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SUMMARY

Nested case–control (NCC) design is used frequently in epidemiological studies as a cost-effective sub-
cohort sampling strategy to conduct biomarker research. Sampling strategy, on the other hand, creates
challenges for data analysis because of outcome-dependent missingness in biomarker measurements.
In this paper, we propose inverse probability weighted (IPW) methods for making inference about the
prognostic accuracy of a novel biomarker for predicting future events with data from NCC studies. The
consistency and asymptotic normality of these estimators are derived using the empirical process theory
and convergence theorems for sequences of weakly dependent random variables. Simulation and anal-
ysis using Framingham Offspring Study data suggest that the proposed methods perform well in finite
samples.
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1. INTRODUCTION

Novel markers promise to dramatically change the decision-making process in disease monitoring and
treatment selection. Prospective cohort studies are crucial to establishing the value of a biomarker for pre-
dicting future events such as disease onset and recurrence, or patient survival. To enable future biomarker
research, the biospecimens of the full cohort are often collected at baseline and stored for future studies.
Many well-known cohort studies adopted such strategies. Examples include the Women’s Health Initia-
tive Study (Johnsonand others, 1999), the Nurses’ Health Initiative Study, and the Framingham Offspring
Study (Kanneland others, 1979). However, since the assessment of biomarkers can be expensive and labor
intensive, a standard full cohort design may be infeasible or inefficient for subsequent biomarker studies.
To overcome such difficulties, the nested case–control (NCC) study design (Thomas, 1977; Prentice and
Breslow, 1978) is often adopted as a cost-effective cohort sampling strategy. Under such a study design,
the biospecimen is assayed for all study cases but only for a fraction of controls selected randomly from
the risk set of the matched cases.
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To analyze data from NCC studies, conditional logistic regression is typically used to estimate rela-
tive risk parameters, which are equivalently hazard ratio parameters under the proportional hazards (PH)
model. Stratified sampling of controls in NCC designs has been considered (Langholz and Borgan, 1995)
in order to improve efficiency of a simple NCC design. For the class of estimators based on the partial
likelihood under NCC designs, asymptotic properties have been formally derived for estimators of both
hazard ratios (Goldstein and Langholz, 1992) and absolute risks (Langholz and Borgan, 1997), using
counting process and martingale theory (Andersen and Gill, 1982).

An alternative approach is to consider the class of inverse probability weighted (IPW) estimators,
where contributions of individuals are weighted inversely proportional to their sampling fractions.
Compared with the partial likelihood–based method, IPW estimators can be more efficient as more in-
dividuals are included in risk sets. They are also more flexible in estimating functions beyond hazard
ratios.Samuelsen(1997) proposed IPW partial likelihood estimators with weights accounting for NCC
sampling; however, theoretical justification has not been formally developed. Recently, much progress has
been made in the development of asymptotic theory for IPW estimator when fitting the Cox regression
model using survey data obtained using two-phase sampling (Lin, 2000; Breslow and Wellner, 2007). In
particular,Breslow and Wellner(2007) developed a modern theory on the conditions required for weak
convergence of IPW empirical process under Cox regression with stratified case–cohort sampling. While
it could be conjectured that the general theory developed there may be extended to other more com-
plex sampling designs such as the stratified NCC sampling designs considered in this manuscript, to our
knowledge, there does not exist a general theory that can be directly applied to IPW process under NCC
settings.

Furthermore, most of the current developments in NCC study literature focus primarily on estimating
relative risk parameters, with little attention given to other summaries of the data. Prognostic biomarker
studies have recognized that the relative risk from risk modeling does not fully assess biomarker perfor-
mance (Pepeand others, 2004). Two classes of time-dependent accuracy measures, retrospective and
prospective accuracies, are commonly calculated in these settings. Specifically, for a putative marker
Y measured at baseline, its retrospective accuracies, such as the true-positive fraction (TPF) and false-
positive fraction (FPF), evaluated at a future predicting timet and a cutpointc, are defined as

TPFt (c) = P{Y > c|T 6 t} and FPFt (c) = P{Y > c|T > t}.

A time-dependent receiver operating characteristic (ROC) curve, ROCt (u) = TPFt {FPF−1
t (u)} for u ∈

(0, 1), is a plot of TPFt (c) versus FPFt (c) for all c. The prospective accuracy summaries, positive predic-
tive value (PPV) and negative predictive value (NPV), are time-dependent functions of the form

PPVt (c) = P{T 6 t |Y > c} and NPVt (c) = P{T > t |Y 6 c}. (1.1)

The prospective accuracy summaries are of more interest to the end users of the test since they quantify
the subject’s risk of an outcome by timet , given a positive or a negative test result. Statistical models for
estimating these quantities using time-to-event data from full cohorts have been proposed (Heagertyand
others, 2000; Heagerty and Zheng, 2005; Moskowitz and Pepe, 2004; Zhengand others, 2008). However,
those current methods do not consider subcohort sampling schemes and have only been developed for
standard settings with biomarker values fully observed for individuals in the cohort. To efficiently evaluate
novel biomarkers for risk prediction, there is an urgent need to expand the research to accommodate
various subcohort sampling schemes.

The primary aim of this paper is to formulate and lay foundations for biomarker accuracy estimation
with data from NCC studies. We develop estimators for time-dependent prediction accuracy measures
based on the idea of inverse probability weighting (Robinsand others, 1994; Samuelsen, 1997). The
asymptotic properties of these estimators are formally derived using convergence theorems for sequences
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of negatively associated (NegA) dependent random variables (Liang and others, 2004; Liang and Baek,
2006). The remainder of the paper is organized as follows: we present the estimation procedures under
both a simple NCC design and a stratified NCC design in Section2; asymptotic theory is given in Section
3; Section4 contains numerical studies; an application to the Framingham Offspring Study is given in
Section5, and we conclude with some remarks in Section6.

2. THE MODEL AND ESTIMATION

2.1 General notation

Suppose we have a cohort ofN individuals followed prospectively for a clinical event of interest. Due
to censoring, the observed event time data consist ofN i.i.d. bivariate vector{(Xi , δi ), i = 1, . . . , N},
whereXi = min(Ti , Ci ), δi = I (Ti 6 Ci ), andTi andCi denote the event time and censoring time,
respectively. Under a standard NCC design, all individuals observed to have an event are selected as
“cases” for further evaluation of markerY with their event times denoted as{t1, . . . , tn}. In addition, at
each selected case’s failure timet j , a random sample of sizem is selected without replacement from the
risk setR(t j ) = {i : Xi > t j } as potential controls for marker measurement. The number of individuals at
risk at the selected event timet j is denotedn(t j ), with n(t j ) =

∑N
i I (Xi > t j ). Furthermore, letVi be a

binary random variable withVi = 1 if subjecti is ever sampled into the NCC subcohort either as a case
or as a control.

2.2 Estimation with a cohort study

Using Bayes’ theorem, we can rewrite the aforementioned retrospective prognostic accuracy summaries
as

TPFt (c) =
{1 − F(c)} − S(t, c)

1 − S(t)
and FPFt (c) =

S(t, c)

S(t)

and the prospective accuracy summaries as

PPVt (c) =
{1 − F(c)} − S(t, c)

1 − F(c)
and NPVt (c) =

{S(t) − F(c)} − S(t, c)

F(c)
,

whereS(t, c) = P(T > t, Y > c) is the bivariate survival function ofT andY, F(c) = P(Y 6 c) is
the marginal cumulative distributional function of markerY, andS(t) = P(T > t) ≡ S(t, −∞) is the
marginal survival function ofT . Therefore, the key components for calculating all 4 accuracy summaries
involveF(c), as well as the bivariate survival functionS(t, c) for specific values ofc andt .

WhenY was measured for all individuals in the cohort, plug-in estimators of the accuracy measures
had been proposed using either nonparametric or semiparametric estimators of these functionals (Heagerty
and others, 2000; Zhengand others, 2008, 2010). Specifically, one can estimate the marginal distribution
of Y empirically as

F̂(y) =
1

N

N∑

i =1

I (Yi > y) (2.2)

and the bivariate survival functionS(t, c) as

Ŝ(t, c) =
∫ ∞

c
Ŝ(t |y)dF̂(y) =

1

N

N∑

i =1

S(t |Yi )I (Yi > c), (2.3)
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whereŜ(t |y) is an estimator for the conditional survival functionS(t |y) = P(T > t |Y = y), relating
to the absolute risk by timet given y. Under a PH model for survival timeT and markerY: λ(t) =
λ0(t) exp(βY), S(t |y) can be estimated aŝS(t |y) = exp{−3̂0(t) exp(β̂y)}, whereβ̂ is estimated from
the partial likelihood and

3̂0(t) =
N∑

i =1

δi I (Xi 6 t)
∑N

j =1 I (X j > Xi ) exp(β̂Yj )

is the Breslow estimator of30(t). Plug-in estimatorŝTPR,F̂PR,P̂PV, andN̂PV can be obtained based on
(2.2) and (2.3).

2.3 Estimation under an NCC design

Under an NCC design, sinceY is selectively measured depending on outcome and other covariates, rather
than completely at random, it is crucial to adjust for the sampling scheme of NCC in order to provide un-
biased estimates of the aforementioned accuracy summaries. We will achieve this by casting the problem
into the general framework of a failure-time regression model with missing covariates and develop IPW
estimators forS(t, c) andF(c). Our IPW-based procedures will provide consistent estimators ofS(t, c)
andF(c) and consequently valid estimators for time-dependent accuracy summaries.

Sampling probability of an NCC design.As a simple case of the IPW procedure, we consider weighing
the contributions from the selected observations with weightŵi = Vi / p̂i , where p̂i is the probability of
thei th subject being selected to the NCC cohort based on the sampling scheme. When all individuals in the
cohort withδ = 1 are included in NCC samples, the selection probability isp̂i = δi +(1−δi ){1− Ĝ(Xi )}
as given bySamuelsen(1997), where

Ĝ(Xi ) =
∏

j :X j <Xi

{
1 −

mδ j

n(X j ) − 1

}
.

It is easy to show thatE{Vi / p̂i |(Xi , δi )} = 1. Note that this is the “true” weights dictated by the NCC de-
sign. Other weights can be considered. For example,Chen(2001) suggested using local averaging weights
within intervals of censoring times. Such “estimated” weight has been shown to improve efficiency with
simulations especially in situations when censoring is dependent on covariates.

EstimatingS(t |y). The log hazard ratio,β, under the PH model can be obtained by maximizing a
weighted partial likelihood with weights accounting for outcome-dependent sampling as described above.
Specifically, one may estimateβ asβ̂w = argmaxβ L(β), where

L(β) =
N∑

i =1

ŵi δi





βYi − log

N∑

j =1

ŵ j I (X j > Xi ) exp(βYj )





. (2.4)

Based on̂βw, S(t |y) can be estimated aŝSw(t |y) = exp{−3̂w
0 (t) exp(β̂wy)}, where

3̂w
0 (t) =

N∑

i =1

ŵi I (Xi 6 t)δi
∑N

j =1 I (X j > Xi )ŵ j exp(β̂Yj )

can be viewed as a weighted Breslow estimator of30(t).
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Note thatŜw(t |y) is different from an existing absolute risk estimator for NCC design defined as
ŜLB(t |y) = exp{−3̂LB

0 (t) exp(β̃y)}, proposed byLangholz and Borgan(1997), whereβ̃ is the condi-
tional logistic regression estimator ofβ,

3̂LB
0 (t) =

n∑

i =1

I (Xi 6 t)δi
∑

l∈R̃(t j )
exp(β̃Yl )n(t j )/(m + 1)

,

and R̃(t j ) indexes the case who failed at timet j and the correspondingm matched controls. Intuitively,
β̃ and ŜLB(t |y) obtained from the above procedures might be less efficient since only the case andm
selected controls, rather than all the samples at risk, are used in the partial likelihood and for calculating
3̂LB

0 (t).

Estimating FY(y) andS(t, c). With NCC sampling, we again construct IPW estimators for the distri-
bution function of markerY and the bivariate survival function ofY andT . Specifically, we consider the
following empirical estimator:

Ŝw(t, c) =

∑N
i Ŝ

w(t |Yi )ŵi I (Yi > c)
∑N

j =1 ŵi

for S(t, c), similar to the representation considered inAkritas (1994). Subsequently, we may estimate
FY(c) asF̂w

Y (c) = Ŝw(0, c) and the marginal survival distribution ofT , S(t), asŜw(t) = Ŝw(t, −∞).

Estimating accuracy summaries.Let Ŝw(c, t), Ŝw(0t), and F̂w(c) denote the respective estimators of
S(c, t), S(t), andF(c), plug-in accuracy estimators under an NCC study for retrospective accuracy sum-
maries can be calculated as

T̂PF
w
t (c) =

{1 − F̂w(c)} − Ŝw(t, c)

1 − Ŝw(t)
and F̂PF

w
t (c) =

Ŝw(t, c)

Ŝw(t)

and ROCwt (u) = T̂PF
w
t {F̂PF

w−1
t (u)}. The estimators for prospective accuracy summaries are

P̂PV
w
t (c) =

{1 − F̂w(c)} − Ŝw(t, c)

1 − F̂w(c)
and N̂PV

w
t (c) =

{Ŝw(t) − F̂w(c)} − Ŝw(t, c)

F̂w(c)
.

Note that an alternative strategy to estimate the accuracy summaries is to replaceŜw(t |Yi ) in Ŝw(t, c)
with ŜLB(t |Yi ). IPW is still needed here in order to retrieve information on the marginal distribution ofY.

2.4 Stratified NCC sampling

Often in practice some covariate information is available for all cohort members. A stratified sampling
of controls based on surrogate variables that are correlated with the marker may enhance the power of a
simple NCC design. In a stratified NCC sampling, at each selected case’s failure time, controls are selected
for marker measurement randomly without replacement among those who are in the risk set and matched
to the case based on some covariateZ. Without loss of generality, we assume thatZ consists of discrete
random variables. To incorporate additional matching in the proposed IPW approach, we replaceŵi in
the weighted likelihood (2.4) with ŵzi = Vi / p̂zi, wherep̂zi = δi + (1 − δi ){1 − Ĝz(Xi , Zi )},

Ĝz(Xi , Zi ) =
∏

j :X j <Xi ,Z j =Zi

{
1 −

mδ j

nz(X j , Z j ) − 1

}
,
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andnz(X j , Z j ) =
∑N

k=1 I (Xk > X j , Zk = Z j ) is the size of the covariate matched risk set for failure
time X j . It is easy to show thatE{Vi / p̂i |(Xi , δi , Zi )} = 1. Note that under a stratified NCC sampling
design, estimation procedures for obtainingβ̃ andŜLB(t |y) remain the same, which is clear from equation
(4.2) inBorganand others(1995).

3. INFERENCE PROCEDURES

Deriving inference procedures for the proposed IPW-based estimators for accuracy summaries can be
challenging due to the complex data structure induced by NCC sampling. In particular, under the finite-
population sampling scheme, indicators of being sampled,Vi , are weakly dependent conditional onD =
{(Xi , δi , Yi , Zi ), i = 1, . . . , N}. The standard convergence theorems, such as the law of large numbers or
central limit theorems for i.i.d. cases, are not directly applicable here. In the supplementary material avail-
able atBiostatisticsonline, we provide more detailed justifications for the consistency and asymptotic
normality of proposed IPW estimators for accuracy summaries for NCC design with finite-population
sampling, using results on the strong and weak convergence of weighted sums of NegA dependent vari-
ables (Liang and others, 2004; Liang and Baek, 2006). The key is to show that̂U = N−1∑N

i =1 ŵi Ri ,
whereRi = R(Xi , δi , Yi ) for some deterministic functionR, can be viewed as weighted sums of NegA
dependent variables, and it satisfies the conditions required for tightness and weak convergence of the
NegA process (see Appendix B of the supplementary material available atBiostatisticsonline).

To obtain interval estimates of specific components of our proposed IPW estimators for TPFt (c),
FPFt (c), ROCt (u), PPVt (c), and NPVt (c), we show in Appendix A of the supplementary material (avail-
able atBiostatisticsonline) that for any of these accuracy measures, denoted by a generic termA,

N
1
2 (Â−A) = N− 1

2
∑N

i =1 ŵi UAi + op(1), which is asymptotically normal with mean 0 and variance

σ 2
A = E

(
U2
Ai

pi

)

− mR2
UA = E(U2

Ai ) + E
{
σ 2

ŵi |D
U2
Ai

}
− mR2

UA ,

where pi is the limiting value of p̂i , σ 2
ŵi |D

is the conditional variance of̂wi given D, andR2
UA

as a
functional of UA is defined in Appendix A of the supplementary material (available atBiostatistics
online). The termE(U2

Ai ) in σ 2
A represents the variance of̂A if Y is observed for the full cohort,

E
{
σ 2

ŵi |D
U2
Ai

}
− mR2

UA
represents the inflated variance due to the missing information onY for the

weighted estimator, and−mR2
UA

represents the variance adjustment due to the weak negative correlation

among theVi ’s. Omitting the last term fromσ 2
A would lead to the robust variance estimator ofÂ by treat-

ing ŵi as known independent weights. Thus, using the robust variance alone would always overestimate
the true variance of̂A.

In Appendix C of the supplementary material (available atBiostatisticsonline), we deriveUAi for
A = TPRt (c), FPRt (c), ROCt (u), PPVt (c), and NPVt (c), respectively. The asymptotic variance of these
accuracy summary estimators can be estimated empirically, and the confidence intervals (CIs) can be con-
structed based on normal approximations. For example, we show in Appendix C of the supplementary ma-

terial (available atBiostatisticsonline) thatn
1
2 {R̂OCt (u) − ROCt (u)} → N

{
0, σ 2

ROCt
(u)
}

in distribution,

whereσ 2
ROCt

(u) = E
{
U2

ROCt i
(u)/pi

}
− mR2

UROCt (u)
. UROCt i (u) andRUROCt

(u) are defined in Appendix

C of the supplementary material (available atBiostatisticsonline). A 95% CI for ROCt (u) may be obtained

asR̂OCt (u) ± 1.96N− 1
2 σ̂ROCt (u), wherêσ 2

ROCt
(u) = N−1∑N

i =1 ŵi
{
ÛROCt (u; Di )

2/ p̂i
}

− mR̂2
UROCt (u)

,

whereÛROCt (u; Di ) andR̂UROCt (u)
are obtained by replacing all theoretical quantities inUROCt (u) and

RUROCt (u)
by their empirical counterparts, respectively.
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4. SIMULATIONS

We conduct simulation studies to examine the performance of our proposed methods with practical sample
sizes. All results are based on 2000 simulated data sets. We first consider a simple situation with a cohort
of N = 1000. We simulateY from a standard normal distribution and generateT from a PH model:
λ(t) = 0.1 exp(βY), whereβ = log(3). Censoring timeC is taken to be the minimum of 2 andW, where
W follows a gamma distribution, with a shape parameter of 2.5 and a rate parameter of 2. This yields
approximately 87% censoring and an average of 133 observed cases. For each cohort, we assemble an
NCC subcohort by selecting all cases andm controls per case, withm = 1 or 3. We consider estimating
TPFt (c), FPFt (c), PPVt (c), and NPVt (c) for c equal to the 25th and 75th percentiles of the standard
normal distribution andt = 1 under such an NCC sampling. We calculate the plug-in estimators for
the accuracy measures by estimatingS(t |y) based on either̂SLB(t |y) (referred to as LB estimators) or
Ŝw(t |y) (referred to as IPW estimators). In addition, analytical naive standard errors, ignoring correlations
amongVi , and standard errors adjusted for correlations are calculated for the IPW estimators. The results
are presented in Table1. It appears that both sets of estimators are unbiased. However, the IPW estimators
in general are more efficient than the LB estimators, as evidenced by their higher relative efficiencies,
defined as the ratio of empirical variance estimated from full cohort data to the specific estimated variance
from NCC samples. Our adjusted standard errors performed well, with coverage percentage close to 95%.
The naive standard errors in most of the cases are quite close to their adjusted counterparts, indicating

Table 1. Averages of parameter estimates (Ave), empirical standard error of estimates (SE), the averages
of the standard error estimates from naive (ŜE

n
) and adjusted (̂SE

a
) estimators, their corresponding

coverage probabilities (CPn and CPa) using the “IPW” approach, average and empirical standard error
using the “LB” approach (AveLB and SELB) based on NCC samplings with cohort size of N= 1000
and m = 1 or 3 controls. Relative efficiencies of both approaches (REipw and RELB) are relative to the
cohort. Accuracy summaries of marker Y are evaluated at t= 1 and c1 = F−1

Y (0.25), c2 = F−1
Y (0.75),

respectively. Censoring times are independent ofY

True Ave SE ŜEn ŜEa CPn CPa AveLB SELB REIPW RELB
m = 1

β 1.10 1.12 14.6 13.4 13.3 0.92 0.92 1.13 19.7 0.48 0.22
T̂PFt (c1) 0.95 0.95 1.46 1.35 1.35 0.93 0.93 0.95 1.68 0.42 0.27
F̂PFt (c1) 0.72 0.71 4.49 4.42 4.40 0.95 0.95 0.71 4.58 0.12 0.11
P̂PVt (c1) 0.18 0.18 1.86 2.12 1.83 0.97 0.94 0.19 2.73 0.71 0.32
N̂PVt (c1) 0.97 0.97 0.73 0.71 0.68 0.95 0.93 0.97 0.79 0.68 0.50
T̂PFt (c2) 0.60 0.60 4.81 4.76 4.75 0.94 0.94 0.60 5.80 0.47 0.31
F̂PFt (c2) 0.19 0.19 3.63 3.51 3.50 0.94 0.93 0.19 3.87 0.14 0.12
P̂PVt (c2) 0.35 0.35 4.40 4.43 4.15 0.96 0.94 0.36 6.99 0.48 0.17
N̂PVt (c2) 0.92 0.92 1.06 1.17 1.04 0.98 0.94 0.92 1.10 0.80 0.71

m = 3
β 1.10 1.11 10.9 10.8 10.8 0.94 0.94 1.11 13.4 0.70 0.45
T̂PFt (c1) 0.95 0.95 1.04 1.04 1.04 0.96 0.96 0.95 1.18 0.67 0.52
F̂PFt (c1) 0.72 0.71 2.74 2.74 2.74 0.95 0.95 0.71 2.76 0.31 0.30
P̂PVt (c1) 0.18 0.18 1.63 1.72 1.64 0.96 0.95 0.19 1.83 0.85 0.68
N̂PVt (c1) 0.97 0.97 0.59 0.61 0.6 0.96 0.95 0.97 0.65 0.78 0.66
T̂PFt (c2) 0.60 0.60 3.94 3.86 3.85 0.95 0.95 0.60 4.30 0.73 0.59
F̂PFt (c2) 0.19 0.19 2.24 2.22 2.22 0.94 0.94 0.19 2.36 0.35 0.31
P̂PVt (c2) 0.35 0.35 3.37 3.39 3.31 0.95 0.95 0.35 4.25 0.76 0.46
N̂PVt (c2) 0.92 0.92 0.97 1.01 0.97 0.96 0.95 0.92 0.98 0.86 0.84
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Table 2. Summary statistics (same as in Table1) from simulation studies based on NCC samplings with
cohort size of N= 1000and m= 1 or 3 controls and with censoring times dependent onY

True Ave SE ŜEn ŜEa CPn CPa AveLB SELB REIPW RELB
m = 1

β 1.10 1.11 20.0 19.3 19.3 0.94 0.94 1.11 22.7 0.50 0.39
T̂PFt (c1) 0.97 0.97 0.93 0.88 0.88 0.93 0.93 0.97 0.94 0.44 0.44
F̂PFt (c1) 0.89 0.89 2.27 2.21 2.21 0.93 0.93 0.89 2.30 0.23 0.22
P̂PVt (c1) 0.26 0.26 1.78 2.10 1.81 0.98 0.95 0.26 1.81 0.82 0.79
N̂PVt (c1) 0.91 0.91 1.85 1.91 1.84 0.95 0.94 0.91 1.97 0.64 0.56
T̂PFt (c2) 0.18 0.18 2.61 2.64 2.64 0.95 0.95 0.18 2.91 0.62 0.50
F̂PFt (c2) 0.06 0.06 1.49 1.46 1.46 0.93 0.93 0.06 1.50 0.27 0.26
P̂PVt (c2) 0.48 0.49 5.75 5.75 5.58 0.94 0.93 0.49 6.68 0.50 0.37
N̂PVt (c2) 0.78 0.78 1.63 1.91 1.65 0.98 0.95 0.78 1.58 0.82 0.88

m = 3
β 1.10 1.10 15.9 15.5 15.5 0.94 0.94 1.11 17.9 0.81 0.64
T̂PFt (c1) 0.97 0.97 0.70 0.68 0.68 0.93 0.93 0.97 0.74 0.76 0.68
F̂PFt (c1) 0.89 0.89 1.48 1.46 1.46 0.94 0.94 0.89 1.49 0.54 0.54
P̂PVt (c1) 0.26 0.26 1.67 1.76 1.70 0.95 0.95 0.26 1.67 0.91 0.91
N̂PVt (c1) 0.91 0.91 1.62 1.60 1.58 0.94 0.94 0.91 1.71 0.86 0.77
T̂PFt (c2) 0.18 0.18 2.22 2.20 2.20 0.94 0.94 0.18 2.34 0.85 0.77
F̂PFt (c2) 0.06 0.06 0.97 0.99 0.99 0.95 0.95 0.06 1.00 0.61 0.58
P̂PVt (c2) 0.48 0.48 4.51 4.50 4.46 0.94 0.94 0.48 5.12 0.80 0.62
N̂PVt (c2) 0.78 0.78 1.53 1.61 1.56 0.96 0.95 0.78 1.49 0.91 0.96

that correlations are quite weak among observations. However, they do appear to be more conservative
whenm = 1.

In the second scenario (Table2), T is generated using the same model butY andC are constructed
with a more complicated scheme. Specifically,Y is generated from a mixture of normal distributions:
Y = BW1 + (1 − B)W2, whereB ∼ Bernoulli(0.9), W1 ∼ N(0, 0.5), andW2 ∼ N(0.3, 0.1). To
introduce marker-dependent censoring, we letC ∼ Uniform(0.5, 1.5) if B = 1 andC = exp(Z/5− 3Y)
with Z ∼ N(0, 1) if B = 0. The average number of cases in this setting is around 200. We would expect
our IPW estimators to be robust in this situation. Indeed, all estimators are unbiased. The adjusted variance
estimators also work well; however, the naive variance estimators for PPVt (c) and NPVt (c) again could
have inflated values with one matched control.

We also consider a scenario where controls are also matched with cases on a binary covariateZ. With
a cohort of size 2000, we first generateY from a standard normal distribution, we then generate a binary
Z such thatZ = 1 if Y > 0. The same models forT andC are used as in the first scenario, which
yield on average 266 cases among 2000 simulated data sets. Results in Table3 again indicate that our
proposed estimators under stratified NCC design perform well. The naive variance, without considering
the correlation due to finite sampling, often lead to overestimated variances.

5. EXAMPLE

We illustrate our proposal by evaluating the accuracy of an inflammation marker, C-reactive protein
(CRP), for predicting the risk of cardiovascular disease (CVD) using the Framingham Offspring Study.
Conventional risk factors have been identified for assessing CVD risk in the general population, but these
characteristics explain only a fraction of CVD risk. Contemporary biomarkers such as CRP have been
sought for use in risk stratification and preventive decision making (Ridkerand others, 2000). However,
its clinical usefulness has not been established.
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Table 3. Summary statistics (same as in Table1) from simulation studies based on NCC samplings with
cohort size of N= 2000and matched on a binary covariateZ

True Ave SE ŜEn ŜEa CPn CPa Avebl SEbl REipw REbl
m = 1

β 1.10 1.11 8.60 9.30 8.49 0.96 0.94 1.11 17.07 0.60 0.15
T̂PFt (c1) 0.95 0.95 1.23 1.24 1.22 0.93 0.92 0.95 1.56 0.26 0.16
F̂PFt (c1) 0.72 0.72 4.79 5.07 4.76 0.95 0.94 0.72 4.93 0.05 0.05
P̂PVt (c1) 0.18 0.19 1.47 1.74 1.45 0.98 0.95 0.19 2.75 0.51 0.14
N̂PVt (c1) 0.97 0.97 0.50 0.56 0.50 0.96 0.94 0.97 0.64 0.64 0.39
T̂PFt (c2) 0.60 0.60 3.23 3.16 3.15 0.94 0.94 0.60 4.51 0.56 0.27
F̂PFt (c2) 0.19 0.19 2.00 2.55 2.01 0.99 0.95 0.19 2.48 0.20 0.13
P̂PVt (c2) 0.35 0.35 2.56 2.71 2.48 0.97 0.95 0.36 6.29 0.64 0.10
N̂PVt (c2) 0.92 0.92 0.73 1.01 0.75 0.99 0.96 0.92 0.82 0.75 0.63

m = 3
β 1.10 1.10 7.10 7.36 7.07 0.95 0.94 1.11 12.15 0.81 0.27
T̂PFt (c1) 0.95 0.95 0.90 0.88 0.87 0.93 0.93 0.95 1.17 0.49 0.27
F̂PFt (c1) 0.72 0.72 3.06 3.10 2.94 0.95 0.94 0.72 3.14 0.13 0.12
P̂PVt (c1) 0.18 0.18 1.23 1.32 1.22 0.97 0.95 0.19 2.04 0.75 0.27
N̂PVt (c1) 0.97 0.97 0.43 0.45 0.43 0.96 0.94 0.97 0.51 0.78 0.56
T̂PFt (c2) 0.60 0.60 2.60 2.62 2.61 0.95 0.95 0.60 3.45 0.79 0.45
F̂PFt (c2) 0.19 0.19 1.33 1.60 1.36 0.98 0.95 0.19 1.63 0.44 0.30
P̂PVt (c2) 0.35 0.35 2.15 2.21 2.17 0.95 0.95 0.35 4.52 0.84 0.19
N̂PVt (c2) 0.92 0.92 0.69 0.79 0.69 0.97 0.95 0.92 0.75 0.89 0.75

The Framingham Offspring Study was initiated in 1971 with a cohort of 5124 participants. The
Framingham Study samples were monitored prospectively, providing a valuable resource for studying
epidemiological and genetic risk factors of CVD. We consider here 3289 Offspring Study participants
with CRP measurements at the second examination and who were free of CVD at the examination (mean
age 44 years and 53% women). We consider outcome as time from examination date to first major CVD
event or CVD-related death as defined previously (Lloyd-Jonesand others, 2004). Since we are interested
in the short-term predictive capacity of CRP, individuals with follow-up time longer than 10 years were
considered censored at 10 years. During the follow-up period, 251 participants were observed to encounter
at least one CVD event. Since CRPs are complete in the cohort, the Framingham data allow us to illustrate
our methods with a real data set and to compare the relative efficiency of a few sampling strategies with
analysis using the full cohort. From the full cohort data, we further assemble NCC subcohorts with 1 or
3 controls who were selected either (i) without additional matching or (ii) matched to their corresponding
cases based on gender and age groups (<30, 30–39, 40–49,>50).

We use a PH model to specify the relation between the failure time and CRP concentration (in log
scale). We then calculate the accuracy measures of CRP for predicting CVD by 5 years since the mea-
surement of CRP (i.e.,t = 5). We considered low and high thresholds, set as the 25th or 75th percentile
of the CRP levels in the full cohort. That is, these thresholds would, respectively, classify approximately
75% or 25% of the population as testing positive based on CRP. The accuracy summaries at both values
are presented in Table4, where, in the first and second columns, parameter estimates and standard error
estimates for the cohort data are given. The estimates from different NCC samples, presented in the rest
of the columns, are quite close to the results using the full cohort data, suggesting that time-dependent
accuracy summaries can be reliably estimated from the case–control data with our methods. Matching on
age and gender improves the efficiency of most estimates slightly, and including more controls results in
more precise inference. Compared to a full cohort analysis, the standard errors for TPF and FPF, although
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Table 4. Estimated accuracy summaries (Ave) and standard errors (SE) of CRP at2 thresholds for pre-
dicting 5-year CVD events from Framingham data with m= 1 and3 controls and with/without stratified

by age and gender

Not stratified Stratified
Full cohort m = 1 m = 3 m = 1 m = 3

Ave SE Ave SE Ave SE Ave SE Ave SE
β̂ 0.483 0.049 0.510 0.133 0.455 0.089 0.508 0.110 0.492 0.080
c = F̂−1

Y (0.25)

T̂PFt (c) 0.900 0.011 0.913 0.027 0.891 0.022 0.906 0.025 0.904 0.017
F̂PFt (c) 0.749 0.008 0.748 0.049 0.739 0.030 0.760 0.049 0.787 0.027
P̂PVt (c) 0.044 0.004 0.053 0.008 0.053 0.007 0.053 0.006 0.051 0.005
N̂PVt (c) 0.985 0.002 0.984 0.005 0.981 0.004 0.982 0.004 0.979 0.004

c = F̂−1
Y (0.75)

T̂PFt (c) 0.471 0.025 0.473 0.057 0.448 0.044 0.482 0.043 0.462 0.033
F̂PFt (c) 0.242 0.008 0.225 0.045 0.228 0.028 0.243 0.041 0.272 0.029
P̂PVt (c) 0.070 0.007 0.088 0.018 0.083 0.014 0.085 0.013 0.074 0.009
N̂PVt (c) 0.974 0.003 0.970 0.005 0.968 0.005 0.969 0.004 0.966 0.004

relatively larger using NCC samples, are still sufficiently precise for making decisions regarding the dis-
criminatory capacity of CRP. For example, with a 24% FPF, we can detect about 47% of the subjects who
experience a CVD event or death by 5 years, with a CI of (42%, 52%) estimated from the full cohort.
The same detection rate with a CI of (36%, 58%) is observed from an NCC study selecting one matched
control per case. Both suggest a significantly better performance than that of a noninformative marker,
which is expected to have a TPF of only 24% at this threshold. Such information would be helpful for in-
vestigators to plan for more cost-effective future biomarker studies. Based on the results listed in Table4,
we conclude that the predictive accuracy of CRP is quite moderate and that using CRP for preventive
decision making should be done with caution. Further assessment of the incremental value of CRP over
conventional risk factors is warranted.

6. REMARKS

The NCC sampling has been recognized as a useful design option within cohort study in the field of
biomarker research (Rundleand others, 2005). Biomarker studies are often influenced by factors such
as analytic batch, long-term storage, and freeze-thaw cycles. By matching individual controls to cases’
failure times and other potential confounding factors, the accuracy of biomarkers can be evaluated more
efficiently and rigorously with an NCC design. However, matching generates complex data that can be
more difficult to analyze. We proposed estimators for 2 classes of accuracy measures under an NCC
design based on the IPW approach. By reusing samples in each risk set, the approach yields more ef-
ficient estimators for those accuracy summaries compared to estimators derived from a partial likeli-
hood, without requiring more information from the study. Furthermore, compared with a nonparametric
MLE-based approach (Scheike and Martinussen, 2004), this approach is very simple to implement and is
robust to marker-dependent censoring. Extension of the proposed methods to models with multiple co-
variates and an estimation of covariate-specific accuracy is straightforward. Our theoretical development
on the IPW estimators is useful for making inference on accuracy summary estimators in practice, given
that justification for bootstrap-based variance estimators has not been developed under cohort sampling
settings.
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In our estimation procedure, we focused on weights with “true” selection probability according to
the study design. The weights can be less optimal. Less expensive covariate information is often avail-
able for all subjects in a cohort. Incorporating such information may well yield estimators with improved
efficiency. In particular, it is possible to derive semiparametric efficient estimators in this setting follow-
ing the work ofRobinsand others(1994). Alternatively, parallel to recent work for case–cohort design
(Breslow and Wellner, 2007; Breslowand others, 2009), one may consider nonparametric procedures to
obtain augmented weights using auxiliary information in order to gain efficiency. Our proposal here lays
important groundwork for further investigation.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://www.biostatistics.oxfordjournals.org.
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