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SUMMARY
Mixed models are commonly used to represent longitudinal or repeated measures data. An additional
complication arises when the response is censored, for example, due to limits of quantification of the
assay used. While Gaussian random effects are routinely assumed, little work has characterized the con-
sequences of misspecifying the random-effects distribution nor has a more flexible distribution been stud-
ied for censored longitudinal data. We show that, in general, maximum likelihood estimators will not be
consistent when the random-effects density is misspecified, and the effect of misspecification is likely to
be greatest when the true random-effects density deviates substantially from normality and the number of
noncensored observations on each subject is small. We develop a mixed model framework for censored
longitudinal data in which the random effects are represented by the flexible seminonparametric density
and show how to obtain estimates in SAS procedure NLMIXED. Simulations show that this approach
can lead to reduction in bias and increase in efficiency relative to assuming Gaussian random effects. The
methods are demonstrated on data from a study of hepatitis C virus.
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1. INTRODUCTION

Longitudinal or repeated measures data are commonly represented by mixed effects models. A compli-
cation occurs when the response is censored for some of the observations, which often arises when assay
measures are collected over time and the assay procedure is subject to limits of quantifitadioas(
1999 Jacgmin-Gaddand others200Q Wu, 2002 and references therein).

As an example, we consider data from the Individual Dosing Efficacy versus Flat Dosing to
Assess Optimal Pegylated Interferon Therapy (IDEAL) study, which tracked the viral load progression
of treatment-naive patients with hepatitis Thbmpsonand others 2010. One objective was to char-
acterize the viral load decline in patients receiving standard treatment, pegylated interferon-alpha and
ribavirin, over the first 12 weeks of treatment. Within-subjects, the trajectory of thg W@l load over
the first 12 weeks is approximately linear, but responses were censored from below at 1,4 81/iog,
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Fig. 1. Trajectory of logg viral load of 25 randomly selected subjects with genotype CT from the IDEAL study. For
graphical purposes, the lower limit of quantification, 1.431;}pld)/mL, was imputed for the censored responses.

the lower limit of quantification of the assay used. Over the first 12 weeks, 10.5% of all observations were
censored, and 35.2% were censored at week 12. The trajectories of 25 randomly selected subjects are
shown in Figurel.

A standard analysis would impute the censored responses as the limit or half limit of quantification
and then fit a mixed model for uncensored longitudinal data. How&aegmin-Gaddand otherg2000
showed through simulation studies that such crude parameter estimators are badly biased even for mod-
est levels of censoring. A refined analysis would postulate a likelihood that accounts for the censoring
and obtain the maximum likelihood estimates. However, methods using this full-likelihood approach have
all assumed Gaussian random effects and intra-subject étughes 1999 Jacqmin-Gaddand others
2000 Wu, 2002 Vaida and Liy 2009. While intra-subject error may be reasonably assumed to be nor-
mally distributed, the assumption of Gaussian random effects may be too restrictive in many applications.
In the IDEAL study, some patients do not respond to treatment, while others show marked declines in the
viral load, so the distribution of subject-specific slopes is unlikely to be approximately Gaussian.

For noncensored linear mixed-effects models, the maximum likelihood estimators for the fixed-effects
and covariance components are consistent under broad regularity conditions even when the random-effects
distribution is misspecifiedMerbeke and Lesafffed997). For nonlinear mixed-effects models, which in-
clude mixed models with censored responses and generalized linear mixed models, the maximum likeli-
hood estimators will not, in general, be consistent if the random-effects distribution is misspecified. The
effect of misspecification has been well studied in generalized linear mixed mbteledusand others
1992 Heagerty and Kurland2001;, Agrestiand others2004 Liti ereand others2008), but the potential
effect of misspecification of the random-effects distribution when the response is censored has not been
examined.

A variety of methods have been proposed to relax the Gaussian assumption for the random effects
(Magder and Zegel996 Verbeke and Lesafffd 997 Kleinman and Ibrahiml1998 Aitkin, 1999 Zhang
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and Davidian 2001, Chenand others 2002 Lee and Thompsqr2008; however, none of these meth-

ods has been implemented for censored longitudinal data. For linear mixed nitietg, and Davidian

(2007 assumed that the random effects follow a “smooth” density that can be represented by the seminon-
parametric (SNP) formulation proposed Ggllant and Nychkg1987). They showed the log-likelihood

can be written in a closed form leading to straightforward estimation.

We show how the SNP representation can be implemented for the random-effects density in linear
mixed models when the response is potentially censored. In Section 2, we formulate the censored-response
mixed model with Gaussian random effects and show that incorrectly assuming the random effects are
Gaussian leads to inconsistent estimators of model parameters. In addition, we suggest general scenarios
where estimation is likely to be particularly poor. In Section 3, we discuss the censored-response linear
mixed model, where the random effects are assumed to follow a smooth continuous density and introduce
the SNP representation. Section 4 describes how to fit the SNP model using SAS procedure NLMIXED,
how to select the degree of flexility in the model, and how to choose starting values. Section 5 presents
the results of several simulations. In Section 6, we illustrate the method by application to data from the
IDEAL studly.

2. GAUSSIAN LINEAR MIXED MODEL WITH CENSORED RESPONSE

For ease of presentation, we assume that responses are potentially left censored, but developments are
easily generalized to right- or interval-censored dataMjeti = 1,...,mandj = 1,...,n; be thejth

response for subjec¢tthat would have been observed had there been no censoring. Consider the usual
linear mixed model for longitudinal data

Yij ZUiTj§+SIUi + €j ZXJ/)’+SJbi + €ij, (2.1)

wherevij = (x,§])T,6 = (87,67), andbi = y + u;; # andy are thep- andg-dimensional fixed-
effects parameters associated with covarigfeands;, respectivelyy; are theg-dimensional, mean zero

subject-specific random-effects vectors associated with covasatéadependent across ande;j e
N (0, 52) are the intra-subject error, which are independent; ofVe adopt the rightmost representation
in (2.1) and note that the centered random effé¢tsan be written ab; = ¢ + RZ, whereu isa(q x 1)
vector,Ris a(g x q) lower triangular matrix, and; is a(q x 1) vector of random effects. Typically;
are assumed to follow a standagelimensional normal distribution, which implies tHatare normally
distributed with meam = y and covariance matrix var,) = RR'.
As an example, a special case 8f1] is the linear random coefficient model with baseline covariate

X; given by

Yij = Xif + boi + buitij + €ij, (2.2)

whereb; = (bgi, byi)" ands;j = (1, tj)".

Due to left censoring, we obserég; which takes the valu¥jj for Yj > ljj and takes the valug ,
the known lower limit of quantification for theth response on subjeigtotherwise. Letting = vech(R)
be the nonzero elements Bf the parameters of interest ate= (87, x7,r7, 02T, and the likelihood
assuming Gaussian random effects is

mop (1 1(Qij >lij)
L£©;Q) = H/ H |:{(D1(mij)}l(Qu—|u) <;¢1(mij)] o :|¢q(zi)dzi, (2.3)
i=1” j=1

wherem;j = {Qj; — xiT-ﬁ - g? (u + RZ)}/o, Q is the vector of all responses observed, &nd) and
@, (-) are the standard—dimensional normal density and distribution.
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Alternatively, we can expres2.(Q) asY; = Vido + Su; + ¢, whereV; {n; x (p+q)}andS (n; x q)
are the matrices with r0W§Tj andsﬂ, respectively, andt; = (Yi Tyonns Ymi)T and similarly fore;, I,
andQ;.

To simplify the following argument, we assume that the design matrix is fieg;, V andn; = n for
i =1,...,mand also suppress the indethroughout. To expres ) using vector notation, lety (y; 6)
andFy (y; ) be the multivariate normal density and distribution, respectively, with nvehand covari-
ance matrix@ = SRR ST +¢42l,. Define fyy v, (Yly2; €) andFy, v, (Y1]y2; 0) to be the conditional mul-
tivariate normal density and distribution, respectively, of the ve¥taiven the vectol,. There are 2—2
patterns of censoring/noncensoring that could be observed for an individual with at least one censored and
one noncensored observation. Index each of thBse 2 distinct censoring patterns tay Let Yk o (Yk.c,
respectively) be the random vector containing elemenystbht would be observed (censored) under cen-
soring patterrk. If the kth pattern were observed for a particular subject, then the likelihood contribution
from that subject assuming normal random effects is giveRRyy, , (Ik,c| Qk.0; &) fv, o (Qk,0; &), Wwhere
Q.o is the vector of noncensored responseslaradlk o, respectively) is the limit of quantification for the
censored observations (noncensored observations) under censoringlpdttegrikelihood contribution
from one subject can now be written as

-2
L0, Q) = fv(Q:0) CVEy(1:0) @™ TT {Freavico kel Q.o 0) Ty o (Qu0: )} (QeeThe Quo>leo)
k=1

If the random-effects distribution is incorrectly specified, the maximum likelihood estirdato
converge to value of that solves Bé/66 log L(0; Q)} = 0, where the expectation is taken with respect
to the true random-effects distribution. Assuming that the covariance components are known and using
a first-order Taylor series expansion, we show in the supplementary material (avail8itestatistics
online) thats will converge to the value of that solves

Gy ()
Fy()

|
0=D(5", V)(6" —9) +/_ VTIZg -V [ fy(a) — QY(Q)} dq

2"-2 oo plic . .
+>] / / Vice 2o fOke = Vi 9™}
k=1 L- lk,o J—00

[ GYk,c|Yk,0 (l k,C|qk,0)
FviclYko (Ik,cldk,0)

i eMico (Ok.clOk,0) — ng,C|Yk,o(Qk,cIQk,o)} ng,O(QK,o)dQK,chK,oi| ,
(2.4)

wheregy (q; 0*) andGy (q; 6*) are the true marginal density and distribution, respectively;;dall den-
sities in R.4) are evaluated at*, the true parameter value; af{6*, V), Qe Ve andZg . are given
in the supplementary material availableBabstatisticsonline.

While complex, the approximation reveals important insights on the asymptotic bias when the random
effects are incorrectly specified. In the likely case that the random-effects distribution is misspecified, the
bias is driven by the difference in the true conditional distribution of the censored response given the non-
censored response (i®, |v, , (Ok,cldk,0)) and the same conditional distribution induced by the Gaussian
random effects (i.efy, v ,(0dk.cl0k,0)), weighted by the likelihood of the noncensored response (i.e.
Ovi,(0k,0))- Practically, this suggests that small deviations from normality will lead to only slight asymp-
totic bias. If we have correctly specified the intra-subject error distribution, gaesy, , (Yk.clYk,0) Will
be approximately normal if the dimension ¥{, is large regardless of the true random-effects density.
Thus, if there is a large probability of observing many noncensored observations on each subject, then the
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asymptotic bias is likely to be slight. This suggests that the overall percentage of censored responses is
immaterial in determining the asymptotic bias. Instead, the absolute number of noncensored responses for
each subject is critical.

3. SEMIPARAMETRIC LINEAR MIXED MODEL WITH CENSORED RESPONSE

We offer a summary of semiparametric linear mixed models and refer the readeang and Davidian
(2001 for a complete description. We now assume that the distributiod; dielongs to the smooth
class of continuous densities describeddsilant and Nychkg1987). This class is sufficiently flexible
to include skewed, thick- and thin-tailed, and multimodal distributions but does not include densities
with jumps, kinks, or oscillations. These densities can be represented as an infinite series but can be
approximated by a truncated series. The densities that are part of the truncated series are referred to as
seminonparametric (SNP).

We thus assume that the densityZfcan be approximated by the SNP representation with degree of
truncationK given by

2
hk (2) = P2 (D¢q(2) = S e @z @, (3.1)
(Jat..+ig<K
wherej, > Oforl = 1,...,q andK is the order of the polynomiaPk (z). For example, withK = 2

andq = 2, Pk (z2) = ago + a1021 + ap122 + azoZ§ + 112122 + aozzg. WhenK = 0, we show below that
ap,....,0 must equal 1, and the density 8f is a standardj-dimensional normalK controls the degree of
flexibility of the densityhk (z); we discuss in Section 4 how to seldct
The coefficients;, . j, must be chosen so thiak () integrates to one. The constraifihy(z)dz = 1

is equivalent to imposing {EP& (U)} = 1, whereU follows a standardj-dimensional normal distribu-
tion (Zhang and Davidian2001). Let a be thed-dimensional vector of coefficients for the polynomial
Pk (2) and letjy, ..., jq be the subscripts corresponding to tith element. Then the above constraint
can be rewritten as {E’r% (U)} = a"Aa = 1, whereA is the matrix with(j, k) element equal to

{E(U1j1+k1) e E(Ulj“+kq)} andUj is distributed as a standard normal.
Rather than impose a constraintamwe may rewrite théd x 1) vectora as a function ofl —1 parame-
ters. Becausé must be positive definite, there exists a maBisuch thatA = B2. If we letc = Ba, then

a' Aa = 1 impliesc"c = 1. Asc and —c will result in the same densitiix (z), ¢ = (C1,...,¢q)"
must lie in the half-unit sphere oRY. Therefore, we can expressin terms of a polar coordinate
transformation, where; = sin(&y), c2 = cog¢&r) sin(é?), ..., Cg—1 = €0Y¢1) ... coY&y—2) Sin(&yg—1),

Cd = COY¢&)...coq¢ 1), —n/2 < & < m/2forj =1,...,d —1,and¢ = (&,...,%-1)". The
vectora can be written a8 ~1c, which only involvesd — 1 parameters. The parameters of interest are
now e = (BT, 17,17, 02,&MT, which includes an additional — 1 parameters compared to when
normality is assumed.

Note that the SNP density does not impog&i = 0, so that Eb) = y = u« + R{E(Z;)} and
Var(bi) = R{Var(Z)}R". The moments of; are linear combinations of the moments of a standard
normal density, which can be found using recursion formulas.

4. ESTIMATION USING SAS NLMIXED

In the case where there is no censoring of the response variable, the log-likelihood assuming the SNP
representation of the random effects can be expressed in a closedZbemg(and Davidign2007).
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Censoring necessitates numerical integration. For a #eithe likelihood ofegNPis given by
m N _— 1 I (Qij>lij)
LO5m =] / [T (@(mij)y @i=hi [;qsl(mi j)} PR (z)¢q(z)dz.  (4.1)
i=17 j=1

For each observation this requires evaluation of gdimensional integral, which, in practice, would
likely only have dimension 1 or 2. In contrast, we could integrate over the marginal densityfaf
each censored observation. However, the dimension of that integral would equal the number of censored
observations for subject which could be quite large and computationally intractable.

The SAS procedure NLMIXED has been developed to obtain maximum likelihood estimates for
mixed models with Gaussian random effects. Except wkesa 0, the SNP random-effects density will
not be normally distributed. However, if we consider

N

=i | 1 1(Qij >lij) 5
[T | {@x0mij)y! Q=i i;¢l(mij)] Pk (z) (4.2)

j=1

to be the likelihood foQj; conditioned on the random effects, then the random efi§atan be thought to
follow a standardj-dimensional normal distributio.{u and Yu, 2008. Example code to implement SNP
for left-censored mixed models is given in the supplementary material (availaBlestatisticsonline).
In practice, given thatd.2) is highly nonlinear, we have found optimization routines within NLMIXED to
obtain the empirical Bayes estimates&f required for the default adaptive Gaussian quadrature used to
evaluate the integrals to be unstable and computationally intractalgjeXfdt. To approximate the integral
in (4.1), we recommend using nonadaptive Gaussian quadrature with quadrature points centered at the
empirical Bayes estimates lffrom assuming Gaussian random effects. Among the optimization routines
available in NLMIXED, dual-quasi Newton optimization works well. The inverse Hessian matrix may be
used to obtain standard errors for the parameter estimates and is computed as part of the standard output in
NLMIXED.

The preceding discussion assumes a fikedWe treatK as a tuning parameter and seléctby
visually comparing the estimated densities and computing information criteria evaluated at the estimates,
9§NP, of HgNP from model fits for different values oK (Zhang and Davidian2001). The information
criteria are of the form—ZE(HAgNP, Q) + C(m)p, where p is the number of parameters in the model.
For the Akaike information criterion (AIC)C(m) = 2; Hannan—Quinn information criterion (HQIC),
C(m) = 2loglogm; and Bayesian information criterion (BIQJ,(m) = logm. Because the HQIC will
select a model that is of intermediate complexity compared to those chosen by AIC and BIC, this criterion
is often preferred@avidian and GallantL993. Prior research has shown th&tneed not be greater than
2 to capture many complex densiti€xafvidian and Gallantl993 Zhang and Davidiar?00% Chenand
others 2002.

Optimization for SNP can be highly dependent on the starting values uség\,f,gand especially for
¢. We suggest the following approach advocatedioghler and Davidiai2008. Initial estimates of3,
E(bi), var(b; ), ands 2 should be obtained, perhaps by fitting a mixed model assuming Gaussian random
effects. The log-likelihood4.1) can then be evaluated over a grid‘okith starting values fof ands 2 set
to the initial estimates and starting values fioandr selected to give the same value fqbp and varb;)
as the initial estimates. The sets of starting values that yield local maxima among all the grid points can
then be used for optimization.
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5. SMULATION

We conducted a variety of simulation studies both to assess the impact of erroneously assuming Gaussian
random effects and to gauge the ability of SNP to represent a broad range of random-effects distributions.
We report on a subset of these with= 2 here; results of additional simulations are included in the
supplementary material (availableBibstatisticsonline).

The first part of the simulation study examined the effect of misspecification of the random-effects
distribution on estimation and inference of model parameters. We considegdavhierex; is equal to

0 or 1 with equal probability;; i N, ¢?), andti = (ti1,...,ti5) = (0,1,2,3,4)" = ta for all

i =1,...,m. For all simulationsf = 0.5,62 = 0.25, and(bg;, b1j)" were generated from distributions
that were shifted and scaled so thdbg) = 5.75, Ebyj) = —0.60, vartbg) = 0.36, vactbyj) = 0.9025,
and coybg;, b1j) = —0.228.

The random effectdy, were drawn from 1 of 4 shifted and scaled distributions: (1) bivariate nor-
mal; (2) a bivariatets distribution; (3) a 70-30 mixture of normal densities with mean components
(5.6, —0.107) T (70% component) an.1, —1.757, which gives a skewed marginal density toy;
and (4) a 70-30 mixture of normal densities with mean compon@6s—0.03 T (70% component)
and (6.1, —1.93 T, which produces a bimodal marginal density Bar. For (3) and (4), the covariance
matrices of the components were equal to each other. For each of the 4 distributions, 500 Monte Carlo
simulations were generated with 500 subjects each. Here, we report the results for censoripg=edel
for all subjects and time points.

The models were fit using SAS procedure NLMIXED assuming Gaussian random effects. The like-
lihood (2.3) was approximated using adaptive Gaussian quadrature with the number of quadrature points
selected adaptively to achieve a tolerance of1l@ual-quasi Newton was used for optimization with the
true values used as starting values.

Within each of the simulation scenarios, nearly all subjects had at least one noncensored measurement,
and approximately 90% had at least 2 noncensored observations. With the exception of the data generated
from the bimodal random-effects density (4) where 42.4% of subjects had at least one censored observa-
tion, a slight majority in each of the other scenarios had at least one censored observation. A complete de-
scription of the censoring pattern is given in the supplementary material (avail&@itestdtisticsonline).

The results are given in Table When the random effects are correctly specified, parameter estima-
tors are unbiased, and the coverage probabilities attain their stated level of confidence. When the random
effects have heavy tail$s(distribution), parameter estimators are still unbiased although coverage prob-
abilities for the covariance components do degrade slightly. Equalidhguggests that the asymptotic
bias in this scenario would be slight. When the random slope is slightly skewed, parameter estimators are
biased, especially for ;) (6.0%) and vatbij) (—10.0%). Coverage probabilities for these parameters
in particular are far from nominal. This illustrates that even slight departures from normality can lead to
erroneous inference when the number of honcensored observations for each subject is small. In the case
of severe misspecification with bimodal random slopes, the bias of all the parameter estimators increases
in comparison to that under skewed random effects; the bias in the estimatordfordnd vacby;) is
substantial (13.0% and18.9%, respectively), and coverage probabilities for these parameters are poor.

We also examined the effect of adding design points where there was unlikely to be any censor-
ing and where censoring was likely. We generated 500 data sets with bimodal random effects, where
ti = (0,1,2,3,354,45" =tgandti = (-2,-1,0,1,2,3,4)7 = tc for all subjects. With measure-
ments atjj = —2 andtj; = —1, 99.9% and 90.5% of subjects had at least 3 and 4 noncensored measure-
ments, respectively. Adding measurementsjat 3.5 andtjj = 4.5 increased the overall percentage of
censored observations to 25.5% from 21.8%.

Simulation results with bimodal random effects and takjrig be each of 5, tg, andtc are shown in
Table2. When there are more design points where censored observations are unlikely, bias is mitigated
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Table 1. Simulation results when Gaussian random effects were assumed for all models regardless of the
true distribution of the random effects. The simulation incluB@@data sets wittb00subjects edt

Distribution Ebgi) E(by)) Bo var(bg; ) cov(hgi, byj) var(byj)
Truth 5.750 —0.600 0.500 0.360 —0.228 0.903
MC Avg Normal 5.749 —0.604 0.504 0.360 —0.230 0.907
tg 5.752 —0.599 0.498 0.349 —-0.224 0.859
Skewed 5.736 —0.564 0.496 0.349 —0.202 0.813
Bimodal 5.718 —0.522 0.494 0.341 —0.180 0.732
MC SD Normal 0.043 0.047 0.060 0.037 0.037 0.074
t5 0.042 0.042 0.057 0.040 0.041 0.082
Skewed 0.045 0.046 0.058 0.035 0.036 0.065
Bimodal 0.045 0.048 0.058 0.035 0.036 0.067
Avg SE Normal 0.044 0.046 0.059 0.035 0.036 0.069
ts 0.044 0.044 0.058 0.034 0.035 0.065
Skewed 0.044 0.043 0.059 0.034 0.035 0.065
Bimodal 0.044 0.042 0.059 0.034 0.033 0.062
CP Normal 0.956 0.950 0.956 0.932 0.950 0.938
tg 0.952 0.962 0.949 0.869 0.905 0.786
Skewed 0.928 0.832 0.960 0.920 0.852 0.678
Bimodal 0.878 0.532 0.956 0.896 0.662 0.268

MC Avg, Monte Carlo average of the parameter estimates; MC SD, Monte Carlo standard deviation of the parameter estimates; Avg
SE, average of the standard error estimates; CP, Monte Carlo coverage probability of the 95% Wald-type confidence intervals.

Table 2. Simulation results when Gaussian random effects were assumed for the bimodal random effects
but t in (2.2) was varied. The simulation includé&fl0data sets wittb00subjects edt

Time points Ebgi) E(by) o var(bgi) cov(bgi, byj) var(by;)
Truth 5.750 —0.600 0.500 0.360 —0.228 0.903
MC Avg ta 5.718 —0.522 0.494 0.341 —0.180 0.732
tg 5.715 —0.520 0.496 0.337 —-0.175 0.722
tc 5.757 —0.590 0.500 0.360 —0.234 0.886
MC SD ta 0.045 0.048 0.058 0.035 0.036 0.067
tg 0.046 0.048 0.059 0.033 0.034 0.066
tc 0.040 0.044 0.054 0.027 0.029 0.049
Avg SE ta 0.044 0.042 0.059 0.034 0.033 0.062
tg 0.043 0.041 0.058 0.032 0.032 0.061
tc 0.039 0.043 0.053 0.026 0.030 0.058
CP ta 0.878 0.532 0.956 0.896 0.662 0.268
tg 0.864 0.474 0.950 0.864 0.586 0.212
tc 0.944 0.930 0.948 0.938 0.962 0.960

ta=(0,1,234T;tg =(0,1,2,3,354,457;tc = (-2,-1,0,1,2,3,4)T; MC Avg, Monte Carlo average of the parameter
estimates; MC SD, Monte Carlo standard deviation of the parameter estimates; Avg SE, average of the standard error estimates; CP,
Monte Carlo coverage probability of the 95% Wald-type confidence intervals.

substantially and coverage probabilities improve, which is consistent with the asymptotic results in Sec-
tion 2. Conversely, increasing the number of design points where censoring is likely has little effect on
parameter estimation, illustrating that the overall censoring level has little to do with the bias.

We also conducted simulation studies of the performance of SNP density estimation for censored
longitudinal data analysis. We considered the same simulation scenarios as above exceptsfor the
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random-effects distribution, as assuming Gaussian random effects did not adversely affect inference. To
obtain estimates of parameters with SNP random effects, we again used SAS procedure NLMIXED. Mod-
els were fit fork = 0, 1, and 2, andK was chosen using HQIC. The likelihood.{) was approximated

using Gaussian quadrature with quadrature points centered at the empirical Bayes estithatesvad

from assuming Gaussian random effects and with the number of quadrature points selected with a stated
tolerance of 10%. Dual-quasi Newton was used for optimization. 500 Monte Carlo data sets were gener-
ated for each scenario. To obtain starting values, the log-likelihood was evaluated over afgaftistf

points forK = 1 and 150 points foK = 2 with starting values fof ands 2 set to the true values and for

« andr set to the values that would give the true values ft; Fand vach;).

The results whe was selected by HQIC are shown in TaBl&Vhen the random effects are normally
distributed, HQIC selectK = 0 for 94.8% of the data sets. However, when the random-effects density
was skewed and bimodaf = 0 was selected only 0.2% and 0.0% of the time, respectivelyKard 2
was selected for 95.2% and 36.4% of the data sets, respectively. This illustrates that even with a modest
sample size and loss of information due to censoring, the method is able to detect slight departures from
normality while not over-fitting models where the true random-effects density is Gaussian. A complete
table on the proportion of data sets that seled¢teg: 0, 1, and 2 by information criterion is given in the
supplementary material (availableBibstatisticsonline).

The SNP estimators when the random effects are not normally distributed are less biased than the
estimators when Gaussian random effects were assumed. When the random effects were skewed, the bias
for E(byj) and varby;) is reduced to 0.5% and0.3%, respectively, which leads to large efficiency gains
(Table 3). The coverage probabilities for these parameters improve substantially although for bimodal
random effects are still below the stated level. Becd(se 0 is selected so frequently when the random
effects are Gaussian, there is little loss in efficiency from considering a more flexible class of random

Table 3. Simulation results when SNP was used to estimate the random effects. Models wtld, K
K =1, and K = 2 were fit and K was selected using the HQIC. The simulation incl&@@dlata sets
with 500subjects edt

Distribution Eboi) E(byj) Bo var(bg;) cov(hg;, byj) var(byj)
Truth 5.750 —0.600 0.500 0.360 —0.228 0.903
MC Avg Normal 5.749 —0.603 0.504 0.358 —0.229 0.905
Skewed 5.750 —0.598 0.496 0.358 —-0.227 0.900
Bimodal 5.747 —0.590 0.496 0.360 —-0.222 0.878
MC SD Normal 0.043 0.047 0.060 0.040 0.038 0.077
Skewed 0.046 0.050 0.060 0.044 0.041 0.090
Bimodal 0.045 0.048 0.058 0.037 0.039 0.080
Avg SE Normal 0.044 0.045 0.058 0.035 0.036 0.069
Skewed 0.043 0.046 0.057 0.035 0.037 0.072
Bimodal 0.044 0.045 0.058 0.034 0.035 0.062
CP Normal 0.950 0.952 0.948 0.916 0.936 0.932
Skewed 0.930 0.934 0.940 0.904 0.932 0.908
Bimodal 0.944 0.920 0.952 0.932 0.916 0.860
Ratio MSE Normal 0.999 1.004 0.999 0.843 0.949 0.917
Skewed 1.080 1.372 0.960 0.688 1.160 1.532
Bimodal 1.493 3.440 1.006 1.149 2.285 4.801

MC Avg, Monte Carlo average of the parameter estimates; MC SD, Monte Carlo standard deviation of the parameter estimates; Avg
SE, average of the standard error estimates; Ratio MSE, ratio of the Monte Carlo mean square errorkbetikeandK selected
by the HQIC.
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effects. Estimated contour and marginal density plots of the random effects from assuming that the random
effects follow the SNP density is provided in the supplementary material (availaBiesatisticonline).

6. APPLICATION

We now illustrate the proposed methods using data from 811 subjects in the IDEAL study with the CT
genotype at polymorphic site upstream of interleukin (IL) 28B which is associated with virologic response
(Thompsorand others2010).

Subjects had viral load measurements taken at baseline and at 2, 4, and 12 weeks after treatment
began, some of which were censored at the lower limit of quantification of 1.433 lldgmL. As shown
in Figure 1, the viral load change over the first 12 weeks within subject can be well approximated by a
linear trajectory, and the measurement error and biological fluctuations at each time point can be assumed
reasonably to be independent and Gaussian. However, standard therapy is not effective for all subjects, so
the assumption that the subject-specific slopes are normally distributed is questionable.

Based on these observations, we consider the semiparametric model

Yij = boi + baitij + i, (6.1)
whereYj; is the logy viral load for patient at thejth time,tj; is the time in weeks since starting treatment,

xij is null, sj = (L, tij)7, €ij e N(0, ¢2), andb; = (bgi, b1i)T is the vector of subject-specific intercept
and slope, which we assume can be writtetjas: x + RZ with Zj = (Zoi, Z1i)", 1 = (u1, u2)7,
andR a (2 x 2) lower triangular matrix. We assume that follows the density §.1) for the K described
below. We do not observé; but instead observ®;j with ljj = 1.431.

All patients included in this analysis have noncensored baseline measurements, and greater than 94%
of measurements taken at 2 and 4 weeks after starting treatment are uncensored. Still, 12.8% of patients
only have 1 or 2 noncensored measurements. At week 12, 35.2% of subjects’ responses are censored.

The fit statistics and relevant parameter estimates from fitting m&d®l With K = 0, K = 1,
andK = 2 appear in Tablg; additional parameter estimates are given in the supplementary material
(available aBiostatisticsonline). While most of the parameter estimates are only altered margindly as
increases, the estimate fo(l; ), the average weekly log viral load decline, changes substantially. When
K =1 andK = 2, the estimate is more than one standard error away from the estimatddntzeh

Each of the information criteria preferrdd = 2, so we present the density estimates from that
model in Figure2. The contour plot for the bivariate random effects shows the presence of 2 or possibly
3 modes. SNP density estimation results in a spurious mode to capture mass in what is actually a long

Table 4. Information criteria and parameter estimates from fitting modell( concerning the IDEAL
study with K=0,K =1, and K= 2

K=0 K=1 K=2
AIC 7152.4 6952.5 6836.0
HQIC 7162.2 6978.3 6855.8
BIC 7180.6 6990.1 6887.7

Estimate Standard error Estimate Sandard error Estimate Stagmdard

E(bgi) 6.171 0.020 6.174 0.020 6.186 0.020
E(byj) —-0.379 0.012 —0.380 0.013 —0.393 0.014
var(bg; ) 0.212 0.017 0.204 0.017 0.200 0.017
cov(bgi, byj) 0.085 0.008 0.080 0.008 0.080 0.009

var(by;) 0.108 0.007 0.116 0.008 0.135 0.011
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Contour Plot of Random Effects
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Fig. 2. Contour plot of the bivariate density estimate and marginal density estimates for the subject-specific intercepts
and slopes witlK = 2 from model 6.1) concerning the IDEAL study.

tail, so one should be cautious about overinterpreting this third mode. The marginal density estimates
show a large departure from normality for the subject-specific slope, confirming our prior hypothesis,
but little departure from normality in the baseline Jgyiral load. The majority of patients with the CT
genotype experience very modest weekly viral load changes around —0;33UdigL/week. However,

the remaining patients experience greater viral load decline with the mode at approximately —g;,85 log
IU/mL/week.

One possible clinical explanation for the nonnormal random slopes is that some patients respond to
standard therapy while the majority with the CT genotype do not show substantial improvement. The
IL28B genotype has been shown to be a strong predictor of virological response for patients with hep-
atitis C undergoing standard therapy. However, the analysis here suggests that, even within this geno-
type, there are responders and nonresponders, and more research is required to determine why patients
respond to therapy. This example illustrates that fitting a flexible model for the random effects when
the response is censored cannot only substantially alter the estimates of clinically relevant parameters like
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E(by;) but can also lead to a fuller understanding of the underlying process. Given the multimodality of the
subject-specific slopes, some would even question (b is a useful parameter with which to
characterize the population.

7. DISCUSSION

We have shown how the SNP random-effects density can be extended to linear mixed models with a
censored response. The implementation within SAS and the example code given in the supplementary
material (available aBiostatisticsonline) allow the method to be applied easily in practice. If one is
interested purely in inference for the fixed-effects parameters, we have shown that the asymptotic bias
from erroneously assuming Gaussian random effects is likely to be greatest when the true random-effects
distribution deviates from normality and the probability of observing a small number of noncensored
observations is not trivially small. That is, the overall level of censoring is unimportant, but rather the
absolute number of noncensored responses for each subject is relevant. Simulations show that the devi-
ation from normality need not be substantial to affect inference. Since there is little efficiency loss from
using the SNP density when the random effects are Gaussian, we recommend using the SNP density for
censored longitudinal data when the number of noncensored observations is small to avoid erroneous in-
ference. More specifically, we suggest fitting SNP models for setetaldetermine if the random-effects
density deviates from normality. Visual inspection of the estimated densities forkeaelD as well as
information criteria can be used to assess if the random-effects density is nonnormal. When the random-
effects distribution deviates from normality, the information criteria rarely s&eet O even with modest

sample sizes, indicating the method’s ability to detect nonnormal distributions. In addition to improved
inference, one gains insight into the data generating process if a flexible random-effects model is used.

Within the economics literature, there has been substantial work on developing tests to determine if
the error distribution is Gaussian in censored regression models with independent responses. Future work
could extend those tests to random-effects densities.

We have focused on linear mixed models with a censored response. However, nonlinear trajectories
can be easily incorporated in procedure NLMIXED, so the methods could easily be transferred to a non-
linear mixed model with censored response. Future work could examine the benefit of assuming a flexible
randome-effects distribution in this setting.

SUPPLEMENTARY MATERIAL

Supplementary material is availabletitp://biostatistics.oxfordjournals.arg
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