
Biostatistics(2012),13, 1, pp.32–47
doi:10.1093/biostatistics/kxr020
Advance Access publication on August 18, 2011

A robust method using propensity score stratification
for correcting verification bias for binary tests

HUA HE, MICHAEL P. MCDERMOTT∗

Department of Biostatistics and Computational Biology,
University of Rochester, Rochester, NY 14642, USA

mikem@bst.rochester.edu

SUMMARY

Sensitivity and specificity are common measures of the accuracy of a diagnostic test. The usual estimators
of these quantities are unbiased if data on the diagnostic test result and the true disease status are obtained
from all subjects in an appropriately selected sample. In some studies, verification of the true disease status
is performed only for a subset of subjects, possibly depending on the result of the diagnostic test and other
characteristics of the subjects. Estimators of sensitivity and specificity based on this subset of subjects are
typically biased; this is known as verification bias. Methods have been proposed to correct verification
bias under the assumption that the missing data on disease status are missing at random (MAR), that is,
the probability of missingness depends on the true (missing) disease status only through the test result and
observed covariate information. When some of the covariates are continuous, or the number of covariates
is relatively large, the existing methods require parametric models for the probability of disease or the
probability of verification (given the test result and covariates), and hence are subject to model misspeci-
fication. We propose a new method for correcting verification bias based on the propensity score, defined
as the predicted probability of verification given the test result and observed covariates. This is estimated
separately for those with positive and negative test results. The new method classifies the verified sample
into several subsamples that have homogeneous propensity scores and allows correction for verification
bias. Simulation studies demonstrate that the new estimators are more robust to model misspecification
than existing methods, but still perform well when the models for the probability of disease and probabil-
ity of verification are correctly specified.
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1. INTRODUCTION

To assess the accuracy of a diagnostic test, knowledge of the true disease status is needed. Usually this
is determined by means of a so-called “gold standard” test that always correctly ascertains the true dis-
ease status. When a diagnostic test is binary, sensitivity and specificity are frequently used to assess the
accuracy of the test. If all subjects given the new diagnostic test have their true disease status verified,
sensitivity and specificity can be estimated unbiasedly by simple proportions.
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We consider the setting of a cross-sectional cohort study in which a random sample is drawn from the
population of interest and the new diagnostic test result and other subject characteristics are measured.
In some situations, not all subjects given the new diagnostic test ultimately have the true disease status
verified. There are various reasons for this. For example, some gold standard tests are expensive and time
consuming, and some are based on invasive procedures such as surgery. In these situations, subjects with
negative test results may be less likely to receive a gold standard evaluation than subjects with positive test
results. When the decision regarding whether or not to verify the subject’s true disease status depends on
the test result (and possibly other subject characteristics), naive methods that use only data from disease-
verified subjects usually give biased estimates of the test’s accuracy; this is called verification bias (Begg
and Greenes, 1983).

Let Ti denote the binary test result and letDi denote the true disease status for theith subject,i =
1, 2, . . . , n, whereTi = 1 indicates a positive test result,Ti = 0 indicates a negative test result,Di = 1
indicates that the subject has the disease andDi = 0 indicates that subject does not have the disease. Only
a subset of the subjects have their disease status verified; letVi = 1 if the ith subject has the true disease
status verified, andVi = 0 otherwise. LetXi be a vector of observed covariates for theith subject that
may be associated with bothDi andVi .

Various methods have been developed to deal with the problem of verification bias, most of which
assume that the true disease status, if missing, is missing at random (MAR) (Little and Rubin, 2002), that
is that the probability of a subject having the disease status verified is purely determined by the test result
and the subject’s observed characteristics and is conditionally independent of the unknown true disease
status. In our notation,V ⊥ D|(T, X). The decision to verify the subject’s true disease status may depend
on the true condition of the subject, but the dependence is only through the test result and (possibly)
observed covariates. Existing methods for estimating disease prevalence, sensitivity, and specificity in
this case are summarized in Table1, including the naive estimators computed using only information
from the verified subjects. The naive estimators are unbiased if the subjects are selected for verification
completely at random. Under the less restrictive MAR assumption, the naive estimators are biased.

The Begg and Greenes(1983) (BG) estimator and the mean score (MS) estimator (Pepeand
others, 1994; Reilly and Pepe, 1995) typically require parametric models for the probability of disease
Pr(D|T, X). The inverse probability weighting (IPW) estimator typically requires a parametric model for
the probability of disease verificationπ = Pr(V |T, X). The semiparametric efficient (SP) estimators typ-
ically require parametric models for both the probability of disease and the probability of verification, but
they are “doubly robust” in that they are consistent if either Pr(D|T, X) or π is estimated consistently
(Robinsand others, 1994; Robins and Rotnitzky, 1995). Asymptotic variance formulas have been devel-
oped for all of these estimators based on estimating equations; seeAlonzo and Pepe(2005) for a unified
treatment.

When X is high dimensional or includes continuous variables, nonparametric estimation of
Pr(D|T, X) and Pr(V |T, X) becomes more challenging, which is why parametric models are typically
used to estimate these quantities. The validity of these parametric models affects the behavior of the es-
timators. Existing methods are not robust to model misspecification, except that the SP estimators are
doubly robust in the sense discussed above.

In this paper, we propose a new method for correcting verification bias based on the propensity score,
defined as the predicted probability of verification given the test result and observed covariates. The new
method stratifies the verified sample into several subsamples that have homogeneous propensity scores
and allows correction for verification bias within each subsample. Parametric models may still be used to
estimate the propensity scores, but since the estimated propensity scores are only used for the purpose of
stratification, the estimators of sensitivity and specificity are less sensitive to model misspecification. We
develop the new estimators and their asymptotic properties in Section2. Simulation studies comparing
the new method with existing methods are presented in Section3, followed by an example in Section4
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in which the competing methods are illustrated using data from a study of depression in elderly primary
care patients. The paper concludes with a discussion in Section5.

2. A ROBUST METHOD FOR CORRECTING VERIFICATION BIAS FOR BINARY TESTS

2.1 Development of the new estimators

The derivation of the BG estimators was based on Bayes’ theorem:

Pr(T = t |D) =
Pr(D|T = t)

Pr(D|T = 0) Pr(T = 0) + Pr(D|T = 1) Pr(T = 1)
, t = 0, 1.

Recognizing that the probability of disease can depend on a set of covariatesX as well as the test result
T , one can express the positive and negative predictive values of the test as

PPV=
∫

E[D|T = 1, V = 1, X = x] dG1(x),

NPV = 1 −
∫

E[D|T = 0, V = 1, X = x] dG0(x), (2.1)

respectively, whereGt (x) is the cumulative distribution function ofX for subjects withT = t , t = 0, 1.
Note that the presence ofV = 1 in these expressions is justified by the MAR assumption. It follows that
the disease prevalence and the sensitivity and specificity of the test can be expressed as:

P = PPV Pr(T = 1) + (1 − NPV) Pr(T = 0),

Se=
PPV Pr(T = 1)

P
,

Sp=
NPV Pr(T = 0)

1 − P
. (2.2)

The extended BG estimators (Alonzo and Pepe, 2005) incorporate parametric estimation of
E[Di |Ti , Vi = 1, Xi ] using, say, a logistic regression model, use of the empirical distribution functions
to nonparametrically estimateGt (x), t = 0, 1, and use of the indicator functionsI (Ti = t) to estimate
Pr(Ti = t), t = 0, 1.

A potential concern with the BG (and other) estimators is model misspecification. Instead of
using a parametric model to estimateE[D|T, V = 1, X], one could try to estimate this quantity
nonparametrically. This is difficult when the dimension ofX is high and it contains continuous variables.
We propose to reduce the dimension ofX by replacing it with the propensity scoreet (X) = Pr(V =
1|T = t, X), 0 < et (X) < 1, t = 0, 1. This is justified by the following theorem (Theorem 3 in
Rosenbaum and Rubin, 1983):

THEOREM 1 If D ⊥ V | (T, X) for any T and X, then D ⊥ V | e(X) for any e(X), wheree(X) =
Pr(V = 1|T, X), 0 < e(X) < 1.

The condition thatD ⊥ V | (T, X) for anyT andX is known as the “strongly ignorable” condition
(Rosenbaum and Rubin, 1983) which, in our case, is exactly the same as the MAR assumption.
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Propensity scores provide data reduction because they adequately capture all relevant covariate infor-
mation in a single variable. The propensity score is unknown and is typically estimated using a logistic
regression model or discriminant analysis. This model can include a large number of covariates since the
goal is to provide an adequate summary of the covariate information rather than to construct a parsimo-
nious model that would perform well in predicting verification for future subjects.

Let Ft (e) be the cumulative distribution function ofet (X), t = 0, 1. Then PPV and NPV can be
expressed as in the following theorem:

THEOREM 2 PPV and NPV can be expressed as follows:

PPV=
∫

E[D|T = 1, V = 1, e1(X) = e] dF1(e),

NPV = 1 −
∫

E[D|T = 0, V = 1, e0(X) = e] dF0(e). (2.3)

Proof. E[D|T = 1] = E[E[D|T = 1, e1(X)]] = E[E[D|T = 1, V = 1, e1(X)]]. Also, 1 − E[D|T =
0] = 1 − E[E[D|T = 0, e0(X)]] = 1 − E[E[D|T = 0, V = 1, e0(X)]]. �

To estimate the prevalence, sensitivity, and specificity, one needs to estimate the integrals in Theorem
2. One approach to estimating these integrals after having estimated the propensity scores is to categorize
the propensity score into, say, 5–10 categories (D’Agostino, 1998), estimate1F1(e) (or 1F0(e)) by the
proportion of subjects whose estimated propensity score falls in the interval, estimateE[D|T = 1, V =
1, e1] (or E[D|T = 0, V = 1, e0]) by the proportion of diseased subjects among the verified subjects
with T = 1 (or T = 0) and with an estimated propensity score falling in that interval, and sum across the
categories. We call this method “PS” (propensity score stratification).

Suppose that amongn subjects in the study, there aren1 subjects with positive test results andn0
subjects with negative test results. Thent subjects are stratified intoK classes,Ct,1, Ct,2, . . . , Ct,K , based
on the propensity scoreset = et (X), t = 0, 1. Note that the number of strata whenT = 0 andT = 1
can be different, but to simplify the notation we assume that they are the same. Letet,i = Pr(Vi = 1|T =
t, Xi ) for i = 1, 2, . . . , nt be the propensity score for theith subject in the group withT = t , t = 0, 1. We
assume a logistic model forVi with a parameter vectorαt , with separate models for subjects withT = 0
andT = 1:

et,i = et (Xi , αt ) =
1

1 + exp(−X
′

i αt )
. (2.4)

Let qt,k, k = 1, 2, . . . , K − 1, be thekth quantile of the distribution ofet . Then thekth stratumCt,k

consists of those subjects withqt,k−1 < et,i 6 qt,k, whereqt,0 = 0 andqt,K = 1. It is assumed that the
classes are chosen so that Pr(et ∈ Ct,k) > 0 for t = 0, 1 andk = 1, 2, . . . , K . Suppose that there arent,k

subjects withT = t falling in thekth class andmt,k subjects withT = t andV = 1 falling in thekth class
for t = 0, 1. Then the proposed estimators for PPV and NPV can be expressed as:

P̂PVPS =
K∑

k=1

#(D = 1, T = 1, V = 1, ê1 ∈ Ĉ1,k)

m1,k

n1,k

n1
,

N̂PVPS =
K∑

k=1

#(D = 0, T = 0, V = 1, ê0 ∈ Ĉ0,k)

m0,k

n0,k

n0
, (2.5)
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whereêt is the estimated propensity score andĈt,k are the strata classified according to the empirical
quantiles of propensity scores,t = 0, 1.

Let φ = Pr(T = 1) with φ̂ = n1/n. Then the disease prevalence, sensitivity, and specificity of the test
can be estimated by

P̂PS = P̂PVPSφ̂ + (1 − N̂PVPS) (1 − φ̂),

ŜePS =
P̂PVPSφ̂

P̂PS
,

ŜpPS =
N̂PVPS(1 − φ̂)

1 − P̂PS
. (2.6)

The main purpose of stratification here is to categorize the covariate information contained inX in-
stead of assuming a functional form for the relationship betweenD and X, which may lead to model
misspecification. Stratification based directly onX is difficult when X is high-dimensional; therefore,
the propensity score provides a helpful tool for dimension reduction and bias reduction in this setting.
Although parametric models were used to estimate the propensity scores, the values of the estimated
propensity scores are only used to stratify the subjects into different subgroups. Any monotone transfor-
mation of the propensity score will not change the stratification, and thus will not change the estimates.
For all of these reasons, it is expected that our proposed method will be more robust than methods that
require the use of parametric models. Our simulation study presented in the next section verifies this. The
type of model misspecification that our method is designed to avoid, however, is misspecification of the
functional form of the relationship betweenD and X. It is not expected to be robust to misspecification
of the model in terms of omitted covariates.

The stratification approach is closely related to the method ofBegg and Greenes(1983) except the
subjects are stratified using the propensity scores instead of the set of covariatesX. In fact, if C1,k (and
C0,k) has only one actual propensity score for eachk, as in the case of a single finite pattern covariate, then
ŜePS andŜpPS are exactly the same as the BG estimators with categorical covariates and are consistent
estimators.

The stratification approach in general cannot completely remove the bias, but can greatly reduce it
(Rosenbaum and Rubin, 1984; D’Agostino, 1998). On the other hand, for a large sample, if we increase
the number of strata, bias may be further reduced.

2.2 Asymptotic properties of the new estimators

Following Lunceford and Davidian(2004), the asymptotic distributions of the estimatorŝPPVPS and
N̂PVPS can be derived by representing them as solutions to sets of estimating equations and appealing
to the theory ofM-estimation (Stefanski and Boos, 2002). The asymptotic distributions of the estimators
of interest,ŜePSandŜpPS, may then be derived by applying the delta method. As will be shown below, the
variance of the resulting asymptotic distribution has a very complicated form and is difficult to estimate.
A more useful result can be obtained by assuming that the propensity scoreset,i and the quantiles of the
distribution of the propensity score,qt,k, are known,t = 0, 1, i = 1, 2, . . . , nt , k = 1, 2, . . . , K − 1.
Under these assumptions, the following theorem gives the asymptotic joint distribution forP̂PS, ŜePS, and
ŜpPS.

THEOREM 3 Let gt,k = Pr(et ∈ Ct,k|T = t), dt,k = Pr(D = t |T = t, V = 1, et ∈ Ct,k), and
rt,k = Pr(et ∈ Ct,k, T = t, V = 1) for k = 1, 2, . . . , K . Also, let At =

∑K
k=1 gt,k dt,k for t = 0, 1,
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μ =
(
φA1 + (1 − φ)(1 − A0),

φA1
φA1+(1−φ)(1−A0)

, (1−φ)A0
φ(1−A1)+(1−φ)A0

)
, andU = (P̂PS, ŜePS, ŜpPS). As

n → ∞ and mt,k → ∞ for all t and k, we have
√

n (U − μ)
p

−→ ϒT6ϒ , where ϒ =








φ φ − 1 A1 + A0 − 1

φ(1−φ)(1−A0)

(φA1+(1−φ)(1−A0))
2

φ(1−φ)A1

(φA1+(1−φ)(1−A0))
2

A1(1−A0)

(φA1+(1−φ)(1−A0))
2

φ(1−φ)A0

(1−φA1−(1−φ)(1−A0))
2

φ(1−φ)(1−A1)

(1−φA1−(1−φ)(1−A0))
2

(A1−1)A0

(1−φA1−(1−φ)(1−A0))
2









, 6 =







σ 2
1 0 0

0 σ 2
0 0

0 0 ω2





,

ω2 = φ(1 − φ) andσ 2
t =

∑K
k=1

(
g2

t,k
rt,k

dt,k(1 − dt,k) + n
nt

d2
t,k gt,k

)
− n

nt

(∑K
k=1 gt,k dt,k

)2
for t = 0, 1.

The proof of Theorem 3 is given in Section A1 of the Appendix (supplementary material available at
Biostatistics online).

The estimatorŝPPS, ŜePS, andŜpPS are not consistent. However, if the number of strataK → ∞
and max16k6K {qt,k − qt,k−1} → 0, whereqt,k−1 andqt,k are the two end points of the class defined by
Ct,k, then, as we show in Section A2 of the Appendix (supplementary material available at Biostatistics
online), P̂PS, ŜePS, andŜpPSare consistent estimators of the disease prevalence, sensitivity and specificity,
respectively, given that the number of verified subjects in each stratummt,k → ∞.

In practice, the propensity scoreset,i and the quantiles of the distribution of the propensity score,qt,k,
t = 0, 1, i = 1, 2, . . . , nt , k = 1, 2, . . . , K − 1, are not known and the variance of the asymptotic distri-
bution should take into account the sampling variability of their estimates. The asymptotic distributions
of ŜePS andŜpPS that account for the sampling variability of the estimates are derived in Section A3 of
the Appendix (supplementary material available at Biostatistics online).

The variances6t in Lemma 3 in Section A3 of the Appendix (supplementary material available at
Biostatistics online) are too difficult to estimate to make them useful in practice. AsLunceford and Da-
vidian (2004) note, it is usual practice to treat the strata as fixed and independent and to estimate the
parameter of interest within each stratum, then average across strata. In our case, this would yield the

estimatorP̂PV =
∑K

k=1 ĝ1,kP̂PVk =
∑K

k=1 ĝ1,k
#(D=1, T=1, V=1, ê1∈C1,k)

m1,k
for PPV (and a similar esti-

mator for NPV), wherêg1,k = #(̂e1∈C1,k)
n1

. Note that thêgt,k and mt,k (number of verified subjects in

Ct,k) are treated as fixed,t = 0, 1, k = 1, 2, . . . , K . The variances would thus only consider the vari-

ability of #
(
D = t, T = t, V = 1, êt ∈ Ct,k

)
and would be estimated as

∑K
k=1 ĝ2

t,k
d̂t,k(1−d̂t,k)

mt,k
, where

d̂t,k = #(D=t, T=t, V=1, êt∈Ct,k)
mt,k

, t = 0, 1.

The variancesσ 2
t in Lemma 1 in Section A1 of the Appendix (supplementary material available

at Biostatistics online) can be seen as a compromise between the correct (but difficult to estimate)
variances in Lemma 3 and the naive variances usually estimated in practice. The naive variances
and σ 2

t are both less than the correct variances, but the latter are closer to the correct variances;

the differences between the two variances can be shown to be
∑K

k=1 gt,k d2
t,k −

(∑K
k=1 gt,k dt,k

)2
,

t = 0, 1, which are always positive. The bootstrap is another option for variance estimation. If the

propensity scores and the quantiles of the distributions of the propensity scores are estimated, the re-
sponsesDi within each stratum and between strata will not be independent because the stratification
is based on the estimated propensity scores, which are obtained from a common model (Du, 1998).
In our simulations, we adopt the bootstrap procedure ofTu and Zhou(2002) in this setting; the de-
tails are provided in Section A4 of the Appendix (supplementary material available at Biostatistics
online).
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3. SIMULATION STUDY

In this section, simulation studies are used to compare the new method with existing approaches with
respect to bias and variance. From Section 2, the BG and MS methods require a parametric model for
D|(T, X), the IPW method requires a parametric model forV |(T, X), and the SP method requires both
models. Hence in the simulation studies, we consider four scenarios: (i) the models forD|(T, X) and
V |(T, X) are both correctly specified, (ii) the model forD|(T, X) is misspecified but the model for
V |(T, X) is correctly specified, (iii) the model forD|(T, X) is correctly specified but the model for
V |(T, X) is misspecified, and (iv) the models forD|(T, X) andV |(T, X) are both misspecified. In prac-
tice, it is often a challenge to correctly specify a model forD|(T, X). On the other hand, as addressed in
Alonzo and others(2003), it is often the case that the verification mechanism is well understood or can
be controlled by the investigators; hence, it is more likely that the model forV |(T, X) is correctly speci-
fied. Therefore, comparisons among the competing methods in scenarios (ii) and (iv) may be particularly
important.

As in Alonzo and others (2003), we consider the disease to arise from two underlying
continuous disease processes, which remain subclinical until some function of the processes exceeds
some threshold, at which point the disease becomes apparent. In particular, two independent random vari-
ablesZ1 ∼ N(0, 0.5) andZ2 ∼ N(0, 0.5) were generated, and the disease indicatorD was specified as
D = I [g(Z1, Z2) > r1]. Thus, by varyingg(Z1, Z2) one can consider different disease processes, and by
varyingr1 one can consider different disease prevalences.

The diagnostic test result was assumed to be determined by an underlying continuous latent variable
L that is related toD through Z1 and Z2: L = α1Z1 + β1Z2 + ε1, whereε1 ∼ N(0, 0.25) and is
independent ofZ1 andZ2. The binary test resultT was determined asT = I [L > r2], with the threshold
r2 determining the sensitivity and specificity of the test. Similarly, two covariates were chosen such that
they relate to the two separate components of the disease process:X1 = α2Z1+ε2 , and X2 = β2Z2+ε3,
whereε2 andε3 are independentN(0, 0.25) random variables (and also independent ofZ1, Z2, andε1).
By varyingα1, α2, β1, andβ2, one can vary the extent to which the test result and the covariates capture
the different components of the underlying disease process, as well as the correlations between the test
result and the covariates. The values also affect the discriminatory abilities ofT , X1, andX2 with respect
to D. Finally, the verification probabilityh(T, X1, X2) was chosen to be a specified function ofT , X1,
andX2 in keeping with the MAR assumption. In the following simulation studies, the PS method used 10
strata for classification.

(A) Models for D|(T, X) andV |(T, X) are both correctly specified.
Let g(Z1, Z2) = Z1 + Z2 andh(T, X1, X2) = δ1 + δ2T + (1 − δ1 − δ2) I [X1 > c1] I [X2 > c2],

where 06 δ1, δ2 < 1 andδ1 + δ2 < 1. A generalized linear model forD given T , X1, and X2 with
probit link is close to the true model (Alonzo and Pepe, 2005).

In this case, the verification probabilities are 1.0 for those subjects withT = 1, X1 > c1, andX2 >
c2; 1 − δ2 for those subjects withT = 0, X1 > c1, andX2 > c2; δ1 + δ2 for those subjects withT = 1
and eitherX1 < c1 or X2 < c2; andδ1 otherwise. Under the true model, the verification probabilities can
be estimated using a logistic regression withV as the response andT and I [X1 > c1] I [X2 > c2] as the
predictors.

The thresholdsr1 andr2 were chosen to make the disease prevalence 0.10 and the specificity 0.80,
respectively. We consider different values ofα1 andβ1 for T = I [α1Z1 + β1Z2 + ε1 > r2] and set
α2 = β2 = 1; we fix δ1 = 0.2, δ2 = 0.5, and choosec1 and c2 to be the 80th percentiles of the
distributions ofX1 andX2, respectively.

Table2 presents estimates of the disease prevalence, sensitivity, and specificity of the test across 1000
realizations of the simulation with a sample size of 1000. The mean asymptotic variance (averaged over
1000 realizations) and the simulation variances are also presented. The asymptotic variance for the PS
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Table 2. Mean estimated disease prevalence, sensitivity, and specificity (mean asymptotic variance,
simulation variance in10−4 units) from1000 realizations with different values ofα1 and β1 when the

sample size is1000. Models for disease and verification are correctlyspecified

(α1, β1)

Method (0.7, 0.7) (0.5, 0.5) (1, 0) (0,0)

Prevalence
True value 0.10 0.10 0.10 0.10
Full† 0.10 (0.90, 0.90) 0.10 (0.89, 0.82) 0.10 (0.90, 0.87) 0.10 (0.90, 0.90)
Naive 0.21 (4.80, 4.89) 0.20 (4.61, 4.35) 0.18 (4.42, 4.59) 0.12 (3.44, 3.29)
BG 0.10 (1.33, 1.40) 0.10 (1.51, 1.52) 0.10 (1.73, 1.84) 0.10 (2.34, 2.28)
MS 0.10 (1.33, 1.40) 0.10 (1.52, 1.52) 0.10 (1.74, 1.85) 0.10 (2.35, 2.28)
IPW 0.10 (1.44, 1.46) 0.10 (1.73, 1.63) 0.10 (2.13, 2.16) 0.10 (3.21, 3.16)
SP 0.10 (1.39, 1.44) 0.10 (1.61, 1.60) 0.10 (1.86, 1.93) 0.10 (2.56, 2.45)
PS 0.10 (1.47, 1.48) 0.10 (1.75, 1.67) 0.10 (2.16, 2.20) 0.10 (3.21, 3.16)

Sensitivity

True value 0.89 0.78 0.65 0.20
Full† 0.89 (9.8, 9.7) 0.78 (17.2, 17.4) 0.65 (22.7, 24.2) 0.20 (15.9, 16.6)
Naive 0.96 (5.2, 5.5) 0.91 (11.7, 12.7) 0.85 (21.5, 22.8) 0.40 (63.0, 66.7)
BG 0.89 (30.0, 36.0) 0.79 (46.5, 54.5) 0.65 (53.8, 63.2) 0.20 (24.4, 27.3)
MS 0.89 (30.5, 36.1) 0.79 (46.9, 54.5) 0.65 (54.2, 63.2) 0.20 (24.7, 27.3)
IPW 0.90 (34.7, 39.5) 0.80 (56.6, 65.1) 0.67 (69.4, 79.4) 0.21 (31.3, 34.9)
SP 0.89 (33.8, 39.8) 0.79 (51.4, 60.0) 0.65 (58.9, 68.3) 0.20 (25.9, 28.5)
PS 0.89 (34.9, 40.4) 0.79 (56.0, 65.1) 0.66 (67.7, 77.7) 0.20 (29.9, 33.2)

Specificity

True value 0.80 0.80 0.80 0.80
Full† 0.80 (1.77, 1.85) 0.80 (1.78, 1.68) 0.80 (1.78, 1.79) 0.80 (1.78, 1.77)
Naive 0.53 (9.11, 9.66) 0.53 (9.08, 8.78) 0.53 (9.06, 8.98) 0.54 (9.08, 9.64)
BG 0.80 (1.90, 2.01) 0.80 (1.89, 1.82) 0.80 (1.89, 1.87) 0.80 (1.88, 1.85)
MS 0.80 (1.90, 2.01) 0.80 (1.90, 1.82) 0.80 (1.90, 1.87) 0.80 (1.88, 1.85)
IPW 0.80 (1.94, 2.04) 0.80 (1.93, 1.90) 0.80 (1.94, 1.93) 0.80 (1.93, 1.88)
SP 0.80 (1.91, 2.02) 0.80 (1.91, 1.85) 0.80 (1.91, 1.88) 0.80 (1.89, 1.85)
PS 0.80 (1.95, 2.06) 0.80 (1.95, 1.92) 0.80 (1.96, 1.95) 0.80 (1.94,1.89)

†Estimator based on complete data.
BG, Begg and Greenes estimator; MS, Mean Score estimator; IPW, Inverse Probability Weighting estimator; SP, Semi-parametric
Efficient estimator; PS, Propensity Score Stratification estimator.

method was estimated using the asymptotic variance formula in Theorem 3, and for the existing methods
the asymptotic variances were estimated based on the methods suggested inAlonzo and Pepe(2005). For
comparison, the results for the simple estimators using the complete data (“Full”), that is with all cases
verified, are also presented. Results for all methods discussed are given in the rows, while results for the
different values of(α1, β1) considered are provided in the columns. From the simulation results, it is
clear that all of the methods except for the naive estimators perform very well if both parametric models
for D|(T, X) andV |(T, X) are correctly specified. The estimated variances from the asymptotic variance
formulae are very close to their corresponding simulation variances. The variances presented in the three
sections of the table indicate that the BG and MS estimators are typically more efficient than the SP, IPW,
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and PS estimators, in agreement withAlonzo and Pepe(2005). Similar results were obtained whenδ1 and
δ2 were varied.

(B) Only the model forD|(T, X) is misspecified.
Let g(Z1, Z2) = exp(Z1Z2), T = I [Z1Z2 + ε1 > r2] and leth(T, X1, X2) be defined as in (A).

Herer1 andr2 were chosen to make the disease prevalence 0.105 and the specificity 0.65, respectively. In
this case, if we use a generalized linear model forD given T , X1, andX2, with logit link, this model is
misspecified. As in (A), the verification probabilities are 1.0 for those subjects withT = 1, X1 > c1 and
X2 > c2; 1 − δ2 for those subjects withT = 0, X1 > c1, andX2 > c2; δ1 + δ2 for those subjects with
T = 1 and eitherX1 < c1 or X2 < c2; andδ1 otherwise. The verification probabilities can be reasonably
estimated using a logistic regression withV as the response andT and I [X1 > c1] I [X2 > c2] as the
predictors.

We fix α2 = β2 = 1, andδ1 = 0.05, but allowδ2 to have different values from 0 to 0.8. It should be
noted that small values of bothδ1 andδ2 indicate a strong dependence ofV on X1 andX2 (but not onT);
a small value ofδ1 but larger value ofδ2 indicates a stronger dependence ofV on T (but not onX1 and
X2) such that a greater number of subjects with a positive test will have their disease status verified; and
a large value ofδ1 indicates little dependence ofV on eitherT , X1 or X2. We consider the case where the
thresholdsc1 andc2 are the 80th percentiles of the distributions ofX1 andX2, respectively.

We compare the estimates of the disease prevalence, sensitivity, specificity, and their mean square
errors (MSEs) among the different methods. The MSE, estimated by summing the square of the bias
of the estimate and the simulation variance, serves as a summary index of overall performance. The
estimates of the disease prevalence, sensitivity, specificity, and their MSEs with varyingδ2 are presented
in Figures A1, A2, and A3 in the Appendix (supplementary material available at Biostatistics online)
when the thresholdsc1 andc2 are the 80th percentiles of the distributions ofX1 andX2, respectively. As
shown in Figures A1(a), A2(a), and A3(a) (supplementary material available at Biostatistics online), the
BG and MS estimators are noticeably biased. Although the SP approach requires a model for disease, it
still yields good estimates due to its “doubly robust” property. Since the verification model is correctly
specified, as expected, the IPW and PS methods yield good estimates. The MSEs presented in Figures
A1(b), A2(b), and A3(b) (supplementary material available at Biostatistics online) indicate that the BG
and MS estimators tend to have larger MSEs in most cases, mainly due to their larger bias. In terms of bias
and MSE, the PS, IPW, and SP methods are very comparable for estimating the disease prevalence and
sensitivity. This is not true for estimating specificity, as shown in Figure A3(b) (supplementary material
available at Biostatistics online) where the IPW estimator has a larger MSE than the other estimators.
Similar results hold whenδ2 is fixed butδ1 is varied when only the model forD|(T, X) is misspecified.

(C) Only the model forV |(T, X) is misspecified.
Let g(Z1, Z2), T , andh(T, X1, X2) be defined as in (A). As in (A), a generalized linear model forD

given T , X1, and X2 with probit link is considered as the true model. The verification probabilities are
estimated from a logistic regression model withV as the response andT and (continuous)X1 andX2 as
predictors. This model is clearly misspecified. We also fixα2 = β2 = 1 andδ1 = 0.05, andc1 andc2
are the 80th percentiles of the distributions ofX1 andX2, respectively. The value ofδ2 is also allowed to
range from 0 to 0.8.

We again compare the estimates of the disease prevalence, sensitivity, specificity, and their MSEs
among the competing methods. The estimates of the disease prevalence, sensitivity, specificity, and their
MSEs with varyingδ2 are presented in Figure1 and Figures A4 and A5 in the Appendix (supplementary
material available at Biostatistics online). As expected, the BG, MS, and SP estimators perform very well
in terms of bias and MSE. The IPW and PS estimators depend only on the model forV |(T, X) and are not
expected to perform as well in this case. The PS estimators perform much better than the IPW estimators
for estimating disease prevalence and specificity, but the IPW estimator is better than the PS estimator for
sensitivity.
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Fig. 1. Mean estimated sensitivity and specificity from 1000 realizations withδ1 = 0.05 when the sample size is 1000
andc1 andc2 are the 80th percentiles of the distributions ofX1 and X2. Only the model forV |(T, X) is misspec-
ified. BG, Begg and Greenes estimator; FULL, estimator based on complete data; MS, Mean Score estimator; IPW,
Inverse Probability Weighting estimator; SP, Semi-parametric Efficient estimator; PS, Propensity Score Stratification
estimator.

(D) Models forD|(T, X) andV |(T, X) are both misspecified.
Let g(Z1, Z2), T , andh(T, X1, X2) be defined as in (B). We again use a generalized linear model

for D given T , X1, andX2 with logit link; this model is misspecified. The verification probabilities are
estimated from a logistic regression model withV as the response andT and (continuous)X1 andX2 as
predictors. This model is also clearly misspecified. We also fixα2 = β2 = 1 andδ1 = 0.05. The value of
δ2 is allowed to range from 0 to 0.8. We again consider the case where the thresholdsc1 andc2 are fixed
to be the 80th percentiles of the distributions ofX1 andX2, respectively.

Figure2 and Figures A6 and A7 in the Appendix (supplementary material available at Biostatistics
online) present estimates of the disease prevalence, sensitivity, and specificity of the test and their MSEs
across 1000 realizations of the simulation with a sample size of 1000. As shown in Figures2 and A6(a)
(supplementary material available at Biostatistics online), the estimates derived from the PS method are
uniformly less biased than those for the other methods. Also, as shown in Figures A6(b) and A7 (supple-
mentary material available at Biostatistics online), the PS method has better overall performance in terms
of MSE. Although the SP method is doubly robust, it performs poorly when the disease and verification
models are both misspecified. The results presented here indicate that the proposed PS method is more
robust to model misspecification in this case. Similar results hold whenδ2 is fixed butδ1 is varied in this
situation.
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Fig. 2. Mean estimated sensitivity and specificity from 1000 realizations withδ1 = 0.05 when the sample size is 1000
andc1 andc2 are the 80th percentiles of the distributions ofX1 and X2. Both models forD|(T, X) andV |(T, X)
are misspecified. BG, Begg and Greenes estimator; FULL, estimator based on complete data; MS, Mean Score esti-
mator; IPW, Inverse Probability Weighting estimator; SP, Semi-parametric Efficient estimator; PS, Propensity Score
Stratification estimator.

Simulation results for all cases for a smaller sample size (n = 500) are presented in Table A1 and
Figures A8–A16 in the Appendix (supplementary material available at Biostatistics online). The relative
performance of the competing estimators is very similar to that forn = 1000.

4. STUDY OF DEPRESSION IN ELDERLY PRIMARY CARE PATIENTS

We illustrate our proposed methodology using data from a longitudinal study of depression in elderly
patients (age> 65) recruited from primary care practices in Monroe County, New York. At the intake eval-
uation, 708 patients underwent a comprehensive diagnostic assessment for depression using the Structured
Clinical Interview for DSM-IV (SCID), an intensive examiner-based assessment that can be considered as
a practical gold standard for this purpose (Spitzerand others, 1994). Depression was defined based on the
SCID as major or minor depression, actively symptomatic (i.e. either current or partially remitted); 249
patients were classified as having depression and 459 patients were classified as not having depression.
Other information collected as part of this study included the Hamilton Depression Rating Scale (HAM-
D), a 24-item observer-rated scale designed to measure the severity of depressive symptoms (Williams,
1988). In this example, the utility of the HAM-D as a screening marker for the diagnosis of depression will
be evaluated. The HAM-D takes approximately 15–20 min to administer compared to 1–3 h for the SCID.

Data for both the SCID and the HAM-D were collected from all participating patients in this study;
therefore, we used randomly selected subsets of these data that resemble data that would be obtained from
a two-phase design. In these subsets, HAM-D results are available for all patients, but SCID diagnoses
are available only for certain patients randomly selected according to the following mechanism:



44 H. HE AND M. P. MCDERMOTT

Pr(SCID available) = 0.15+ 0.50I [HAM-D > 7] + 0.35I [CIRS > 7]I [Age < 75], (4.1)

where the CIRS is the total score on the Cumulative Illness Rating Scale, a reliable and valid measure
of medical burden that quantifies the amount of pathology in each organ system (Linn and others, 1968).
Thus, the verification mechanism preferentially selects patients who have a HAM-D score> 7 or patients
under the age of 75 with a relatively high cumulative illness burden. Using this mechanism, approximately
46% of patients, on average, would be selected for SCID verification of the depression diagnosis.

We consider estimation of the sensitivity and specificity of the HAM-D> 7 for screening for
depression and treat age, gender, years of education, and CIRS total score as covariates (i.e.D =
SCID diagnosis, T = I [HAM-D > 7] and X = [age, gender, years of education, CIRS total score] in
terms of previous notation). Sensitivity and specificity were estimated using the naive, BG, MS, IPW, and
SP methods as well as the new method based on propensity score stratification (PS) with five strata. Since
the full data are available (in addition to the selected subsets), the estimators in the setting of verification
bias can be compared to the “full data” estimators, which are not subject to this bias.

The BG, MS, and SP estimators require a model for Pr(D|T, X). A logistic regression model was used
for this purpose assuming linear relationships between log odds of depression and age, years of education,
and CIRS total score. Although the true model in this case is not known, it is likely that there is some
degree of model misspecification present. The IPW and SP estimators require a model for Pr(V |T, X).
Again a logistic regression model was used for this purpose assuming linear relationships between log
odds of verification and age, years of education, and CIRS total score. According to the true verification
mechanism described above, this model for verification is clearly misspecified.

Table 3 presents estimates of the disease prevalence, sensitivity, and specificity of the HAM-D
averaged across 1000 simulated realizations of the process of selecting subsets of data from a two-phase
design. The means of bootstrap variances with 100 bootstrap replications are also presented in the table.
Since the true model for the verification probabilities is known, the estimates for the IPW, SP, and PS

Table 3. Mean estimated disease prevalence, sensitivity and specificity (mean bootstrap variance in10−3

units) across1000realizations in the depression study example

Estimation
Method Prevalence Sensitivity Specificity

Full† 0.35 0.82 0.69
Naive 0.48 (0.92) 0.95 (0.28) 0.36 (1.10)
BG 0.33 (0.65) 0.85 (1.81) 0.68 (0.67)
MS 0.33 (0.65) 0.85 (1.81) 0.68 (0.67)
IPW 0.33 (0.78) 0.84 (2.46) 0.69 (0.78)
IPW‡ 0.34 (0.87) 0.82 (2.40) 0.68 (0.73)
SP 0.33 (0.79) 0.84 (2.41) 0.68 (0.70)
SP‡ 0.35 (0.84) 0.82 (2.30) 0.68 (0.73)
PS 0.34 (0.68) 0.82 (2.06) 0.68 (0.67)

§(0.81) §(3.00) §(0.65)
PS‡ 0.34 (0.87) 0.82 (2.40) 0.68 (0.73)

§(0.82) §(3.10) §(0.65)

†Estimator based on complete data.
‡Pr(V |T, X) estimated using the true model (4.1).
§Variance for the PS estimator based on the asymptotic distribution (Theorem 3).
BG, Begg and Greenes estimator; MS, Mean Score estimator; IPW, Inverse Probability Weighting estimator; SP, Semi-parametric
Efficient estimator; PS, Propensity Score Stratification estimator.
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methods using the verification probabilities estimated from the true model are also presented for compar-
ison (indicated by ‡ in Table3). When the true model for verification is used, the IPW, SP, and PS yield
very good estimates, as expected. When the verification model is misspecified, the PS estimators yield
estimates that are very close to the full data estimates, although their variances are slightly larger than
those for the BG, MS, and SP estimators. The BG, MS, SP, and IPW estimators are slightly more biased.
As expected, the naive estimators are badly biased.

5. DISCUSSION

Existing methods for correcting verification bias require estimation of Pr(D|T, X), Pr(V |T, X), or both.
For cases in whichX is continuous or high dimensional, nonparametric estimation of these quanti-
ties is more challenging and parametric models are commonly used for this purpose. Misspecifica-
tion of these models can have an adverse impact on the performance of the existing estimators, as
was evident in our simulation studies.Alonzo and Pepe(2005) found that the SP estimator performed
well when only one of the models (disease or verification) was misspecified due to its doubly robust
property, but their studies, as well as ours, showed that it performed as poorly as the IPW estimator
when both models were misspecified. The BG and MS estimators seemed to perform better than the
SP and IPW methods in this case but still had significant bias. Our proposed PS estimator demon-
strated excellent robustness to misspecification of both models. The PS estimators will be most use-
ful in cases where the verification mechanism is unknown and the functional form of the relationship
betweenD and X is unclear. The PS estimators are not designed to be robust to model misspecifi-
cation due to omitted covariates, but our simulation study suggests that even in this case they per-
form well relative to competing methods. The robustness of the PS estimator comes at the price of
reduced efficiency when the models for disease and verification are correctly specified, as would be
expected.

When the probabilities of selection for verification are very small for some subjects, the IPW and SP
methods yield very unstable estimates of sensitivity and specificity, and the SP estimates may even fall out
of the [0, 1] range. By using wider intervals at the lower end of the propensity score scale for stratification,
the PS method will yield more stable estimates; however, in such cases, the bias may increase if the
variation in propensity scores within the stratum is large. On the other hand, the BG and MS methods
do not require specification of a model for verification, but rely on proper modeling of the relationship
between disease and the test results and covariates. Correct specification of this model may be difficult,
particularly in settings involving many covariates.

When using the PS method, the practitioner has to decide on the number of strata (K ) to form based
on the estimated propensity score. In the context of propensity score stratification,Rosenbaum and Rubin
(1984) demonstrated that using five strata would remove>90% of the bias due to the covariates in most
cases. In practice, between 5 and 10 strata are typically used, but it is difficult to recommend a rule-of-
thumb for the best choice in our context because it depends not only on the sample size but also on the
prevalence of the disease and on the number of verified cases. Our limited simulation studies indicate
that, as expected, there is a bias variance trade-off when having more strata (reduced bias but increased
variability) versus fewer strata (increased bias but reduced variability).

Variations on the PS estimator could be developed. For example, to estimate the integrals in (2.3),
we can estimateFt (e) nonparametrically using the empirical distribution function, and then estimate
E[D|T = t, V = 1, et (x) = e], t = 0, 1, using a generalized additive model (Hastie and Tibshirani,
1990). A special case of this, when the latter quantity is estimated using a generalized linear model, is
propensity score regression. Our investigation of this method showed that it lacked robustness because
it requires specification of a parametric model. The use of generalized additive models in this setting,
however, may be useful.
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SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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