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SUMMARY

Understanding conception probabilities is important not only for helping couples to achieve pregnancy
but also in identifying acute or chronic reproductive toxicants that affect the highly timed and interre-
lated processes underlying hormonal profiles, ovulation, libido, and conception during menstrual cycles.
Currently, 2 statistical approaches are available for estimating conception probabilities depending upon
the research question and extent of data collection during the menstrual cycle: a survival approach when
interested in modeling time-to-pregnancy (TTP) in relation to women or couples’ purported exposure(s),
or a hierarchical Bayesian approach when one is interested in modeling day-specific conception proba-
bilities during the estimated fertile window. We propose a biologically valid discrete survival model that
unifies the above 2 approaches while relaxing some assumptions that may not be consistent with human
reproduction or behavior. This approach combines both the survival and the hierarchical models allowing
investigators to obtain the distribution of TTP and day-specific probabilities during the fertile window in
a single model. Our model allows for the consideration of covariate effects at both the cycle and the daily
level while accounting for daily variation in conception. We conduct extensive simulations and utilize the
New York State Angler Prospective Pregnancy Cohort Study to illustrate our approach. We also provide
the code to implement the model in R software in the supplemental section of the supplementary material
available atBiostatisticsonline.
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1. INTRODUCTION

Fecundability is defined as the probability of recognized conception in a menstrual cycle among couples
having regular unprotected intercourse (Gini, 1924). It is used as a measure of a couple’s fecundity or
biologic capacity for reproduction. Motivated by the needs of natural family planners, and the research
and clinical communities desire to identify fecundity determinants or timing of medical intervention, 2
quantities of interest have emerged: the time-to-pregnancy (TTP) and the day-specific conception proba-
bilities in a given menstrual cycle for a couple.
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TTP is defined as the number of menstrual cycles it takes for a couple, having regular sexual inter-
course without the use of contraception, to conceive. It has been used as a measure to study the effect of
various exposures on fecundity, see, for instance,Baird and others(1986), Law and others(2005), and
Buck Louisand others(2009). Weinberg and Gladen(1986) first proposed a beta-geometric model for the
probability distribution of the TTP. Subsequently,Scheike and Jensen(1997) proposed a discrete survival
model for the hazard of conception in a cyclej given cycle level covariatesUi j , as

λi ( j |Ui j ) = 1 − exp(− exp(Ri + U ′
i j βββ)), (1.1)

where Ri denotes a subject-specific random effect. A particular feature of this model is that the haz-
ard is related linearly to the covariates when transformed by a complementary log–log function. This is
precisely the proportional hazards model with random effects for grouped data. TheScheike and Jensen
(1997) model allows for the inclusion of cycle-varying covariates but cannot incorporate the effects of the
day-level covariates, typically collected in prospective pregnancy studies. Due to the inherent biases and
recall errors in retrospectively ascertained TTPs (see, for instance,Weinbergand others, 1994a; Cooney
and others, 2009), the current emphasis is on prospectively designed studies where extensive information
is collected from a couple on various time scales including the woman level (e.g., previous reproductive
history), cycle level (e.g., biomarkers for stress), and daily level (e.g., intercourse behavior, various repro-
ductive hormonal levels, smoking, caffeine and alcohol consumption, and other lifestyle factors). Another
limitation of using (1.1) is that it does not account for “immaculate conception,” that is, the hazard for
conception in a cycle should be zero if no intercourse occurs.

A question of considerable interest, in the presence of detailed daily level information, is the proba-
bility of conception due to a single act of intercourse on a given day relative to ovulation. This is known
as the day-specific conception probability. This enables one to determine the “fertile window,” a quantity
of considerable interest to couples planning or trying to avoid pregnancy. The days outside of the “fer-
tile window” have a small chance of pregnancy. The estimation of day-specific conception probabilities is
complicated by the fact that it is unusual for a sexually active couple to have a single act of intercourse dur-
ing the fertile window. Additionally, only a proxy for ovulation is available as the gold standard requires
direct visualization of the ovaries via laparoscopic or ultrasonographic techniques that are available only
for women seeking medical or infertility treatment such asin vitro fertilization or intracytoplasmic sperm
injection. Consequently, differing precision exists in such identification.

The original seminal work ofBarrett and Marshall(1969) proposed

P(Conception in cyclej |X i j ) = 1 −
K∏

k=1

(1 − pk)
Xi jk ,

whereXi j = (Xi j 1, . . . , Xi j K ) denotes the indicator vector of intercourse in the fertile window andpk is
the day-specific probability of conception. The 2 main assumptions underlying this model are as follows.

(A1) Each day of intercourse has an independent effect (that is to say, each ejaculate of sperm acts inde-
pendently) to fertilize the ovum.

(A2) The daily probabilities of conception are constant across couples and cycles.

Since then, the literature has responded to the second assumption (A2) to a great extent starting with the
work of Schwartzand others(1980) who noted that conception is not only dependent on the timing of the
intercourse but also on several biological factors such as the penetrability of the mucus, the capacity of
the ovum to be fertilized and the receptivity of the uterine lining for implantation. This led to the model

P(Conception in cyclej |Xi j ) = ω

(

1 −
K∏

k=1

(1 − pk)
Xi jk

)

,
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whereω is the probability of a cycle being viable. Modifications of this model include theWeinberg
and others(1994c) model that accommodates cycle-specific covariates; theZhou and Weinberg(1996)
model that incorporates day-specific covariates; theZhouand others(1996) model that accounts for the
within-woman dependency; theDunson and Zhou(2000) model that incorporates both within-woman de-
pendency and a sterile fraction.Zhou and Weinberg(1996) proposed an expectation–maximization (EM)
algorithm for the maximum likelihood estimation of parameters and used a sandwich estimator of the
variance to adjust for within-woman dependency. However, their estimates of day-specific probabilities
are biased downward, and the sandwich estimator is not valid because less fertile women contribute more
cycles to the data. This class of models culminated in the work ofDunson and Stanford(2005), who
note the weak identifiability of the cycle viability termω. Consequently, they proposed a hierarchical
model

P(Conception in cyclej |X i j , Z i j , ξi ) = 1 −
K∏

k=1

(1 − pi jk )Xi jk , (1.2)

pi jk = 1 − exp(−ξi exp(Z′
i jk βββ)),

where ξi denotes a couple-specific random effect. Note that in this model, the effects of covariates
Z i j = (Zi j 1, . . . , Zi j K ) (possibly day-level) on the probability of conception in a menstrual cycle is
mediated only through the daily level probabilities of conception.

An assumption that is common to all day-specific models is (A1), namely that the ejaculates of sperm
introduced by the intercourse acts on different days compete with each other independently in an attempt
to fertilize the ovum. In particular, the independence assumption necessitates the relation

P(Ac
k|A

c
k−1, . . . , Ac

1; X1, . . . , XK ) = P(Ac
k|Xk), (1.3)

whereAk denotes the event that a sperm fromkth intercourse act fertilizes the ovum, andXk denotes the
indicator of intercourse occurring on thekth day of the cycle. This may not be a reasonable biological
assumption. Each intercourse act in the fertile window introduces a fresh ejaculate of sperm in the repro-
ductive tract that can potentially fertilize the ovum. It is well known in the clinical literature (van Duijn
and Freund, 1971; Tyler and others, 1985; Levin and others, 1986; Carlsenand others, 2004) that tremen-
dous inter- and intravariability exists in sperm quality ranging from azoospermic (absence of sperm) to
high-quality sperm. In fact, studies have shown that there is a 29.2% reduction in sperm concentration
when ejaculatory frequency went from one to two episodes during a 7-day period prior to semen collec-
tion following 2 days of abstinence. For 3 or more ejaculations, the level was reduced by about 41% as
compared to the one ejaculate group (Carlsenand others, 2004). Consequently, this implies that the num-
ber of sperm available for fertilization does not just vary from day to day (assuming one ejaculate per day)
but also depends on how many intercourse acts occurred previously (that is, on the previousXk’s). Sperm
concentration and number per ejaculate may affect the probability of conception. These data suggest that
(1.3) may not be reasonable. Although we focused on sperm concentration for the purpose of illustration,
a host of other semen characteristics, such as motility and morphology also impact conception probability
and are dependent upon previous intercourse pattern (Carlsenand others, 2004), supporting the need to
relax the independence assumption.

Royston and Ferreira(1999) proposed an alternative approach that does not require the independence
assumption in that they assume that in cycles with multiple intercourse acts only the most fertile one
contributes to the probability of conception. Although this may be a reasonable approximation in some
cases, sperm introduced on less optimal days in the fertile window can also compete to fertilize the ovum
and should not be ignored, as normal appearing sperm may survive up to 5 or 6 days in the female
reproductive tract.
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In this paper, we propose a model for the hazard for conception in a menstrual cycle that takes into
account the daily level intercourse acts appropriate for conception as well as the effects of covariates (daily,
cycle, or couple level). This enables us to assess the effect of covariates directly on the survival (hazard)
function for TTP. This model retains the ease of interpretation of the effects of covariates as in the discrete
Cox model, while still allowing us to assess the more subtle daily level probabilities of conception in a
cycle. Moreover, in our approach, we do not require the assumption of independence of acts of intercourse
in fertilizing the ovum within the same cycle inherent in the day-specific conception models. Under the
assumption (A1),Dunson(2003) has discussed assessing hazard based on day-specific models that predate
theDunson and Stanford(2005) model. In Section2, we present our model and discuss its relation with
existing models; in Section3, we provide extensive simulations; and in Section4, we show the application
of our model to a prospective pregnancy cohort study with preconception enrollment of women who were
followed through 12 menstrual cycles at risk for pregnancy.

2. MODEL FOR CONCEPTION

We begin by introducing some notation. LetTi denote the TTP for couplei, i = 1, 2, . . . , n. As is usual
in many time to event studies,Ti is subject to right censoring (τi ) and one observes{Ti ∧ τi , δi = I (Ti 6
τi )}, whereI (∙) denotes the indicator function. LetXi j = (Xi j 1, Xi j 2, . . . , Xi j K ) denote the intercourse
indicators in the fertile window ofj th cycle for thei th couple. Denote byUi j , the cycle-level covariates.
Further, denote byλi ( j ), the hazard rate for the TTP of thei th couple.

Let Cj be the event that the ovum is fertilized in thej th cycle, andAk be the event that a sperm from
thekth intercourse fertilizes the ovum. Note that the fertilization of an ovum normally requires a sperm
originating from one of the potential intercourse acts that the couple may have had in the fertile window.
ThenCj = ∪K

k=1Ak (disjoint union of events). So,

P(Cj |Xi j ) = P

(
K⋃

k=1

Ak|Xi j

)

= 1 − P

(
K⋂

k=1

Ac
k|Xi jk

)

.

Under the independence assumption (A1) of the eventsAk,

P(Cj |Xi j ) = 1 −
K⋂

k=1

(1 − P(Ak|Xi jk ))Xi jk .

To avoid requiring the independence assumption (A1), we mimic the mixing of ejaculates of sperm from
different intercourse acts in the reproductive tract of a woman by using an arbitrary linear combination of
intercourse acts in the fertile window. In other words, we weigh separately the intercourse acts on different
days so as to discriminate between an intercourse act occurring on dayk with that occurring on dayk′ in
the fertile window. These weights are estimated based on the observed sample. Furthermore, we propose
to directly model conception in cyclej , given that conception has not occurred so far, by

P(Cj |C
c
1, . . . , Cc

j −1, Xi j ,Ui j )

= P







⋃

16k6K :
Xi jk >0

Ak|C
c
1, . . . , Cc

j −1, Xi j







= 1 − exp

(

−I

(
K∑

k=1

Xi jk > 0

)

exp(Ri + ρ( j ) +
K∑

k=1

αk Xi jk + U ′
i j βββ)

)

.
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Observe thatP(Cj |Cc
1, . . . , Cc

j −1, Xi j ,Ui j ) is the hazard for conception in cyclej . In other words, we
propose the following discrete survival model for TTP:

λi ( j |Ri , Xi j ,Ui j )

= 1 − exp

(

−I

(
K∑

k=1

Xi jk > 0

)

exp

(

Ri + ρ( j ) +
K∑

k=1

αk Xi jk + U ′
i j βββ

))

. (2.4)

We assume that the random effects, exp(Ri ), follow a Gamma distribution with mean 1 and varianceη.
Observe that the proposed model corrects for “immaculate conception,” that is, the hazard for conception
in a cycle is zero if the couple does not have any intercourse in the fertile window of that cycle. The regres-
sion coefficientsαk capture the baselinekth day effect of intercourse on the probability of conception in
cycle j . The cycle-varying parameterρ( j ) denotes the cycle-specific baseline, a quantity of considerable
interest (Weinbergand others, 1994b). The regression coefficientsβββ capture the effect of the covariates
Ui j . Observe that if a couple had intercourse only on dayk, that is,Xi jk = 1, Xi jk ′ = 0, for k′ 6= k, then,
under the proposed model, the probability of conception in cyclej is given by

λ
(k)
i ( j |Ri , Xi jk = 1, Xi jk ′ = 0, k′ 6= k,Ui j )

= 1 − exp(− exp(Ri + ρ( j ) + αk + U ′
i j βββ)). (2.5)

This is the probability of conception in cyclej if the couple had intercourse only on a specific day
in the fertile window of cyclej . This is analogous to the day-specific probabilities of conception in
the day-specific models for conception. Consequently, we refer to it as thekth day-specific conditional
hazard of conception. Also, note that the effect of covariates onλ

(k)
i can be viewed as additive effects on

complementary log–log scale.
Furthermore, we can also estimate the effect of covariates directly on the probability for conception in

cycle j as follows:

P(Ti = j ) = λi ( j )
j −1∏

t=1

(1 − λi (t)).

Consequently, the probability mass function can be expressed as

P(Ti = j |Ri , Xi j , Ui j )

= exp



−
j −1∑

t=1

I

(
K∑

k=1

Xitk > 0

)

exp

(

Ri + ρ(t) +
K∑

k=1

αk Xitk + U ′
i t βββ

)



− exp



−
j∑

t=1

I

(
K∑

k=1

Xitk > 0

)

exp

(

Ri + ρ(t) +
K∑

k=1

αk Xitk + U ′
i t βββ

)

 .

This yields the survival function forTi as follows:

Si ( j |Ri , Xi j , Ui j )

= exp



−
j∑

t=1

I

(
K∑

k=1

Xitk > 0

)

exp

(

Ri + ρ(t) +
K∑

k=1

αk Xitk + U ′
i t βββ

)

 . (2.6)

Consequently, using the proposed model (2.4), one can model the day-level hazard for conception via (2.5)
as well as model the effects of covariates on the survival function (2.6) in the same model. Also interesting
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to note is the constant ratio of log survival functions for the time-independent covariates (assuming equal
time-dependent covariates).

Similar toScheike and Jensen(1997), the marginal forms (with respect to random effectRi ) for the
probability of conception in cyclej and the hazard for conception in cyclej can be expressed as

P(Ti = j ) =






1

η
j −1∑

t=1
I

(
K∑

k=1
Xitk > 0

)
exp

(
ρ(t) +

K∑

k=1
αk Xitk + U ′

i t βββ

)
+ 1






1/η

−






1

η
j∑

t=1
I

(
K∑

k=1
Xitk > 0

)
exp

(
ρ(t) +

K∑

k=1
αk Xitk + U ′

i t βββ

)
+ 1






1/η

.

Under the assumption of a Gamma distribution for exp(Ri ) with mean 1 and varianceη, the hazard rate
λi ( j ) = P(Ti = j |Ti > j ) is given by

λi ( j ) = 1 −






η
j −1∑

t=1
I

(
K∑

k=1
Xitk > 0

)
exp

(
ρ(t) +

K∑

k=1
αk Xitk + U ′

i t βββ

)
+ 1

η
j∑

t=1
I

(
K∑

k=1
Xitk > 0

)
exp

(
ρ(t) +

K∑

k=1
αk Xitk + U ′

i t βββ

)
+ 1






1/η

.

Thus, the marginalkth day-specific conditional probability of conception in cyclej is given by

λ
(k)
i ( j ) = 1 −






η
j −1∑

t=1
exp(ρ(t) + αk + U ′

i t βββ) + 1

η
j∑

t=1
exp(ρ(t) + αk + U ′

i t βββ) + 1






1/η

.

Most prospective pregnancy studies design data collection to include the use of daily diaries to ascertain
daily level covariates such as menstruation and sexual intercourse and, possibly, factors purported to
impact couple fecundity (e.g., cigarette smoking, alcohol, and caffeine consumption). One can also estimate
the effect of such covariates in the model by viewing them as a vectorZ i j = (Zi j 1, . . . , Zi j L ), the num-
ber of daysL of interest need not be the same as the fertile window. One can incorporate the daily-level
covariate into the model as follows:

λi ( j |Ri , Xi jk ,Ui j , Zi jl ) = 1 − exp

(

−I

(
K∑

k=1

Xi jk > 0

)

exp(Ri + ρ( j )

+
K∑

k=1

αk Xi jk + U ′
i j βββ +

L∑

l=1

γl Zi jl )

)

. (2.7)

The observed likelihood for the discrete survival model (2.4) is similar to that of binary data with probabil-
ity of successλi ( j ). However, this is different from theDunson and Stanford(2005) approach, where they
pose the problem in terms of binary outcomes and model the covariate effects only through day-specific
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probabilities (1.2) coupled with the independence assumption (A1). Additionally, one cannot incorporate
the cycle-varying interceptρ( j ) in (1.2) due to lack of identifiability with day-varying baseline intercept,
αk. As mentioned previously, the effectρ( j ) may be important in these prospective pregnancy studies.

To summarize, our model unifies the 2 approaches for modeling fecundability: TTP approach and
day-specific approach while (i) accounting for the couple-level heterogeneity through the random effect,
(ii) accounting for the cycle-level baseline effectρ( j ), (iii) assessing day-level covariates directly on
the cycle-level probability of conception rather than through day-specific probabilities of conception,
(iv) while not requiring the independence of sperm fertilizing assumption (A1). The proposed discrete
survival model can be fitted using a likelihood-based approach. We include the code to implement it using
R software in the Supplementary Section of the supplementary material available atBiostatisticsonline.

3. NUMERICAL STUDY

The goal of this section is to investigate the performance of the estimates using a likelihood-based
approach. We also investigated the effect of zero-risk sets on estimation. Here, “zero-risk” indicates that a
couple did not have an intercourse acts during the fertile window of a cycle and, consequently, did not put
themselves at risk for conception. Observe that this unique requirement of an intermediate event is one of
the features that sets the TTP data apart from the classical discrete survival setup. A common practice of
incorporating intercourse into the discrete survival setup is to summarize the number of intercourse acts in
the fertile window and include it as a cycle-varying covariate. Obviously, this practice ignores the effect
of zero-risk sets on hazard. So, the simulation study focuses on the performance of the proposed estimates
and also studies the impact of ignoring zero-risk sets.

We generated the data as follows: for subjecti , the frailty variable exp(Ri ) was generated from
a gamma distribution with mean 1 and varianceη, the day-level intercourse behavior were generated
such thatXi jk = 0/1 with probability of one as 0.6 for allk = 1, . . . , 6, j = 1, . . . , 12, and the covariates
Ui = (Ui 1,Ui 2) were generated such thatUi 1 = 0/1 variable with probability of one as 0.5 each and
Ui 2 ∼ N(0, 1). Subjects who had not experienced an event atj = 12 were censored. Note that in this
setup, we have incorporated approximately 8% zero-risk sets which is close to the percentage encountered
in the real data analysis in the next section.

Tables1 and2 present the performance of the likelihood-based estimators accounting for the zero-
risk sets as introduced in (2.4) or ignoring its effect. We made the comparison at various sample sizes
ranging fromn = 100, 200, 500 to evenn = 1000 motivated by some recently completed prospective
pregnancy studies, for example, the Life Study, the Oxford Conception Study. The censoring percentage
was also varied from 10% to 30%. The results presented are based on 1000 replicates. The column bias
refers to the average of the difference between the estimated value of the parameter and the true value,
the Avg(SE) refers to the average of the asymptotic standard deviation (calculated using the estimated
observed fisher information), SE(est) refers to the standard deviation of the estimates and CP refers to the
coverage probability for a 95% confidence interval.

Observe that the bias of the estimates of the regression coefficients for the zero-risk set corrected
model are reasonably small even for small sample size, and their performance improves considerably as
n increases. Furthermore, the estimated standard deviation gets closer to the sampling standard deviation
with the sample size. The coverage probability for the estimates are close to the nominal 95% and become
closer as the sample size increases. However, the considerable bias in estimates of theαk’s when the
zero-risk sets are ignored causes the coverage probabilities to be much lower than the nominal value. In
addition, the estimates ofβ andη have higher bias and standard error when zero-risk sets are ignored for
both settings and alln. Overall, the estimates for the corrected model perform very well even for small
sample size. We further observe that the coverage probability for the 95% confidence interval for the
variance of the random effect was lower than that for other parameters forn = 100. However, it becomes
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Table 1. Summary of the simulation study with 10% censoring,β1 = −1, β2 = 0.5, ααα = (0.1, 0.2,
0.2, 0.3, 0.4, 0.1), andη = 0.5

Corrected for zero-risk periods Not corrected for zero-riskperiods

Variable Bias Avg(SE) SE(est) CP Bias Avg(SE) SE(est) CP

n = 100

β1 −0.01 0.30 0.32 0.942 0.00 0.30 0.32 0.937
β2 0.01 0.16 0.16 0.944 0.01 0.16 0.16 0.938
α1 0.00 0.25 0.25 0.950 0.17 0.25 0.25 0.884
α2 0.00 0.25 0.26 0.952 0.17 0.25 0.26 0.877
α3 0.00 0.25 0.26 0.940 0.17 0.25 0.26 0.892
α4 0.01 0.25 0.25 0.954 0.18 0.25 0.25 0.889
α5 0.01 0.25 0.26 0.955 0.19 0.25 0.26 0.867
α6 −0.01 0.25 0.25 0.949 0.16 0.25 0.25 0.898
η −0.02 0.21 0.23 0.910 −0.03 0.21 0.23 0.909

n = 200

β1 −0.01 0.21 0.22 0.950 0.01 0.21 0.21 0.954
β2 0.01 0.11 0.11 0.946 0.00 0.11 0.11 0.950
α1 0.00 0.18 0.18 0.945 0.17 0.17 0.18 0.820
α2 −0.01 0.17 0.18 0.948 0.16 0.17 0.18 0.855
α3 0.00 0.17 0.18 0.956 0.17 0.17 0.18 0.817
α4 0.00 0.17 0.18 0.937 0.17 0.17 0.18 0.833
α5 0.01 0.17 0.18 0.949 0.19 0.17 0.18 0.800
α6 0.00 0.18 0.17 0.955 0.16 0.17 0.18 0.842
η −0.01 0.15 0.15 0.931 −0.02 0.15 0.15 0.935

n = 500

β1 −0.01 0.13 0.14 0.946 0.01 0.13 0.14 0.948
β2 0.00 0.07 0.07 0.958 0.00 0.07 0.07 0.958
α1 0.00 0.11 0.11 0.961 0.16 0.11 0.11 0.699
α2 0.00 0.11 0.11 0.939 0.17 0.11 0.11 0.661
α3 0.00 0.11 0.11 0.944 0.16 0.11 0.11 0.679
α4 0.00 0.11 0.11 0.944 0.17 0.11 0.11 0.639
α5 −0.01 0.11 0.11 0.948 0.17 0.11 0.11 0.666
α6 −0.01 0.11 0.11 0.945 0.15 0.11 0.11 0.696
η 0.00 0.09 0.10 0.948 −0.01 0.09 0.10 0.940

n = 1000

β1 −0.01 0.09 0.09 0.949 0.01 0.09 0.09 0.948
β2 0.00 0.05 0.05 0.967 −0.01 0.05 0.05 0.959
α1 0.00 0.08 0.08 0.936 0.16 0.08 0.08 0.456
α2 0.00 0.08 0.07 0.955 0.16 0.08 0.07 0.411
α3 0.00 0.08 0.08 0.951 0.16 0.08 0.08 0.438
α4 0.00 0.08 0.08 0.950 0.16 0.08 0.08 0.420
α5 0.01 0.08 0.07 0.959 0.18 0.08 0.07 0.342
α6 0.00 0.08 0.08 0.953 0.16 0.08 0.08 0.451
η 0.00 0.07 0.07 0.950 0.00 0.07 0.07 0.948

Avg(SE), the average of the asymptotic standard deviation; SE(est), the standard deviation of the estimates and CP, the coverage
probability for a 95% confidence interval.
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Table 2. Summary of the simulation study with 30% censoring,β = −1, ααα = (0.1, 0.2, 0.2, 0.3, 0.4, 0.1),
andη = 0.5

Corrected for zero-risk periods Not corrected for zero-riskperiods

Variable Bias Avg(SE) SE(est) CP Bias Avg(SE) SE(est)CP

n = 100

β1 −0.01 0.32 0.33 0.947 -0.01 0.32 0.33 0.949
β2 0.01 0.16 0.17 0.944 0.01 0.16 0.17 0.946
α1 −0.01 0.27 0.27 0.953 0.12 0.27 0.27 0.927
α2 −0.01 0.27 0.28 0.954 0.12 0.26 0.28 0.913
α3 0.00 0.27 0.27 0.950 0.14 0.26 0.26 0.927
α4 0.01 0.26 0.27 0.947 0.15 0.26 0.27 0.905
α5 0.01 0.26 0.25 0.963 0.15 0.26 0.25 0.915
α6 −0.01 0.27 0.27 0.957 0.12 0.27 0.27 0.918
η −0.02 0.31 0.34 0.900 −0.01 0.32 0.34 0.899

n = 200

β1 0.00 0.22 0.23 0.947 0.00 0.22 0.23 0.944
β2 0.01 0.11 0.12 0.933 0.01 0.11 0.12 0.937
α1 0.00 0.19 0.18 0.957 0.13 0.19 0.18 0.907
α2 0.00 0.19 0.18 0.961 0.13 0.18 0.18 0.886
α3 0.01 0.18 0.19 0.934 0.14 0.18 0.19 0.867
α4 0.00 0.18 0.19 0.945 0.14 0.18 0.19 0.876
α5 0.01 0.18 0.18 0.959 0.15 0.18 0.18 0.853
α6 0.00 0.19 0.18 0.956 0.13 0.19 0.18 0.889
η −0.02 0.22 0.23 0.935 −0.02 0.22 0.23 0.934

n = 500

β1 0.00 0.14 0.15 0.935 0.00 0.14 0.15 0.935
β2 0.00 0.07 0.07 0.959 0.00 0.07 0.07 0.955
α1 0.00 0.12 0.12 0.958 0.13 0.12 0.12 0.786
α2 −0.01 0.12 0.11 0.965 0.12 0.12 0.11 0.808
α3 −0.01 0.12 0.12 0.949 0.13 0.12 0.12 0.797
α4 0.01 0.12 0.12 0.948 0.15 0.11 0.12 0.735
α5 0.00 0.11 0.12 0.948 0.14 0.11 0.12 0.751
α6 −0.01 0.12 0.12 0.948 0.12 0.12 0.12 0.795
η 0.00 0.14 0.14 0.954 0.00 0.14 0.14 0.952

n = 1000

β1 0.00 0.10 0.10 0.951 0.00 0.10 0.10 0.950
β2 0.00 0.05 0.05 0.965 0.00 0.05 0.05 0.964
α1 0.00 0.08 0.08 0.956 0.13 0.08 0.08 0.659
α2 0.00 0.08 0.08 0.943 0.13 0.08 0.08 0.622
α3 0.00 0.08 0.08 0.944 0.13 0.08 0.08 0.608
α4 0.00 0.08 0.08 0.950 0.13 0.08 0.08 0.621
α5 0.00 0.08 0.08 0.949 0.15 0.08 0.08 0.566
α6 0.00 0.08 0.08 0.945 0.13 0.08 0.08 0.646
η 0.00 0.10 0.10 0.943 0.00 0.10 0.10 0.948

Avg(SE), the average of the asymptotic standard deviation; SE(est), the standard deviation of the estimates and
CP, the coverage probability for a 95% confidence interval.
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much closer to the nominal level of 95% as the sample size increases fromn = 200 ton = 500 and
n = 1000.

We next present our analysis of New York State Angler Prospective Pregnancy Cohort Study.

4. ANALYSIS OF NEW YORK ANGLER PROSPECTIVE PREGNANCY COHORT STUDY

We illustrate our proposed method by analyzing the New York State Angler Prospective Pregnancy Cohort
Study (Buck Louisand others, 2009). This prospective cohort study recruited women aged 20 to 34 years
from 16 counties surrounding Lakes Erie and Ontario who were discontinuing contraception for the pur-
poses of becoming pregnant. Women were followed until a human chorionic gonadotropin detected preg-
nancy was observed or up to 12 menstrual cycles at risk for pregnancy. A nice feature of this study is the
follow-up time of 12 “at-risk” menstrual cycles, which is much longer than the 6 cycle follow-up of most
other studies, seeBuck and others(2004). Note that clinically a couple is eligible for infertility treat-
ment if they do not conceive by 12 menstrual cycles. Among the 113 women recruited, 14 were pregnant
at baseline and, thereby, excluded. Eighty-three (84%) women completed daily diaries on menstruation,
sexual intercourse, home pregnancy test results and covariates believed to impact female fecundity. Given
the absence of a proxy biomarker for ovulation in the study, we utilized the Ogino-Knaus method for
estimating ovulation by counting back 14 days from the end of the cycle (Knaus, 1929; Ogino, 1930).
A priori, the fertile window was defined as comprising eight days before ovulation through three days
after ovulation (Buck Louisand others, 2009). In our analysis, we will focus on the following covariates,
namely, female age (years) upon enrollment, parity (yes/no), cigarette smoking (yes/no) during cycle. We
fitted the model

λi ( j ) = 1 − exp



−I




3∑

k=−8

Xi jk > 0



 exp



Ri + ρ( j ) +
3∑

k=−8

αk Xi jk + U ′
i j βββ







 ,

whereUi j = (Parityi , Agei , Smokei j ). Here, we have assumed that exp(Ri ) follows a Gamma distribution
with mean 1 and varianceη. The estimates, standard errors and 95% confidence intervals for the effect of
Parity, Age, Smoking and the day-level intercourse behavior are given in Table3.

Table 3. Estimates from the proposed models of the New York State Angler Prospective Pregnancy Cohort
Study

Variable Estimate SE 95%CI

Parity 1.235 0.424 (0.404, 2.065)
Age 0.237 0.174 (−0.105, 0.578)
Smoke −1.079 0.454 (−1.969,−0.189)
α−8 −0.611 0.381 (−1.357, 0.136)
α−7 0.403 0.336 (−0.256, 1.062)
α−6 0.348 0.337 (−0.314, 1.009)
α−5 0.393 0.329 (−0.252, 1.039)
α−4 1.088 0.331 (0.439, 1.737)
α−3 0.511 0.300 (−0.077, 1.099)
α−2 −0.285 0.323 (−0.918, 0.347)
α−1 −0.375 0.333 (−1.027, 0.277)
α0 −0.356 0.336 (−1.014, 0.302)
α+1 −0.497 0.329 (−1.143, 0.148)
α+2 0.404 0.304 (−0.193, 1.000)
α+3 −0.477 0.335 (−1.134, 0.181)
η 0.132 0.374 (−0.601,0.866)
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Fig. 1. Plot ofλ(k)( j ) for the New York State Angler Prospective Pregnancy Cohort Study for an average-age non-
smoking couple by parity for (a) cycle 1, (b) cycle 2, (c) cycle 3, and (d) cycle 4.

In Figure1, we present the conditional day-specific probabilities of conception in cyclej for a non-
smoking woman aged 30 years (the mean), and with parity= 1 versus 0. Note that the Figure 1(a)
indicates the probability of conception in the first cycle given that the couple had intercourse on a specific
day (k = −8, ∙ ∙ ∙ , +3) in the fertile window. Figure 1(b) indicates the probability of conception in the
second cycle given that the couple had intercourse only on a specific day in the fertile window and had not
conceived in the first cycle, (c) and (d) denote these probabilities given that the couple had not conceived
by the second and third cycles, respectively. These plots do indicate that parity significantly increases the
conception probabilities at the daily-level. Also, the graphs do indicate considerable measurement error
associated with identifying the day of ovulation by the Ogino-Knauss method, which is consistent with
findings of using other proxies of ovulation with similar measurement errors. This is acknowledged in the
reproductive literature, seeLynchand others(2006) for a summary.

Figure2 displays the effect of parity on the TTP survival distribution for a nonsmoking woman aged
30 years with parity= 1 versus 0 and having intercourse on days−4 through 2. Here, it is clear that the
parity significantly reduces the TTP, where the estimated median TTP reduces from 11 to 3 cycles.
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Fig. 2. Plot ofŜ(t) for the New York State Angler Prospective Pregnancy Cohort Study by parity.

Finally, we also assessed the model fit based upon a comparison with (i) model with no information
concerning intercourse (ii) model with just accounting for total number of intercourse in the fertile win-
dow and ignoring the issue of “zero-risk” set as is the common practice (iii) proposed model incorporating
the day-specific intercourse behavior in the fertile window. The Akaike information criterion for models
(i–iii) were 355.17, 348.42, and 344.78, respectively. Thus, indicating improved model fit when account-
ing for daily intercourse pattern.

5. DISCUSSION

We have proposed a unified approach for modeling fecundity, combining the discrete survival model for
TTP and modeling the day-specific probabilities of conception while relaxing the sperm independence
assumption. This unified approach is biologically plausible and provides an accessible method to ascer-
tain the effects of covariates directly on the hazard for conception in a cycle. The day-specific conditional
probabilities of conception have a practical interpretation for couples who have not yet conceived with
regard to their chances in the next cycle, given their current pattern of intercourse behavior. In fact, this
approach may be desirable when a prospective pregnancy study does not have daily level hormonal mea-
surements either due to the burden on the subjects or the cost involved in obtaining such information.
In such situations, the “fertile window” may be identified with considerable measurement error. Conse-
quently, studying the effects of covariates through the day-level probabilities of conception approach of
the hierarchical models may not be the best strategy. We also have illustrated the performance of the pro-
posed likelihood-based estimates in the Angler study. Our findings are indicative of measurement error in
specifying the day of ovulation, given the absence of a proxy biomarker in this cohort study. This lim-
itation underscores the importance of cautious interpretation of the estimated day-specific probabilities
of conception for this prospective cohort study. To this end, our findings await corroboration from future
cohort studies such as the recently completed National Institute of Child Health and Human Development
LIFE Study that utilized reliable proxies of ovulation for better-fit models.

An advantage of our approach is that it allows modeling TTP using conventional methods such as the
proportional odds or discrete Cox models while accounting for day-level intercourse and other covariates
to ensure biologically plausible models for estimation. Our approach also provides a context for assessing
the sterile fraction in the context of the so-called “cure fraction.” Finally, another aspect of considerable
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interest is to assess how the biologically meaningful relaxation of assumption (A1) translates quantita-
tively. Note, theDunson and Stanford(2005) model works under the independence assumption (A1),
while our model does not have this requirement. An interesting problem to consider in future is to develop
a model to account for various dependence structures and use the model that gives the best fit.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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