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SUMMARY
Nested case—control (NCC) design is used frequently in epidemiological studies as a cost-effective sub-
cohort sampling strategy to conduct biomarker research. Sampling strategy, on the other hand, creates
challenges for data analysis because of outcome-dependent missingness in biomarker measurements.
In this paper, we propose inverse probability weighted (IPW) methods for making inference about the
prognostic accuracy of a novel biomarker for predicting future events with data from NCC studies. The
consistency and asymptotic normality of these estimators are derived using the empirical process theory
and convergence theorems for sequences of weakly dependent random variables. Simulation and anal-
ysis using Framingham Offspring Study data suggest that the proposed methods perform well in finite
samples.

Keywords Inverse probability weighting; Nested case—control study; Time-dependent accuracy.

1. INTRODUCTION

Novel markers promise to dramatically change the decision-making process in disease monitoring and
treatment selection. Prospective cohort studies are crucial to establishing the value of a biomarker for pre-
dicting future events such as disease onset and recurrence, or patient survival. To enable future biomarker
research, the biospecimens of the full cohort are often collected at baseline and stored for future studies.
Many well-known cohort studies adopted such strategies. Examples include the Women’s Health Initia-
tive Study Johnsorand others1999, the Nurses’ Health Initiative Study, and the Framingham Offspring
Study Kanneland others1979. However, since the assessment of biomarkers can be expensive and labor
intensive, a standard full cohort design may be infeasible or inefficient for subsequent biomarker studies.
To overcome such difficulties, the nested case—control (NCC) study ddgiomeas 1977 Prentice and
Breslow 1978 is often adopted as a cost-effective cohort sampling strategy. Under such a study design,
the biospecimen is assayed for all study cases but only for a fraction of controls selected randomly from
the risk set of the matched cases.
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To analyze data from NCC studies, conditional logistic regression is typically used to estimate rela-
tive risk parameters, which are equivalently hazard ratio parameters under the proportional hazards (PH)
model. Stratified sampling of controls in NCC designs has been considemegholz and Borgari995
in order to improve efficiency of a simple NCC design. For the class of estimators based on the patrtial
likelihood under NCC designs, asymptotic properties have been formally derived for estimators of both
hazard ratios Goldstein and Langho]z1992 and absolute risksLéngholz and Borggnl997, using
counting process and martingale theofyndersen and GiJl1982.

An alternative approach is to consider the class of inverse probability weighted (IPW) estimators,
where contributions of individuals are weighted inversely proportional to their sampling fractions.
Compared with the partial likelihood—based method, IPW estimators can be more efficient as more in-
dividuals are included in risk sets. They are also more flexible in estimating functions beyond hazard
ratios. Samuelserf1997) proposed IPW partial likelihood estimators with weights accounting for NCC
sampling; however, theoretical justification has not been formally developed. Recently, much progress has
been made in the development of asymptotic theory for IPW estimator when fitting the Cox regression
model using survey data obtained using two-phase samplingZ00Q Breslow and Wellner2007). In
particular,Breslow and Wellne(2007) developed a modern theory on the conditions required for weak
convergence of IPW empirical process under Cox regression with stratified case—cohort sampling. While
it could be conjectured that the general theory developed there may be extended to other more com-
plex sampling designs such as the stratified NCC sampling designs considered in this manuscript, to our
knowledge, there does not exist a general theory that can be directly applied to IPW process under NCC
settings.

Furthermore, most of the current developments in NCC study literature focus primarily on estimating
relative risk parameters, with little attention given to other summaries of the data. Prognostic biomarker
studies have recognized that the relative risk from risk modeling does not fully assess biomarker perfor-
mance Pepeand others 2004. Two classes of time-dependent accuracy measures, retrospective and
prospective accuracies, are commonly calculated in these settings. Specifically, for a putative marker
Y measured at baseline, its retrospective accuracies, such as the true-positive fraction (TPF) and false-
positive fraction (FPF), evaluated at a future predicting tiraad a cutpoint, are defined as

TPR(c) = P{Y > c|T <t} and FPk(c)=P{Y > c|T > t}.

A time-dependent receiver operating characteristic (ROC) curve,; RQC- TPFt{FPl?l(u)} foru e
(0, 1), is a plot of TPI(c) versus FPFc) for all c. The prospective accuracy summaries, positive predic-
tive value (PPV) and negative predictive value (NPV), are time-dependent functions of the form

PPVi(c) = P{T <t|Y > ¢} and NPM(c) = P{T > t|Y < c}. (1.1)

The prospective accuracy summaries are of more interest to the end users of the test since they quantify
the subject’s risk of an outcome by tinhegiven a positive or a negative test result. Statistical models for
estimating these quantities using time-to-event data from full cohorts have been prdgeagdrtyand
others 200Q Heagerty and Zhen@005 Moskowitz and Pepe2004 Zhengand others2008. However,
those current methods do not consider subcohort sampling schemes and have only been developed for
standard settings with biomarker values fully observed for individuals in the cohort. To efficiently evaluate
novel biomarkers for risk prediction, there is an urgent need to expand the research to accommodate
various subcohort sampling schemes.

The primary aim of this paper is to formulate and lay foundations for biomarker accuracy estimation
with data from NCC studies. We develop estimators for time-dependent prediction accuracy measures
based on the idea of inverse probability weightiiplbinsand others 1994 Samuelsen1997. The
asymptotic properties of these estimators are formally derived using convergence theorems for sequences
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of negatively associated (NegA) dependent random variablesd and others 2004 Liang and Baek

2006. The remainder of the paper is organized as follows: we present the estimation procedures under
both a simple NCC design and a stratified NCC design in Segtiaaymptotic theory is given in Section

3; Section4 contains numerical studies; an application to the Framingham Offspring Study is given in
Section5, and we conclude with some remarks in Secton

2. THE MODEL AND ESTIMATION
2.1 General notation

Suppose we have a cohort Nf individuals followed prospectively for a clinical event of interest. Due

to censoring, the observed event time data consi®t af.d. bivariate vectof{(X;, §),i = 1,..., N},

whereX; = min(T;, Cj), i = I (T} < Cj), andT; andC; denote the event time and censoring time,
respectively. Under a standard NCC design, all individuals observed to have an event are selected as
“cases” for further evaluation of mark#t with their event times denoted &1, ..., tn}. In addition, at

each selected case’s failure tijg a random sample of siza is selected without replacement from the

risk setR(tj) = {i: Xi > tj} as potential controls for marker measurement. The number of individuals at
risk at the selected event timgis denotech(tj), with n(tj) = SN > tj). Furthermore, leV; be a

binary random variable with, = 1 if subjecti is ever sampled into the NCC subcohort either as a case

or as a control.

2.2 Estimation with a cohort study

Using Bayes’ theorem, we can rewrite the aforementioned retrospective prognostic accuracy summaries
as

_{1-F(©)} -8, 0 _S(t,0
TPR(c) = Ty and FPR(c) = 50
and the prospective accuracy summaries as
_ {1-F(©)) - S(t,c) (S = F(0)} - S(t, 0)
PPVi(c) = 1- 70 and NPV(c) = 70 ,

whereS(t,c) = P(T > t,Y > c¢) is the bivariate survival function of andY, F(c) = P(Y < ¢) is
the marginal cumulative distributional function of marRérandS(t) = P(T > t) = S(t, —o0o) is the
marginal survival function o . Therefore, the key components for calculating all 4 accuracy summaries
involve F(c), as well as the bivariate survival functidtit, c) for specific values of andt.

WhenY was measured for all individuals in the cohort, plug-in estimators of the accuracy measures
had been proposed using either nonparametric or semiparametric estimators of these furnideagaisy
and others200Q Zhengand others2008 2010. Specifically, one can estimate the marginal distribution
of Y empirically as

_ 1N
Fy=g5210i>y) (2.2)
i=1

and the bivariate survival functia$i(t, c) as

- o 19
St.o = [ StiydFe) = XS > o) 23)
¢ i=1
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Where§(t|y) is an estimator for the conditional survival functiétgt|y) = P(T > t|Y = y), relating
to the absolute risk by time giveny. Under a PH modeIAfor survixal timé andAmarkerY: Alt) =
o) exp(BY), S(t|y) can be estimated &8(t|y) = exp{—Ag(t) exp(fy)}, wherep is estimated from

the partial likelihood and
N

- S1(X <t
Aot = 37 AL XS0
i 2j=1 1 (Xj = Xi) exp(BYj)
is the Breslow estimator ofo(t). Plug-in estimator§ PR, FPR,PPV, andNPV can be obtained based on

(2.2 and @.3).

2.3 Estimation under an NCC design

Under an NCC design, sindéis selectively measured depending on outcome and other covariates, rather
than completely at random, it is crucial to adjust for the sampling scheme of NCC in order to provide un-
biased estimates of the aforementioned accuracy summaries. We will achieve this by casting the problem
into the general framework of a failure-time regression model with missing covariates and develop IPW
estimators foiS(t, ¢) and F(c). Our IPW-based procedures will provide consistent estimato&tgfc)

and.F(c) and consequently valid estimators for time-dependent accuracy summaries.

Sampling probability of an NCC designAs a simple case of the IPW procedure, we consider weighing
the contributions from the selected observations with weight= V; /B, wherep; is the probability of

theith subject being selected to the NCC cohort based on the sampling scheme. When all individuals in the
cohort withd = 1 are included in NCC samples, the selection probabilify is- 6 + (1—6){1— G(Xi)}

as given bySamuelseif1997, where

2w B mJ;j
coo= T1 {2- 503

j:Xj <X

Itis easy to show thaE{V; /Bi | (X, 6 )} = 1. Note that this is the “true” weights dictated by the NCC de-
sign. Other weights can be considered. For exan@ien(2001) suggested using local averaging weights
within intervals of censoring times. Such “estimated” weight has been shown to improve efficiency with
simulations especially in situations when censoring is dependent on covariates.

EstimatingS(t|y). The log hazard ratiof, under the PH model can be obtained by maximizing a
weighted partial likelihood with weights accounting for outcome-dependent sampling as described above.
Specifically, one may estimaﬂeasﬁ""’ = argmay L(f), where

N N
LBy =D g Y —log>_ il (Xj > Xi) exp(BY) { - (2.4)
i=1 j=1

Based org%, S(t|y) can be estimated @&"(t|y) = exp(—AY (t) exp(B"y)}, where

N ~
~w wil (Xj < 1)d
Ay =3 D3
OV T AN (X > X)b; expBY))

can be viewed as a weighted Breslow estimatatkgft).
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Note that§""(t|x) is different from an existing absolute risk estimator for NCC design defined as
S'B(tly) = exp(—A5E(t) exp(By)}, proposed byangholz and Borga1997), wherej is the condi-
tional logistic regression estimator 6f

+ o (X <)o
AGB@M) = J ’
o ; Z|eﬁ(t,-) exp(BY)n(tj)/(m+1)

and R(t;) indexes the case who failed at timyeand the corresponding matched controls. Intuitively,
J andS'B(t|y) obtained from the above procedures might be less efficient since only the case and
selected controls, rather than all the samples at risk, are used in the partial likelihood and for calculating
ALB(t).

0

Estimating F(y) and S(t, c). With NCC sampling, we again construct IPW estimators for the distri-
bution function of markel and the bivariate survival function &f andT. Specifically, we consider the
following empirical estimator:
S SMEM)@il (Y > ©)

Z?‘:l i
for S(t, c), similar to the representation consideredAikritas (1994. Subsequently, we may estimate
Fy(c) as]A-‘Q’(V(c) = S¥(0, ¢) and the marginal survival distribution @f, S(t), asS¥(t) = SV (t, —0).

S¥(t,c) =

Estimating accuracy summariesl.et SW(c, t), §W(Ot), and I?W(c) denote the respective estimators of
S(c, 1), S(1), andF(c), plug-in accuracy estimators under an NCC study for retrospective accuracy sum-
maries can be calculated as
S"(t, )

SW(t)

{1-F"()} - 8"t 0

7o and FPF'(c) =

TPR (c) =

and RO (u) = TPR'{FPF" " (u)}. The estimators for prospective accuracy summaries are

{8(t) — F¥(0)} — 8"(t, 0)
Fw(c) ‘

{1— FW(c)} — SW(t, ¢
1— Fw(c)

PPV (c) = and NPV,'(c) =
Note that an alternative strategy to estimate the accuracy summaries is to @b(eqce) in §W(t, c)
with SLB (t|Y; ). IPW is still needed here in order to retrieve information on the marginal distributign of

2.4 Stratified NCC sampling

Often in practice some covariate information is available for all cohort members. A stratified sampling
of controls based on surrogate variables that are correlated with the marker may enhance the power of a
simple NCC design. In a stratified NCC sampling, at each selected case’s failure time, controls are selected
for marker measurement randomly without replacement among those who are in the risk set and matched
to the case based on some covariatéVithout loss of generality, we assume tlzatonsists of discrete
random variables. To incorporate additional matching in the proposed IPW approach, we gpiace

the weighted likelihoodd.4) with W, = Vi /Pzi, wherepzi = 6 + (1 — §){1 — éz(xi, Zi)},

~ mo;
G.xi.z) =[] [1-%],
J:Xj<Xi,Zj=Z; nZ(XJ’ZJ)_l
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andn;(Xj, Zj) = ZL\‘ I (Xk > Xj, Zx = Zj) is the size of the covariate matched risk set for failure
time Xj. It is easy to show thaE{V; /Pi | (X, 6i, Zi)} = 1. Note that under a stratified NCC sampling
design, estimation procedures for obtainﬁgnd@-B (t]y) remain the same, which is clear from equation
(4.2) inBorganand otherq1995.

3. INFERENCE PROCEDURES

Deriving inference procedures for the proposed IPW-based estimators for accuracy summaries can be
challenging due to the complex data structure induced by NCC sampling. In particular, under the finite-
population sampling scheme, indicators of being sampledare weakly dependent conditional gh=
{(Xi,d,Yi, Zi),i =1,..., N}. The standard convergence theorems, such as the law of large numbers or
central limit theorems for i.i.d. cases, are not directly applicable here. In the supplementary material avail-
able atBiostatisticsonline, we provide more detailed justifications for the consistency and asymptotic
normality of proposed IPW estimators for accuracy summaries for NCC design with finite-population
sampling, using results on the strong and weak convergence of weighted sums of NegA dependent vari-
ables [iang and others 2004 Liang and Baek2006. The key is to show thdtl = N1 ZiN:l wi R;
whereR = R(X;, i, Yj) for some deterministic functioR, can be viewed as weighted sums of NegA
dependent variables, and it satisfies the conditions required for tightness and weak convergence of the
NegA process (see Appendix B of the supplementary material availaBlestatisticsonline).

To obtain interval estimates of specific components of our proposed IPW estimators fqc)TPF
FPR(c), ROG (u), PPV (c), and NP\{(c), we show in Appendix A of the supplementary material (avail-
able atBiostatisticsonline) that for any of these accuracy measures, denoted by a genericdterm

NZ (A-A) = N—2 ZiN=1 wiU 4 + 0p(1), which is asymptotically normal with mean 0 and variance

Pi

Uz
j:E(A)_mRE, _E(UA,)+E{ o512 UA} mR .

where p; is the limiting value off;, am 2 is the conditional variance ab; given 2, andR U, asa

functional ofU 4 is defined in Appendlx A of the supplementary material (availabl@iastatistics
online). The termE(UAl) in aA represents the variance of if Y is observed for the full cohort,

E{%i y I} mRZA represents the inflated variance due to the missing informatio¥ &or the
weighted estimator, andmR2 represents the variance adjustment due to the weak negative correlation
among theV;’s. Omitting the Iast term fromA would lead to the robust variance estimatorby treat-
ing w; as known independent weights. Thus, using the robust variance alone would always overestimate
the true variance ofl.

In Appendix C of the supplementary material (availablégtstatisticsonline), we derivel 4; for
A = TPR (c), FPR(c), ROG (u), PPV (c), and NP\{(c), respectively. The asymptotic variance of these
accuracy summary estimators can be estimated empirically, and the confidence intervals (Cls) can be con-
structed based on normal approximations. For example, we show in Appendix C of the supplementary ma-
terial (available aBiostatisticsonline) tham%{ROQ(u) —ROG(U)} — N{O, O'I%oq (u)} in distribution,
WhereaRocl u) = E{UROQ| (u/pi}— mRURO -Urogi (U) andRugq, ) are defined in Appendix
C of the supplementary material (avallabIBalstatlstics)nIine). A 95% CI for ROE(u) may be obtained

— 1/\ PR _ —~ o~ —~
asROG (u) + 1.96N"25Rrog (1), whereg3,c (1) = N1 3L, @i {Urog (u; 2)%/Bi } — mRaRoq()

whereURoQ u; %) andﬁuonct W e obtained by replacing all theoretical quantitiet)ggog (u) and

RUROQ w by their empirical counterparts, respectively.
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4, SMULATIONS

We conduct simulation studies to examine the performance of our proposed methods with practical sample
sizes. All results are based on 2000 simulated data sets. We first consider a simple situation with a cohort
of N = 1000. We simulateéy from a standard normal distribution and generatérom a PH model:

A(t) = 0.1exgpY), wherep = log(3). Censoring timeC is taken to be the minimum of 2 ail, where

W follows a gamma distribution, with a shape parameter of 2.5 and a rate parameter of 2. This yields
approximately 87% censoring and an average of 133 observed cases. For each cohort, we assemble an
NCC subcohort by selecting all cases anatontrols per case, witlih = 1 or 3. We consider estimating
TPR(c), FPR(c), PP\{(c), and NP\{(c) for ¢ equal to the 25th and 75th percentiles of the standard
normal distribution and = 1 under such an NCC sampling. We calculate the plug-in estimators for
the accuracy measures by estimati@|y) based on eitheS-B (t|y) (referred to as LB estimators) or

§W(t ly) (referred to as IPW estimators). In addition, analytical naive standard errors, ignoring correlations
amongV;, and standard errors adjusted for correlations are calculated for the IPW estimators. The results
are presented in Table It appears that both sets of estimators are unbiased. However, the IPW estimators
in general are more efficient than the LB estimators, as evidenced by their higher relative efficiencies,
defined as the ratio of empirical variance estimated from full cohort data to the specific estimated variance
from NCC samples. Our adjusted standard errors performed well, with coverage percentage close to 95%.
The naive standard errors in most of the cases are quite close to their adjusted counterparts, indicating

Table 1. Averages of parameter estimates (Ave), empirical standard error of estimates (SE), the averages

of the standard error estimates from naiv@H) and adjusted $E') estimators, their corresponding

coverage probabilities (CPand CP*) using the “IPW” approach, average and empirical standard error

using the “LB” approach (Avgs and Skg) based on NCC samplings with cohort size of=N 1000

and m= 1 or 3 controls. Relative efficiencies of both approachesi{REnd REg) are relative to the

cohort. Accuracy summaries of marker Y are evaluated-attand g = FY_1(0.25), C = FY_1(0.75),
respectively. Censoring times are independent of

True Ae SE SE' SE' CP' CP* | Aeg SEp REpw REB
m=1
B 110 112 146 134 133 092092 | 1.13 19.7 0.8 0.22
TPR(c;) 095 095 146 135 135 0.930.93| 0.95 1.68 0.42 0.27
FPR(c;) 072 071 449 442 440 095095 | 0.71 458 0.12 0.11
PP\(c;) 0.18 018 1.86 212 183 097094 | 0.19 273 071 0.32
NPVt(c;) ©0.97 097 073 071 068 095093 | 097 079 0.68 0.50
TPR(c;) 060 060 481 476 475 0.940094 | 0.60 580 0.47 0.31
FPR(c;) 0.9 019 363 351 350 0.94093| 0.19 387 0.14 0.12
PPV(c;) 0.35 035 440 443 415 0.960.94 | 0.36 6.99 0.48 0.17
NPVi(c;) 0.92 092 1.06 117 104 098094 | 0.92 1.10 0.80 0.71
m=3

B 110 111 109 108 108 094094 | 1.11 134  0.70 0.45
TPR(c;) 095 095 1.04 1.04 1.04 0.960.96 | 0.95 118 067 0.52
FPR(c;) 072 071 274 274 274 095095| 0.71 276 0.31 0.30
PP\(c;) 0.18 018 1.63 172 164 096 0.95| 0.19 1.83 0.85 0.68
NPVi(c;) 097 097 059 061 06 0.96 0.95| 0.97 0.65 0.78 0.66
TPR(c;) 060 060 394 386 3.85 0.950.95| 0.60 430 0.73 0.59
FPR(c;) 0.19 019 224 222 222 094094 | 0.19 236 0.35 0.31
PPV\(c;) 035 035 337 339 331 095095 035 425 0.76 0.46
NPVt(c;) 0.92 092 097 1.01 097 0.960.95| 092 098 086 0.84
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Table 2. Summary statistics (same as in Tat)efrom simulation studies based on NCC samplings with
cohort size of N= 1000and m= 1 or 3 controls and with censoring times dependentvon

True Ave SE SE' SE' CP' CP | Aveg SHEp REpw REB
m=1
B 110 111 200 193 193  0.94 094 | 1.11 22.7 050 0.39
TPR(cy) 097 097 093 088 088 093093 | 097 0.94 0.44 0.44
FPR(c;) 089 089 227 221 221 0.93093| 089 230 023 0.22
PPV(c;) 026 026 178 210 1.81 0.98 0.95| 0.26 1.81 082 0.79
NPVi(c;) 091 091 185 191  1.84 0.95 094 | 0091 1.97 0.64 0.56
TPR(c;) 018 018 261 264 264 095095 | 0.18 291 062 0.50
FPR(cp) 006 0.06 149 146 146 0.93 0.93 | 0.06 150 0.27 0.26
PPV(c;) 048 049 575 575 558 0.94 0.93 | 0.49 6.68  0.50 0.37
NPVi(c;) 078 078 163 191  1.65 0.98 0.95 | 0.78 158 0.82 0.88
m=3

B 110 110 159 155 155  0.94 0.94 | 1.11 17.9 081 0.64
TPR(c;) 097 097 070 068 068 093093 | 0.97 0.74 0.76 0.68
FPR(c;) 089 0.89 148 146  1.46 0.94 0.94 | 0.89 1.49 054 0.54
PPV\(c;) 026 026 167 176 170 0.95 0.95 | 0.26 1.67 0091 0.91
NPVi(c;) 091 091 162 160 158 0.94 0.94 | 0091 1.71 086 0.77
TPR(c;) 018 018 222 220 220 094094 | 0.18 234 085 0.77
FPR(c;) 006 006 097 099 099 0.95 095 | 0.06 1.00 061 0.58
PPV(c;) 0.48 048 451 450 446 0.94 0.94 | 0.48 512 0.80 0.62
NPVi(c;) 078 078 153 161 156 0.96 0.95 | 0.78 149 091 0.96

that correlations are quite weak among observations. However, they do appear to be more conservative
whenm = 1.

In the second scenario (Takilg, T is generated using the same model ¥uandC are constructed
with a more complicated scheme. Specificaltyjs generated from a mixture of normal distributions:
Y = W1 + (1 — B)W,, where# ~ Bernoulli(0.9), W1 ~ N(0, 0.5, andW, ~ N(0.3 0.1). To
introduce marker-dependent censoring, welet Uniform(0.5, 1.5) if Z = 1 andC = exp(Z/5 — 3Y)
with Z ~ N(0, 1) if ## = 0. The average number of cases in this setting is around 200. We would expect
our IPW estimators to be robust in this situation. Indeed, all estimators are unbiased. The adjusted variance
estimators also work well; however, the naive variance estimators fof(@Pahd NP\{(c) again could
have inflated values with one matched control.

We also consider a scenario where controls are also matched with cases on a binary covitte
a cohort of size 2000, we first generatdrom a standard normal distribution, we then generate a binary
Z such thatz = 1if Y > 0. The same models foF andC are used as in the first scenario, which
yield on average 266 cases among 2000 simulated data sets. Results i3 dghle indicate that our
proposed estimators under stratified NCC design perform well. The naive variance, without considering
the correlation due to finite sampling, often lead to overestimated variances.

5. EXAMPLE

We illustrate our proposal by evaluating the accuracy of an inflammation marker, C-reactive protein
(CRP), for predicting the risk of cardiovascular disease (CVD) using the Framingham Offspring Study.
Conventional risk factors have been identified for assessing CVD risk in the general population, but these
characteristics explain only a fraction of CVD risk. Contemporary biomarkers such as CRP have been
sought for use in risk stratification and preventive decision makiidkerand others2000. However,

its clinical usefulness has not been established.
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Table 3. Summary statistics (same as in Tat)efrom simulation studies based on NCC samplings with
cohort size of N= 2000and matched on a binary covariai®

True Ave SE SE' SE' CP' CP' | Avep SEKy  REpw REy

m=1
p 1.10 1.11 860 930 849 096094 | 1.11 17.07 0.60 0.15
'I?F[(cl) 095 095 123 124 1.22 0.93092| 0.95 156 0.26 0.16
FPR(c;) 0.72 0.72 479 507 4.76 0.95094| 0.72 493 0.05 0.05
P/P\V[ (c1) 018 019 147 174 145 0.980.95| 0.19 275 0.51 0.14
NPV (cp) 097 097 050 056 050 0.960.94| 0.97 0.64 0.64 0.39
'IfP\Ft(cz) 060 0.60 3.23 3.16 3.15 0.940.94 | 0.60 451 0.56 0.27
FPR(c;) 0.19 0.19 200 255 2.01 0.990.95| 0.19 2.48 0.20 0.13
P/P\\& (cop) 035 035 256 271 248 0.970.95| 0.36 6.29 0.64 0.10
N/P\Vt (cp) 092 092 0.73 101 0.75 0.990.96| 0.92 0.82 0.75 0.63

m=3
p 1.10 110 7.10 7.36 7.07 0.95094 | 1.11 12.15 0.81 0.27
fF?F[(cl) 095 095 090 0.88 0.87 0.930.93| 0.95 1.17 0.49 0.27
Ifﬁﬁ(cl) 0.72 0.72 3.06 310 294 0.950.94| 0.72 3.14 0.13 0.12
|5|3Vt (c;) 0.8 0.8 123 132 122 0.97095| 0.19 2.04 0.75 0.27
NPV (cp) 097 097 043 045 0.43 0.960.94| 0.97 0.51 0.78 0.56
'I?F[(cz) 060 060 260 262 261 0.95095| 0.60 3.45 0.79 0.45
lf'P\H(cz) 0.19 019 133 160 1.36 0.980.95| 0.19 1.63 0.44 0.30
PPV (cp) 035 035 215 221 217 0.95095| 0.35 452 0.84 0.19
NPV (c;) 092 092 069 079 0.69 0.970.95| 0.92 0.75 0.89 0.75

The Framingham Offspring Study was initiated in 1971 with a cohort of 5124 participants. The
Framingham Study samples were monitored prospectively, providing a valuable resource for studying
epidemiological and genetic risk factors of CVD. We consider here 3289 Offspring Study participants
with CRP measurements at the second examination and who were free of CVD at the examination (mean
age 44 years and 53% women). We consider outcome as time from examination date to first major CVD
event or CVD-related death as defined previouklgyd-Jonesand others2004). Since we are interested
in the short-term predictive capacity of CRP, individuals with follow-up time longer than 10 years were
considered censored at 10 years. During the follow-up period, 251 participants were observed to encounter
at least one CVD event. Since CRPs are complete in the cohort, the Framingham data allow us to illustrate
our methods with a real data set and to compare the relative efficiency of a few sampling strategies with
analysis using the full cohort. From the full cohort data, we further assemble NCC subcohorts with 1 or
3 controls who were selected either (i) without additional matching or (ii) matched to their corresponding
cases based on gender and age groy3®(30-39, 40-49; 50).

We use a PH model to specify the relation between the failure time and CRP concentration (in log
scale). We then calculate the accuracy measures of CRP for predicting CVD by 5 years since the mea-
surement of CRP (i.et,= 5). We considered low and high thresholds, set as the 25th or 75th percentile
of the CRP levels in the full cohort. That is, these thresholds would, respectively, classify approximately
75% or 25% of the population as testing positive based on CRP. The accuracy summaries at both values
are presented in Tablg where, in the first and second columns, parameter estimates and standard error
estimates for the cohort data are given. The estimates from different NCC samples, presented in the rest
of the columns, are quite close to the results using the full cohort data, suggesting that time-dependent
accuracy summaries can be reliably estimated from the case—control data with our methods. Matching on
age and gender improves the efficiency of most estimates slightly, and including more controls results in
more precise inference. Compared to a full cohort analysis, the standard errors for TPF and FPF, although
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Table 4. Estimated accuracy summaries (Ave) and standard errors (SE) of CREhagsholds for pre-
dicting 5-year CVD events from Framingham data with=m1 and 3 controls and with/without stratified

by age and gnder
Not stratified Stratified
Full cohort m=1 m=3 m=1 m=3
Ave SE Ave SE Ave SE Ave SE Ave SE

B 0.483 0.049| 0.510 0.133 0.4550.089| 0.508 0.110 0.492 0.080
c=F, 10.29

TPR (© 0.900 0.011| 0.913 0.027 0.8910.022| 0.906 0.025 0.904 0.017

FPR (© 0.749 0.008| 0.748 0.049 0.7390.030| 0.760 0.049 0.787 0.027

PPV (©) 0.044 0.004| 0.053 0.008 0.0530.007| 0.053 0.006 0.051 0.005

NPV (©) 0.985 0.002| 0.984 0.005 0.9810.004| 0.982 0.004 0.979 0.004
c=F, 1079

TPR (©) 0.471 0.025| 0.473 0.057 0.4480.044| 0.482 0.043 0.462 0.033

FPR (©) 0.242 0.008 | 0.225 0.045 0.2280.028| 0.243 0.041 0.272 0.029

PPV (C) 0.070 0.007 | 0.088 0.018 0.0830.014| 0.085 0.013 0.074 0.009

NPV (c) 0.974 0.003| 0.970 0.005 0.968 0.005| 0.969 0.004 0.966 0.004

relatively larger using NCC samples, are still sufficiently precise for making decisions regarding the dis-
criminatory capacity of CRP. For example, with a 24% FPF, we can detect about 47% of the subjects who
experience a CVD event or death by 5 years, with a Cl of (42%, 52%) estimated from the full cohort.
The same detection rate with a Cl of (36%, 58%) is observed from an NCC study selecting one matched
control per case. Both suggest a significantly better performance than that of a noninformative marker,
which is expected to have a TPF of only 24% at this threshold. Such information would be helpful for in-
vestigators to plan for more cost-effective future biomarker studies. Based on the results listed #) Table
we conclude that the predictive accuracy of CRP is quite moderate and that using CRP for preventive
decision making should be done with caution. Further assessment of the incremental value of CRP over
conventional risk factors is warranted.

6. REMARKS

The NCC sampling has been recognized as a useful design option within cohort study in the field of
biomarker researchRundleand others 2005. Biomarker studies are often influenced by factors such

as analytic batch, long-term storage, and freeze-thaw cycles. By matching individual controls to cases’
failure times and other potential confounding factors, the accuracy of biomarkers can be evaluated more
efficiently and rigorously with an NCC design. However, matching generates complex data that can be
more difficult to analyze. We proposed estimators for 2 classes of accuracy measures under an NCC
design based on the IPW approach. By reusing samples in each risk set, the approach yields more ef-
ficient estimators for those accuracy summaries compared to estimators derived from a partial likeli-
hood, without requiring more information from the study. Furthermore, compared with a nonparametric
MLE-based approactscheike and Martinussg®004), this approach is very simple to implement and is
robust to marker-dependent censoring. Extension of the proposed methods to models with multiple co-
variates and an estimation of covariate-specific accuracy is straightforward. Our theoretical development
on the IPW estimators is useful for making inference on accuracy summary estimators in practice, given
that justification for bootstrap-based variance estimators has not been developed under cohort sampling
settings.
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In our estimation procedure, we focused on weights with “true” selection probability according to
the study design. The weights can be less optimal. Less expensive covariate information is often avail-
able for all subjects in a cohort. Incorporating such information may well yield estimators with improved
efficiency. In particular, it is possible to derive semiparametric efficient estimators in this setting follow-
ing the work ofRobinsand otherg(1994). Alternatively, parallel to recent work for case—cohort design
(Breslow and Wellner2007 Breslowand others2009, one may consider nonparametric procedures to
obtain augmented weights using auxiliary information in order to gain efficiency. Our proposal here lays
important groundwork for further investigation.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://www.biostatistics.oxfordjournals.org.
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