0,
K = 1, and K = 2 were fit and K was selected using the HQIC. The simulation included500data sets

with 500subjects each

Distribution E(b0i ) E(b1i ) β0 var(b0i ) cov(b0i , b1i ) var(b1i )

Truth 5.750 −0.600 0.500 0.360 −0.228 0.903
MC Avg Normal 5.749 −0.603 0.504 0.358 −0.229 0.905

Skewed 5.750 −0.598 0.496 0.358 −0.227 0.900
Bimodal 5.747 −0.590 0.496 0.360 −0.222 0.878

MC SD Normal 0.043 0.047 0.060 0.040 0.038 0.077
Skewed 0.046 0.050 0.060 0.044 0.041 0.090
Bimodal 0.045 0.048 0.058 0.037 0.039 0.080

Avg SE Normal 0.044 0.045 0.058 0.035 0.036 0.069
Skewed 0.043 0.046 0.057 0.035 0.037 0.072
Bimodal 0.044 0.045 0.058 0.034 0.035 0.062

CP Normal 0.950 0.952 0.948 0.916 0.936 0.932
Skewed 0.930 0.934 0.940 0.904 0.932 0.908
Bimodal 0.944 0.920 0.952 0.932 0.916 0.860

Ratio MSE Normal 0.999 1.004 0.999 0.843 0.949 0.917
Skewed 1.080 1.372 0.960 0.688 1.160 1.532
Bimodal 1.493 3.440 1.006 1.149 2.285 4.801

MC Avg, Monte Carlo average of the parameter estimates; MC SD, Monte Carlo standard deviation of the parameter estimates; Avg
SE, average of the standard error estimates; Ratio MSE, ratio of the Monte Carlo mean square error betweenK = 0 andK selected
by the HQIC.



70 D. M. VOCK AND OTHERS

effects. Estimated contour and marginal density plots of the random effects from assuming that the random
effects follow the SNP density is provided in the supplementary material (available atBiostatisticsonline).

6. APPLICATION

We now illustrate the proposed methods using data from 811 subjects in the IDEAL study with the CT
genotype at polymorphic site upstream of interleukin (IL) 28B which is associated with virologic response
(Thompsonand others, 2010).

Subjects had viral load measurements taken at baseline and at 2, 4, and 12 weeks after treatment
began, some of which were censored at the lower limit of quantification of 1.431 log10 IU/mL. As shown
in Figure1, the viral load change over the first 12 weeks within subject can be well approximated by a
linear trajectory, and the measurement error and biological fluctuations at each time point can be assumed
reasonably to be independent and Gaussian. However, standard therapy is not effective for all subjects, so
the assumption that the subject-specific slopes are normally distributed is questionable.

Based on these observations, we consider the semiparametric model

Yi j = b0i + b1i ti j + εi j , (6.1)

whereYi j is the log10 viral load for patienti at the j th time,ti j is the time in weeks since starting treatment,

xi j is null, si j = (1, ti j )T , εi j
i id
∼ N(0, σ 2), andbi = (b0i , b1i )

T is the vector of subject-specific intercept
and slope, which we assume can be written asbi = μ + RZi with Zi = (Z0i , Z1i )

T , μ = (μ1, μ2)
T ,

andR a (2 × 2) lower triangular matrix. We assume thatZi follows the density (3.1) for the K described
below. We do not observeYi j but instead observeQi j with l i j ≡ 1.431.

All patients included in this analysis have noncensored baseline measurements, and greater than 94%
of measurements taken at 2 and 4 weeks after starting treatment are uncensored. Still, 12.8% of patients
only have 1 or 2 noncensored measurements. At week 12, 35.2% of subjects’ responses are censored.

The fit statistics and relevant parameter estimates from fitting model (6.1) with K = 0, K = 1,
and K = 2 appear in Table4; additional parameter estimates are given in the supplementary material
(available atBiostatisticsonline). While most of the parameter estimates are only altered marginally asK
increases, the estimate for E(b1i ), the average weekly log viral load decline, changes substantially. When
K = 1 andK = 2, the estimate is more than one standard error away from the estimate whenK = 0.

Each of the information criteria preferredK = 2, so we present the density estimates from that
model in Figure2. The contour plot for the bivariate random effects shows the presence of 2 or possibly
3 modes. SNP density estimation results in a spurious mode to capture mass in what is actually a long

Table 4. Information criteria and parameter estimates from fitting model (6.1) concerning the IDEAL
study with K= 0, K = 1, and K = 2

K = 0 K = 1 K = 2

AIC 7152.4 6952.5 6836.0
HQIC 7162.2 6978.3 6855.8
BIC 7180.6 6990.1 6887.7

Estimate Standard error Estimate Sandard error Estimate Standarderror

E(b0i ) 6.171 0.020 6.174 0.020 6.186 0.020
E(b1i ) −0.379 0.012 −0.380 0.013 −0.393 0.014
var(b0i ) 0.212 0.017 0.204 0.017 0.200 0.017
cov(b0i , b1i ) 0.085 0.008 0.080 0.008 0.080 0.009
var(b1i ) 0.108 0.007 0.116 0.008 0.135 0.011
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Fig. 2. Contour plot of the bivariate density estimate and marginal density estimates for the subject-specific intercepts
and slopes withK = 2 from model (6.1) concerning the IDEAL study.

tail, so one should be cautious about overinterpreting this third mode. The marginal density estimates
show a large departure from normality for the subject-specific slope, confirming our prior hypothesis,
but little departure from normality in the baseline log10 viral load. The majority of patients with the CT
genotype experience very modest weekly viral load changes around –0.25 log10 IU/mL/week. However,
the remaining patients experience greater viral load decline with the mode at approximately –0.85 log10
IU/mL/week.

One possible clinical explanation for the nonnormal random slopes is that some patients respond to
standard therapy while the majority with the CT genotype do not show substantial improvement. The
IL28B genotype has been shown to be a strong predictor of virological response for patients with hep-
atitis C undergoing standard therapy. However, the analysis here suggests that, even within this geno-
type, there are responders and nonresponders, and more research is required to determine why patients
respond to therapy. This example illustrates that fitting a flexible model for the random effects when
the response is censored cannot only substantially alter the estimates of clinically relevant parameters like
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E(b1i ) but can also lead to a fuller understanding of the underlying process. Given the multimodality of the
subject-specific slopes, some would even question if E(b1i ) is a useful parameter with which to
characterize the population.

7. DISCUSSION

We have shown how the SNP random-effects density can be extended to linear mixed models with a
censored response. The implementation within SAS and the example code given in the supplementary
material (available atBiostatisticsonline) allow the method to be applied easily in practice. If one is
interested purely in inference for the fixed-effects parameters, we have shown that the asymptotic bias
from erroneously assuming Gaussian random effects is likely to be greatest when the true random-effects
distribution deviates from normality and the probability of observing a small number of noncensored
observations is not trivially small. That is, the overall level of censoring is unimportant, but rather the
absolute number of noncensored responses for each subject is relevant. Simulations show that the devi-
ation from normality need not be substantial to affect inference. Since there is little efficiency loss from
using the SNP density when the random effects are Gaussian, we recommend using the SNP density for
censored longitudinal data when the number of noncensored observations is small to avoid erroneous in-
ference. More specifically, we suggest fitting SNP models for severalK to determine if the random-effects
density deviates from normality. Visual inspection of the estimated densities for eachK > 0 as well as
information criteria can be used to assess if the random-effects density is nonnormal. When the random-
effects distribution deviates from normality, the information criteria rarely selectK = 0 even with modest
sample sizes, indicating the method’s ability to detect nonnormal distributions. In addition to improved
inference, one gains insight into the data generating process if a flexible random-effects model is used.

Within the economics literature, there has been substantial work on developing tests to determine if
the error distribution is Gaussian in censored regression models with independent responses. Future work
could extend those tests to random-effects densities.

We have focused on linear mixed models with a censored response. However, nonlinear trajectories
can be easily incorporated in procedure NLMIXED, so the methods could easily be transferred to a non-
linear mixed model with censored response. Future work could examine the benefit of assuming a flexible
random-effects distribution in this setting.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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