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SUMMARY
Semiparametric transformation models provide a very general framework for studying the effects of (pos-
sibly time-dependent) covariates on survival time and recurrent event times. Assessing the adequacy of
these models is an important task because model misspecification affects the validity of inference and the
accuracy of prediction. In this paper, we introduce appropriate time-dependent residuals for these mod-
els and consider the cumulative sums of the residuals. Under the assumed model, the cumulative sum
processes converge weakly to zero-mean Gaussian processes whose distributions can be approximated
through Monte Carlo simulation. These results enable one to assess, both graphically and numerically,
how unusual the observed residual patterns are in reference to their null distributions. The residual pat-
terns can also be used to determine the nature of model misspecification. Extensive simulation studies
demonstrate that the proposed methods perform well in practical situations. Three medical studies are
provided for illustrations.

Keywords Goodness of fit; Martingale residuals; Model checking; Model misspecification; Model selection;
Recurrent events; Survival data; Time-dependent covariate.

1. INTRODUCTION

The proportional hazards mod€ld@x, 1972 is commonly used in the analysis of survival time and related
data. The proportional hazards assumption may be violated in practice, and other models may provide
more precise or more parsimonious summarization of data. The class of transformation models is a broad
generalization of the proportional hazards model to allow various nonproportional hazards structures,
such as proportional oddBénnetf 1983 Pettitt 1984). This generalization can substantially enhance the
validity of inference and the accuracy of prediction. Transformation models have received tremendous
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recent attention (e.dhengand others 1995 1997 Murphy and others 1997 Scharfsteirand others
1998 Caiand others2002 Chenand others2002 Tsodikoy 2003 Kosorokand others2004 Lu and
Ying, 2004 Lu and Tsiatis2006 Zeng and Lin2006 2007).

The class of linear transformation models relates an unknown transformation of the survival time
linearly to ap-vector of covariateX:

H(T) = —8"X +e¢, (1.1

where H(-) is an unspecified increasing functiofi,is a set of unknown regression parameters, and
€ is a random error with a parametric distributioDaprowska and Doksunl988 Kalbfleisch and
Prentice 2002 p. 241). Although it generalizes the proportional hazards model to nonproportional haz-
ards models, this class of models can only handle survival time (i.e. single event) with time-independent
covariates.

To accommodate time-dependent covariates and recurrent events, we use the countind\gtoress
to denote the number of events the subject has experienced by &énmtkallowX to be a function ot.
We then specify that the cumulative intensity function fof(t) conditional on{X(s); s < t} takes the
form

t
AIX) =G {/0 Y*(s)e? X dA(s)], (1.2)

whereG is a strictly increasing functiony* () is an indicator process, antl(-) is an unspecified in-
creasing function4eng and Lin 2009. For survival datay*(t) = I (T > t), wherel (-) is the in-
dicator function; for recurrent event¥,*(-) = 1. We consider the class of Box—Cox transformations
GXX) = {(1+x)*» —1}/p (p = 0) with p = 0 corresponding t&(x) = log(1 + x) and the class of
logarithmic transformation&(x) = log(1 + rx)/r (r > 0) with r = 0 corresponding t&(x) = X.
The choice ofG(X) = X (p = 1; respectively = 0) yields the proportional hazards model for sur-
vival data and the proportional intensity modéh@ersen and GiJl1982 Kalbfleisch and Prentice 2002
Section 9.3) for recurrent events data; the choic& of) = log(1 + x) (p = O; respectively = 1) yields
the proportional odds model. Various choiceg@ndr are considered in this paper, but we are not trying
to estimate the values of these parameter.*If-) has a single jump at the survival tifleand X is time
independent, therl(2) reduces to1.1).

For recurrent events1(2) implies that the occurrence of an event is independent of the prior event
history conditional on covariates. To remove this assumption, we consider the following class of transfor-
mation mean models

t
Jx(®) = G [ /0 X6 d#(S)] , (1.3)

whereux(t) = E{N*(t)|X(s): s < t} and u () is an unspecified increasing functionir{ and others
2001). This is a class of marginal models that formulates the effects of covariates on the mean function
of the recurrent event process while leaving the dependence structure completely unspecified. The choice
of G(X) = x yields the proportional means mod¢lirf and others 2000. We also consider the class
of random-effect transformation modeds(t| X, &) = fG{fg ef X dA(s)}, where A(t|X, ¢) is the
cumulative intensity function foN*(t) conditional on{X(s); s < t} and¢, and¢ is a random variable
with mean 1 characterizing the dependerngeng and Lin2007). This model is a special case of model
(2.3 in that the mean function dfl*(-) induced by it satisfies equatioh.).

The classes of semiparametric transformation models as showr®jratd (L.3) require specification
of the following components: (i) the functional forms of individual covariates; (ii) the link function, that is,
the exponential regression function; (iii) the proportionality structure, that is, the multiplicative effect of
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the regression function within the transformation; and (iv) the transformation fun@tidhisspecifying

any of these components can result in erroneous inference and inaccurate prediction. Recent theoretical
and methodological advances in transformation models have heightened the importance of model assess-
ment and model selection.

In this paper, we introduce time-dependent residuals for semiparametric transformation models in the
form of (1.2) or (1.3) and use the cumulative sums of the residuals to construct graphical and numerical
procedures for model assessment. These methods can be used to assess specific model components as
well as the overall fit of the model. A similar approach was takerLloy and others(1993 for the
proportional hazards model with survival data and time-independent covariates. It is substantially more
challenging, both theoretically and numerically, to deal with nonproportional hazards models because of
the nonlinearity ofG(-) and the lack of an explicit expression for the estimatondf) or (). To aid
the selection of appropriate models, we explore the use of residual patterns in determining the nature of
model misspecification.

2. METHODS

Let C denote the censoring time, which is assumed to be independdtit(gf conditional onX(-). The
at-risk process i¥'(t) = Y*(t)I (C > t), and the observed counting processli@) = N*(t A C), where
a A b = min(a, b). The data consist af independent replicates N (t), Y (t), X(t);t € [0, 7]}, where
7 denotes the end point of the study.

We first focus on the class of models given h32), under which the intensity function fdx; (t)
is Y, (t) &7 O20G{ fy Yi(9) e Xi(s) dA(s)}, wherei(t) = A’(t). Here and in the seque(x) =
dg(x)/dx, and g”(x) = d?g(x)/dx2. The log-likelihood concerning parametefs and A(-) is
given by
n

T T t
[/ Iog/l(t)dNi(t)+/ IogG’{/ Yi(s)e/ﬂxi(s)dA(s)} dN; (t)
0 0 0

i=1

+/T BTXi () dNi () — G [/ Vi) o dA(t)H . (2.1)
0 0

Let # and A denote the nonparametric maximum likelihood estimators (NPMLEg)arid A based on
(2.1). The existence and asymptotic properties of the NPMLEs were establisdedgnand Lin(2006.
For the special case of the proportional hazards mag#leind A correspond to the maximum partial
likelihood estimator fops and theBreslow (1972 estimator forA.

Define

t
Mi(t; B, A) = Ni (t) — G {/0 Yi(s)eﬂTxi(s)dA(s)], i=1,...,n. (2.2)

When the assumed model holds aficand A are evaluated at their true values, thg's are zero-
mean martingales. Replacingyand A with their NPMLEsﬁ and A yields the martingale residuals
Mi (t; 3, A). Since they characterize the differences between the observed and model-predicted num-
bers of events, the martingale residuals are informative about model misspecification. One can plot these
residuals against certain coordinates (e.g. covariates or time) to check various model components (e.qg.
Fleming and Harringtan 991, pp. 163-178).

To develop more objective and more informative model-checking techniques, we study the cumulative
sums of martingale residuals over the covariate or time domain. To check the functional form of the effect
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of XD, the jth component of the covariate vectsér we consider the cumulative sum of residuals over
that covariate, that is,

. n t
W) =2 S [0 W) < 0 dM s . ),
i=170

where Xj; is the jth component oiX;. To check the link function and the transformation function, we
consider the cumulative sums of residuals over the linear predictor and the argument of the transformation
function

noot
Wt =237 [T @) < 0 dM s B, A)
i=170

and

n t u R
W (et =2y [ ( | Y@ 0 i < x) dM; (u; £, A),
= Jo 0
respectively. To check the proportionality assumptionXéP, we consider the score process
. n t A R
wit) = n—l/zz/0 %51 (U, B, Ay dMy (u; 3, ),
i=1

Where)~(ji (t, B, A) is the jth component of

G”( faYi(s) €% dA(s))
G'( [y Yi(s) &#%i(5) dA(s))

t
Xi(t, B, A) = % log A(t]Xi) = X (t) + /0 Y ()X (s) €8 X dA(s).

To assess the overall fit of the model, we consider the process
no ot
Wo(x, 1) =n~123" / (X (U) < %) dM; (U 4, A).
i=17/0

Note thatx is a p-vector inW, (X, t) and a scalar in all other processes. For vectaady, X < y means
that every component of is smaller than or equal to the corresponding componernt &ecauseA
changes its values at observed event times only, all above processes involve the values of time-dependent
covariates at observed event times only. For proceséé?sandwr()”, we may suppress the superscfipt
when we are interested in a specific covariate or when we wish to refer to the collection of the processes
over all j. We refer toW,(-) as the score process because it pertains to the score functipigAodersen
and others 1993 p. 103). In the special case of the proportional hazards model with time-independent
covariatesWe(x, 00), W (X, 00), Wp(t), andWy (X, t) reduce to the processes studiedliry and others
(1993, who provided intuitions for the use of such processes in model checking. Un@gtlie relation-
ship between the counting process and the argumeatddtermines the functional form &; therefore,
W (X, 1) is informative about the adequacy of the transformation function.

All the aforementioned processes are special cases of the multiparameter process

n t
Wh(x,t) =n~42 %" /o f1(Xi (); B, A1 (F2(Xi (); B, A) < x)dMi(u; B, A),
i=1

where f1 and f, are known smooth functions, ant] (t) = {X;(s): s < t}. We assume Conditions 1-4
of Zeng and Lin(2006 and impose a slightly stronger version of the first part of their Condition 2 by
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assuming that, with probability ¥ (-) is left-continuous with right limits, and there exist constaits
and K2 such thatX (-) is bounded byK; and its total variation is bounded l¢». We also assume that
there is at least one continuous covariateNinx, t) and W, (x, t); otherwise,W (x, t) and W, (X, t)
may not be centered at zero asymptotically at the discontinuous poirtdisfder these conditions and
model (L.2), we show in Section S.1 of the supplementary material (availatlBéatatisticsonline) that
Wi (X, t) converges weakly to a zero-mean Gaussian process in the metricl $@# x [0, 7]) and is
asymptotically equivalent to the following process

~ t -
Wh(X,t) = /n(Pn — Po) [/o f (X(u); X, Bo, Ao) M (u; Bo, Ao)
+ (Spo, SA0)|/;_0,1A0(P0h1(Y, X; X, t; fo, Ao), Poha(Y, X; -, X, t; fo, Ao))] ,

whereq is the dimension offo, f(X(t); X, 8, A) = f1(X(t); B, A)I (fa(X(t); B, A) < X), S, and Sy,

are, respectively, the score operators foand A at the true parameter valu€go, Ao), 15,4, is the
information operator atfo, Ao), Pn and Py are, respectively, the empirical measure and the distribution
under the true model,

hi(Y, X; X, t; B, A)
t u

=- / [f(>‘<<u);x,ﬂ,A)G”<A(Y,x;u)w(u)eﬂg““) / Y(s>X<s)eﬂ3X<s>dAo<s>} dAo(u)
0 0

-/ [P x, B, MGAY, X WYX () X] dAotw)
ha(Y, X; 0, X, t; B, A)
— Y () €fX® /Ot [f()‘((u); X, £, A)G" (ACY, X; U)Y () 0XW | (u > z))] dAo(u)
—1 (0 <D FX©): X, B, DY @) FXOG (AY, X; v),

and A(Y, X;t) = [3Y(s) %X dA(s). Here, we usef to denote/ f dQ for a given measurable
function f and measur®).
We use Monte Carlo simulation to evaluate the null distributiodgtx, t). Define

n t
Wa(x, t) =n~"2>" [ /0 fL(Xi (); B, AT (F2(Xi (u); B, A) < x)dMi(u; B, A) + s] Qi
i=1

where theQ’s (i = 1, ..., n) are independent standard normal random variables, ard'thare calcu-
lated in the following way. Let;, ..., tx be the distinct observed event times. We trgatnd the jump
sizes ofA(:) at (11, ..., tx) as the parameters. We calculate the score vector for these parameters for the
ith subject, denoted by, and the observed information matrix for these parameters, denotgd bgt
hin(X,t) = Paha(Y, X; X, t; ﬁ, A) and lethan (X, t) be ak-dimensional vector with theth component
being Paha(Y, X; ti, X, t; £, A). Then, S = IT173(h] (x,t), h],(x, 1))T. We show in Section S.2 of
the supplementary material (availableBastatisticsonline) that the conditional distribution &% (x, t)
given the observed dafa\; (1), Y; (1), Xi(t);t € [0,z],i = 1,...,n} has the same limiting distribu-
tion asWh (X, t). To approximate the null distribution &, (x, t), we simulate a number of realizations
from Wh (X, t) by repeatedly generating the normal random saniQig ..., Qn) while fixing the data
{Nj (), Yi(t), Xj(t);t € [0, z],i =1, ..., n}attheir observed values.
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The above results enable us to construct goodness-of-fit tests. For example, we can use the om-
nibus test statistic syp [Wo(x,1)| to assess the overall fit of the model and usex$wz(”(x, 00)|

or sup ¢ |Wéj)(x, t)| to evaluate the adequacy of the functional form)f). Likewise, we can use
sup, Wi (x, 00)| or sup ¢ IWi(x,t)] to check the link function and use s (x, co)| or sup

[Wke (X, )] to check the transformation function. In addition, we can usge |w§)(t)| to test the propor-
tionality assumption foX()). To calculate the value of a supremum test, we generate a large number,
say 1000, of realizations of the test statistic from its null distribution through the aforementioned Monte
Carlo procedure. We can also visually assess how unusual an observed residual process is by plotting it
against a few, say 20, realizations from the simulated process. The consistency of the supremum tests is
stated in the Appendix.

REMARK 2.1 If there is only a single covariate in the model, then the functional form of the covariate is
the same assumption as the link function. If the true model is proportional odds and the assumed model is
proportional hazards, then we may say that the proportional hazards assumption fails or that the transfor-
mation function is misspecified. Thus, testing functional forms of covariates is related to testing the link
function, and testing the proportionality assumption is related to testing the transformation function.

If a goodness-of-fit procedure reveals model misspecification, then the next step is to identify the
nature of the misspecification and to correct the misspecification. To this end, it is helpful to ascertain the
residual patterns under various forms of model misspecification. Figdisgplays the mean functions for
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Fig. 1. The mean functions of the cumulative sums of residdils, co) when the function form of the covariatée

is misspecified: (a) the true linear predicjolog X is misspecified ag1 X; (b) the true linear predictgf, X + y X2

is misspecified ag1 X; (c) the true linear predictgf; X + ﬁzxz +y X3 is misspecified ag1 X + ﬁ2x2; and (d) the

true linear predictoy | (X > 0.5) is misspecified ag; X. We setX to be uniforn{0, 1) andy = 1. The solid and

dashed curves correspond to the proportional hazards and proportional odds models, respectively. The trends remain
the same for other transformation models. The curves will look upside down ynder 1.
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the cumulative sums of residualé.(-, co) when the functional form of the covariate is misspecified in

a few hypothetical situations. The trends are the same for all transformation models. By comparing the
observed residual pattern with those of Figiy@ne may find a more appropriate functional form for a
covariate. Figur® shows the mean functions of the signed score processeWé’.E(.-) times the sign of

S1) under the Box—Cox and logarithmic transformations. When the observed curve is concave and above
zero, we should use a smallgy respectively, a largar; when the observed curve is convex and below
zero, we should use a larger respectively, a smaller. Figure3 shows the mean functions @, (-, co)

under the Box—Cox and logarithmic transformations. When the observed curve is convex at the beginning
and then becomes concave, we should use a smaltesspectively, a largar; when the observed curve

is concave at the beginning and then becomes convex, we should use @ |asggrectively, a smaller.

Figure2 applies to a specific component ¥f whereas Figur8 applies to the whole vector of in the
argument ofG.

REMARK 2.2 A faulty functional form of a covariate may manifest itself in the residual plot for a cor-
related covariate or the link function. Thus, all the proposed methods are checking the fit of the entire
model. Howeverw.) andWF(,” are most informative about the functional form and proportionality of
X, respectively, whiléM andW;, are most sensitive to misspecification of the link function and transfor-
mation function, respectively. We suggest the following strategy: for a given transformation model, apply

the proposed tests in the order\ag, W, Wp, Wy, andW,; if one of the tests is significant, determine
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Fig. 2. The mean functions of the signed score processes, thatis) times the sign ot@, underA(t|X) =
G(A(t) exp(fX)): (a) Box—Cox transformation witp = 2; (b) proportional hazardg (= 1; respectively = 0);
(c) proportional oddsy = O; respectively = 1); and (d) logarithmic transformation with= 2. In each panel, the
curves, as shown from top to bottom, pertain to the fitted modelsmith2, 1, and 0.5 and = 0.5, 1, and 2 in that
order. We seKX to be uniform (0,9) ang = —0.2.
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Fig. 3. The mean functions of the cumulative sums of residiés:, co) underA(t|X) = G(A(t) exp(8T X)): (a)
Box—Cox transformation witkh = 2; (b) proportional hazardsg (= 1; respectively = 0); (c) proportional odds
(p = 0; respectively = 1); and (d) logarithmic transformation with= 2. In each panel, the curves, as shown from
bottom to top before crossing, pertain to the fitted models with 2, 1, and 0.5 and = 0.5, 1, and 2 in that order.
We setX to be uniform (0,9) angg = 1.0.

the nature of model misspecification by examining the residual patterns and make appropriate correction;
repeat this process until gl values are greater than a threshold, say 0.05 or 0.10.

We now consider the class of transformation mean models giveh.3h Ve obtain a pseudo log-
likelihood function for g and u(-) from (2.1) by replacingA(-) with x(-). The resulting maximum
pseudo-likelihood estimators are denotedﬂo&nd,u() Define the residuals ad; (t; ﬁ ) = Nj(t) —

{fOY.(s)e/f Xi® dzi(s)},i = 1,...,n. Then, all the methods developed in this section can be
applied; see Section S.4 of the supplementary material (availafd®stiatisticsonline) for theoretical
justifications.

3. SMULATION STUDIES

Our first set of studies was aimed at assessing the type | error of the supremum tests. We generated
survival times from a special case of modélg): A(t|X) = G(t exp(—X1 + 0.2X2)), where X1 is

Bernoulli with 0.5 success rate, ant is a continuous variable that may be time independent or time
dependent. For the time-independent cageis the sum ofX; and a standard normal variable. For the
time-dependent cas¥p(t) = a+ (b+2) logt +0.5(t), wherea andb are standard normal ardt) is an
independent Gaussian process with mean 0 and variance 1. We also generated recurrent event times from
the random-effect transformation modal(t| X, &) = £G(t exp(— X1 + 0.2X5)), where¢ is a gamma
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random variable with mean 1 and standard deviation 0.5. We generated censoring times from the uniform
(1.5,5) distribution and set = 3. As shown in Supplementary Tables 1 and 2 of the supplementary
material (available aBiostatisticsonline), the supremum tests have adequate control of type | error when
there are more than 70 events for the case of time-independent covariates and more than 140 events
for the case of time-dependent covariates but tend to have inflated type | errors when there are fewer
events.

Because there are no other goodness-of-fit tests for transformation models, we compared the power
of the supremum tests against Wald tests in situations where the latter might be used. Wald tests are
asymptotically efficient against nested alternatives but are inappropriate for nonnested alternatives. To
illustrate this point, we compared the supremum tests to Wald tests in 2 simulation settings. In the first
setting, we generated survival times and recurrent event times from madegls) = G(t exp(0.4X —
0.1X?)) and A(t|X, &) = £G(t exp(0.4X — 0.1X?)), respectively, where& takes values 0-9 with the
same probability, and is the same as before. We generated censoring times from the un(i@on
distribution. In the second setting, the true functional fornXas exp3(X — 5)}/[1 + exp(3(X — 5)}]
andp = 3.5. In both settings, we performed the Wald test of the null hypothegis €f 0 under the model
A(t]X) = G(Ag(t) exp(f1X + f2X2)). As shown in Supplementary Tables 3 and 4 of the supplementary
material (available aBiostatisticsonline), the proposed supremum tests have reasonable power (relative
to the Wald test) in the first setting and is much more powerful than the Wald test in the second setting. For
the proportional odds model in the second setting, the power of the Wald test is 0.174, while the powers
of sup, [We(X, 00)| and sup ; [We(x, t)| are 0.825 and 0.841, respectively.

One can use the Wald statistic to detect nonproportionality in the form of an interaction between
covariate and time. Such a Wald test will be asymptotically efficient if the form of the interaction is
correctly specified but may have poor power if the form is incorrectly specified. To illustrate this point,
we considered 2 simulation settings. In the first setting, we generated survival times from the model
A(t|X) = G(fé exp(0.2X + 0.2X x log(s)) ds), whereX takes values 0-9 with the same probability, and
we generated censoring times from the unifai®n3) distribution. The second setting was the same as
the first except that\ (t| X = x) = G(fot exp(—0.1x — 0.5x x sin(2 x s)) ds). In both settings, we used
the Wald statistic to test the hypothesisfaf= 0 underA(t|X) = G(fé exp(f1X + f2X x log(s)) ds).

As shown in Supplementary Table 5 of the supplementary material (availaB®statisticsonline),

the supremum test has reasonable power (relative to the Wald test) in the first setting and is much more
powerful than the Wald test in the second setting. For the proportional odds model in the second setting,
the power of the Wald test is 0.345 while that of the supremum test is 0.957.

4, EXAMPLES

In this section, we illustrate the proposed methods with 2 examples, one on survival data and one on
recurrent events. A third example, which deals with time-dependent covariates, is provided in Section S.5
of the supplementary material (availableBastatisticsonline).

4.1 Colon cancer data

Lin (1994 described a colon cancer study conducted to assess the efficacy of adjuvant therapy on cancer
relapse and death for patients with resected colon cancer. For this illustration, we consider the time to
cancer relapse and focus on the comparison between the observation and levamisole combined with 5-
fluorouracil (Lev+5-FU) groups. By the end of the study, 155 of the 315 observation patients and 103
of the 310 Lev+5-FU patients had cancer relapse. We consider 4 covariates: treatmeng\(15-FU;

0= observation), number of days from surgery to randomization, depth of invasion, and number of nodes.
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Treatment and depth of invasion are binary, whereas number of days and number of nodes are treated as
continuous.

We start with the proportional hazards model. The supremum tesf$\8fx, co)| for checking the
functional forms of number of days and number of nodes lmvalues of 0.16 and 0.004, indicating
that number of nodes on its original scale is inappropriate. After comparing the observed cumulative
residual pattern with those of Figule we take the transformation log(1 + number of nodes). Then, the
p value of the supremum test is increased to 0.94. The supremum tests for checking the proportionality
of treatment, number of days, depth, and log(1 + number of nodes)halaes of 0.75, 0.40, 0.72, and
0.012, respectively, indicating nonproportional hazards for log(1 + number of nodes). Bidigglays
the score procesd/p(-) for log(1 + number of nodes). The observed curve is concave and above zero,
and the estimated regression parameter for log(1 + number of nodes) is positive. According t@Figure
it is more appropriate to use a Box—Cox transformation with 1 or a logarithmic transformation with
r > 0. Supplementary Figure 1 of the supplementary material (availalBéatatisticsonline) shows
the plot of the cumulative sum of residuaé; (-, c0). The observed curve is convex at the beginning and
then becomes concave, which (in comparison with Fi@uedso suggests a Box—Cox transformation with
p < 1oralogarithmic transformation with> 0. The omnibus test syp [Wo(X, t)| has g value of 0.19.

We consider the Box—Cox transformations with= 2, 1, .5 and the logarithmic transformations with
r = 0.5, 1, 2. The Akaike information criterion selects the logarithmic transformationrwithl, that
is, the proportional odds model. We then assess the adequacy of this model using the proposed goodness-
of-fit methods. The supremum tests gic(x, co)| and sup ; [We(x, )| yield p values of 0.25 and
0.92 for the functional form of number of days apd/alues of 0.029 and 0.034 for number of nodes.
Thus, the functional form for number of nodes is problematic. phalues for the link function tests
sup, W (x, oo)| and sup  [Wi (X, t)| havep values of 0.28 and 0.41. Figuseplots the cumulative sum of
residualsi\ (-, o) for number of nodes. The observed pattern resembles the dashed curve oflfayure
suggesting the log transformation. After the log transformation, the 2 supremum tests for the functional
form of number of nodes hayevalues of 0.84 and 0.52, and the 2 tests for the link function basadues
of 0.58 and 0.81. The supremum tests for the proportionality assumptiomphalges of 0.80, 0.43, 0.39,
and 0.25 for treatment, number of days, depth of invasion, and log(1 + number of nodes), respectively.

p-value=0.012

Score process

T T T
0 500 1000 1500
Follow-up time (days)

Fig. 4. Plot of the score proce®éy(-) for log(1 + number of nodes) in the colon cancer data: the observed pattern is
shown by the solid curve while 20 simulated realizations from the null distribution are shown in dotted curves.
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p-value=0.029

|

15 20

Cumulative sum of residuals

T I I I
0 5 10 15 20 25

T T
Number of nodes
Fig. 5. Plot of the cumulative sum of residudié (-, o) for the functional form of number of nodes in the colon

cancer data: the observed pattern is shown by the solid curve while 20 simulated realizations from the null distribution
are shown in dotted curves.

Table 1. Analysis of the colon cancer data under the proportional hazards and proportionalroddsls

Proportional hazards model Proportional odusdel
Parameter Est SE Est/SE pvalue Est SE ESt/SE pvalue
Treatment —0.510 0.128 -3.977 <0.001 -0.638 0.165 -3.863 <0.001
Number of days —0.014 0.010 -—-1.456 0.145 -0.017 0.013 -1.325 0.185
Depth —0.720 0.229 -3.148 0.002 -0.980 0.269 -3.639 <0.001

Log(number of nodes + 1) 0.734  0.097 7.539<0.001 1.009 0.133 7.582 <0.001

Thus, the proportionality assumption is reasonable. The transformation function is also reasonable, the
values of sup W (X, oo)| and sup  [Wir (X, t)| being 0.35 and 0.44, respectively. The omnibus test has
apvalue of 0.71.

Table 1 contrasts the estimation results under the proportional hazards model and the selected pro-
portional odds model. Although the levels of statistical significance for the 4 regression parameters are
similar between the 2 models, the interpretations of the regression effects are very different under the pro-
portional odds model versus the proportional hazards model. Also, the logarithmic transformation entails
a different interpretation for the effect of number of nodes than the original scale.

4.2 Chronic granulomatous disease data

We consider the recurrent infection data from a placebo-controlled clinical trial on chronic granulomatous
disease (CGD)Rleming and Harringtari991). The study was conducted to evaluate the ability of gamma
interferon in reducing the rate of CGD infection. A total of 128 patients were enrolled in the study. By
the end of the study, 14 of the 63 patients on gamma interferon and 30 of the 65 placebo patients had
experienced at least one infection.

We fit the proportional means model with treatment and age as covariates. As shown in Supplementary
Figure 2 of the supplementary material (availablBiattatisticoonline), there is no evidence of lack-of-fit
for any of the model components. The omnibus test hagsaue of 0.224.
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For further illustration, we consider the transformation mean modelwith1. The supremum test
sup ¢ IWkr (X, t)| for checking the transformation function hapavalue of 0.044, indicating that the
choice of the transformation parametes 1 is not appropriate. The observed cumulative sum of resid-
uals W (-, o0) shows a pattern of being concave at the beginning and then becoming convex, which (in
comparison with Figuré) suggests that a transformation function in the directiop of 1 is more
appropriate.

5. DISCUSSION

Although goodness-of-fit methods for the proportional hazards model have been developed extensively
over the last 3 decades, there are major limitations with the existing work. For example, there does not
exist any method for checking the functional forms of time-dependent covariates. Also, the use of the
observed cumulative sums of martingale residuals in determining the nature of model misspecification
has never been investigated before. Our work fills those important gaps in the existing literature.

Due to the potential nonlinearity & and the lack of an explicit form foA () or 2(-), it is much
more difficult to establish the weak convergence of the cumulative sum processes and the consistency
of the supremum tests for general transformation models than for the proportional hazards model. In the
special case of the proportional hazards model, it is straightforward to show that the supremum tests
sup, |We(x, 0o)| and sup |W (X, co)| are consistent against misspecification of the functional forms of
covariates and misspecification of the link function, respectively. For other members of the transforma-
tion models, the consistency can only be established for siWik:(x, t)| and sup ; [W (X, t)|. Simulation
results, such as those shown in Supplementary Table 4 of the supplementary material (avalable at
statisticsonline), reveal that sygWe(x, oo)| is more powerful than syg [Wc(x, t)| for the proportional
hazards model and its neighbors but is less powerful than the latter for the proportional odds model and
logarithmic transformations with > 1.

To capture the dependence of recurrent event times, one may include the event history as covariates
in model (L.3). The proposed methods remain valid as such covariates still satisfy our conditions. In
the presence of such internal time-dependent covariates)o longer has the mean function interpre-
tation. It is difficult to correctly formulate the dependence structure through time-dependent covariates
even when recurrent event times follow a simple frailty model, and the inclusion of the event history in
the model attenuates the estimates of treatment effects. Thus, we recommend not to use the event his-
tory as covariates. Indeed, an advantage of motld (s that the dependence structure needs not be
specified.

SUPPLEMENTARY MATERIAL

Supplementary material is availabletdtp://biostatistics.oxfordjournals.arg
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APPENDIX
A.1 Consistency of Supremum Tests

We state below the results on the consistency of the supremum tests while relegating the proofs to Section
S.3 of the supplementary material (availabl8#gtstatisticsonline).

1. Omnibus testThe supremum test syp|Wo(X, t)| is consistent against the general alternative hy-
pothesis that there do not exist a transformation func@na vectorfy and a functionAg(-)
such thatA(t; x) = A(|X = x) = G(Ao(t)exp(ﬁgx)) forallt > 0 and allx in the support
of X.

2. Functional forms of covariategAsssume thaX has independent components &/d0) # 0. Then,
the supremum test syﬁp|Wé”(x, t)| is consistent for testing the null hypothesis thdt; x) =
G(A®M) exp(BTxD 4 yx())) for somep, y, and A(-), against the alternative hypothesis that
A(t; X) = G(Ao)e?ox ™ g(x()) for somefo, Ao(-), and functiong(-), wherex() is the jth
com(ponent ok, x(=1) consists of the other componentsgfand logg(x1) is not a linear function
of x),

3. Link function.Assume that, for any; and g, if E[g(e/qx)|e/fzTX = X] = cox for somecg and
all x > 0, theng(x) = cx* for some constants anda. Then, the supremum test sugWi (x, t)|
is consistent against the alternative thdt; x) = G(Ao(t)g(exp(,b’gx))) for somepp, Ao(+), and
functiong, where there do not exist constantanda such thag(x) = cx“.

4. Proportionality. Suppose thakX is binary andxG”(x)/G’(x) # —1. Then, the supremum test
sup |Wp(t)| is consistent against the alternative that; x) = G(fé &% dAg(s)), whered(-) is
not constant.

5. Transformation functionAssume that ifE[e/"lTX| X = y] = yforally > 0, thenpy = f.
Also, assume that’(0) = 1 andi(0) = 1. Then, the supremum test sydWi (x, t)| is consistent
against the alternative that(t; x) = Go(Ao(t) expwg X)) for somepp, Ag andGo, whereGo(-) is
different from the assumed transformation funct®n

REMARK A.1 It is easy to show that the conditions ofin results 3 and 5 hold wheX follows a
multivariate normal distribution.

REFERENCES

ANDERSEN P. K., BORGAN, @., GiLL, R. D. AND KEIDING, N. (1993).Statistical Models Based on Counting
ProcessesNew York: Springer.

ANDERSEN P. K.AND GILL, R. D. (1982). Cox’s regression model for counting processes: a large sample study.
Annals of Statistic40, 1100-1120.

BENNETT, S. (1983). Analysis of survival data by the proportional odds mdgtetistics in Medicin@, 273-277.

BREsLOW, N. E. (1972). Discussion of the paper by D. R. Caéaurnal of the Royal Statistical Society, Serie34
216-217.

Cal, T., CHENG, S. C.AND WEI, L. J. (2002). Semiparametric mixed-effects models for clustered failure time data.
Journal of the American Statistical Associati®n 514-522.

CHEN, K., JIN, Z. AND YING, Z. (2002). Semiparametric analysis of transformation models with censored data.
Biometrika89, 659—668.

CHENG, S. C., WEI, L. J.AND YING, Z. (1995). Analysis of transformation models with censored ditanetrika
82, 835-845.



Semiparametric transformation models 31

CHENG, S. C., WEI, L. J.AND YING, Z. (1997). Predicting survival probabilities with semiparametric transforma-
tion modelsJournal of the American Statistical Associatigp, 227-235.

Cox, D. R. (1972). Regression models and life-tables (with discussiimirnal of the Royal Statistical Society,
Series B34, 187-200.

DABROWSKA, D. M. AND DOKSUM, K. A. (1988). Partial likelihood in transformation models with censored data.
Scandinavian Journal of Statistid$, 1-23.

FLEMING, T. R.AND HARRINGTON, D. P. (1991)Counting Processes and Survival Analybisw York: Wiley.
KALBFLEISCH, J. D.AND PRENTICE, R. L. (2002).The Statistical Analysis of Failure Time Datdew York: Wiley.

Kosorok M. R., LEE, B. L. AND FINE, J. P. (2004). Robust inference for univariate proportional hazards frailty
regression modelé&nnals of Statistic82, 1448—-1491.

LiN, D. Y. (1994). Cox regression analysis of multivariate failure time data: the marginal app&tatistics in
Medicinel3, 2233-2247.

LiN, D. Y., WEI, L. J., YANG, |., AND YING, Z. (2000). Semiparametric regression for the mean and rate functions
of recurrent eventslournal of the Royal Statistical Society, Serie$8 711-730.

LiN, D.Y., WEI, L. J. AND YING, Z. (1993). Checking the Cox model with cumulative sums of martingale-based
residualsBiometrika80, 557-572.

LiN, D.Y., WEI, L. J.AND YING, Z. (2001). Semiparametric transformation models for point procedsesal of
the American Statistical Associati®®, 620—628.

Lu, W. AND TsIATIS, A. A. (2006). Semiparametric transformation models for the case-cohort Riatyetrika
93, 207-214.

Lu, W. AND YING, Z. (2004). On semiparametric transformation cure moditametrika91l, 331-343.

MURPHY, S. A., ROSSINI, A. J. AND VAN DER VAART, A. W. (1997). Maximal likelihood estimation in the
proportional odds modelournal of the American Statistical Associati®? 968-976.

PETTITT, A. N. (1984). Proportional odds model for survival data and estimates using nksal of the Royal
Statistical Society, Series&3, 169-175.

SCHARFSTEIN, D. O., TSIATIS, A. A. AND GILBERT, P. B. (1998). Semiparametric efficient estimation in the
generalized odds-rate class of regression models for right-censored time-to-evehifel@t@e Data Analysigl,
355-391.

Tsobikov, A. (2003). Semiparametric models: a generalized self-consistency appdoadhal of the Royal Statis-
tical Society, Series ,B5, 759-774.

ZENG, D. AND LIN, D. Y. (2006). Efficient estimation of semiparametric transformation models for counting
processesBiometrika93, 627—640.

ZENG, D. AND LIN, D. Y. (2007). Maximum likelihood estimation in semiparametric regression models with
censored data (with discussiodpurnal of the Royal Statistical Society, Serie€B507-564.

[Received May 26, 2010; revised June 13, 2011; accepted for publication June 15, 2011



	Introduction
	Methods
	Simulation studies
	Examples
	Colon cancer data
	Chronic granulomatous disease data

	Discussion

