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SUMMARY

Semiparametric transformation models provide a very general framework for studying the effects of (pos-
sibly time-dependent) covariates on survival time and recurrent event times. Assessing the adequacy of
these models is an important task because model misspecification affects the validity of inference and the
accuracy of prediction. In this paper, we introduce appropriate time-dependent residuals for these mod-
els and consider the cumulative sums of the residuals. Under the assumed model, the cumulative sum
processes converge weakly to zero-mean Gaussian processes whose distributions can be approximated
through Monte Carlo simulation. These results enable one to assess, both graphically and numerically,
how unusual the observed residual patterns are in reference to their null distributions. The residual pat-
terns can also be used to determine the nature of model misspecification. Extensive simulation studies
demonstrate that the proposed methods perform well in practical situations. Three medical studies are
provided for illustrations.
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1. INTRODUCTION

The proportional hazards model (Cox, 1972) is commonly used in the analysis of survival time and related
data. The proportional hazards assumption may be violated in practice, and other models may provide
more precise or more parsimonious summarization of data. The class of transformation models is a broad
generalization of the proportional hazards model to allow various nonproportional hazards structures,
such as proportional odds (Bennett, 1983; Pettitt, 1984). This generalization can substantially enhance the
validity of inference and the accuracy of prediction. Transformation models have received tremendous
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recent attention (e.g.Chengand others, 1995, 1997; Murphy and others, 1997; Scharfsteinand others,
1998; Cai and others, 2002; Chenand others, 2002; Tsodikov, 2003; Kosorokand others, 2004; Lu and
Ying, 2004; Lu and Tsiatis, 2006; Zeng and Lin, 2006, 2007).

The class of linear transformation models relates an unknown transformation of the survival timeT
linearly to ap-vector of covariatesX:

H(T) = −βT X + ε, (1.1)

where H(∙) is an unspecified increasing function,β is a set of unknown regression parameters, and
ε is a random error with a parametric distribution (Dabrowska and Doksum, 1988; Kalbfleisch and
Prentice, 2002, p. 241). Although it generalizes the proportional hazards model to nonproportional haz-
ards models, this class of models can only handle survival time (i.e. single event) with time-independent
covariates.

To accommodate time-dependent covariates and recurrent events, we use the counting processN∗(t)
to denote the number of events the subject has experienced by timet and allowX to be a function oft .
We then specify that the cumulative intensity function forN∗(t) conditional on{X(s); s 6 t} takes the
form

3(t |X) = G

{∫ t

0
Y∗(s) eβT X(s) d3(s)

}
, (1.2)

whereG is a strictly increasing function,Y∗(∙) is an indicator process, and3(∙) is an unspecified in-
creasing function (Zeng and Lin, 2006). For survival data,Y∗(t) = I (T > t), where I (∙) is the in-
dicator function; for recurrent events,Y∗(∙) = 1. We consider the class of Box–Cox transformations
G(x) = {(1 + x)ρ − 1}/ρ (ρ > 0) with ρ = 0 corresponding toG(x) = log(1 + x) and the class of
logarithmic transformationsG(x) = log(1 + r x)/r (r > 0) with r = 0 corresponding toG(x) = x.
The choice ofG(x) = x (ρ = 1; respectivelyr = 0) yields the proportional hazards model for sur-
vival data and the proportional intensity model (Andersen and Gill, 1982; Kalbfleisch and Prentice 2002,
Section 9.3) for recurrent events data; the choice ofG(x) = log(1+ x) (ρ = 0; respectivelyr = 1) yields
the proportional odds model. Various choices ofρ andr are considered in this paper, but we are not trying
to estimate the values of these parameters. IfN∗(∙) has a single jump at the survival timeT andX is time
independent, then (1.2) reduces to (1.1).

For recurrent events, (1.2) implies that the occurrence of an event is independent of the prior event
history conditional on covariates. To remove this assumption, we consider the following class of transfor-
mation mean models

μX(t) = G

{∫ t

0
eβT X(s) dμ(s)

}
, (1.3)

whereμX(t) = E{N∗(t)|X(s): s 6 t} andμ(∙) is an unspecified increasing function (Lin and others,
2001). This is a class of marginal models that formulates the effects of covariates on the mean function
of the recurrent event process while leaving the dependence structure completely unspecified. The choice
of G(x) = x yields the proportional means model (Lin and others, 2000). We also consider the class
of random-effect transformation models3(t |X, ξ) = ξG

{ ∫ t
0 eβT X(s) d3(s)

}
, where3(t |X, ξ) is the

cumulative intensity function forN∗(t) conditional on{X(s); s 6 t} andξ , andξ is a random variable
with mean 1 characterizing the dependence (Zeng and Lin, 2007). This model is a special case of model
(1.3) in that the mean function ofN∗(∙) induced by it satisfies equation (1.3).

The classes of semiparametric transformation models as shown in (1.2) and (1.3) require specification
of the following components: (i) the functional forms of individual covariates; (ii) the link function, that is,
the exponential regression function; (iii) the proportionality structure, that is, the multiplicative effect of
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the regression function within the transformation; and (iv) the transformation functionG. Misspecifying
any of these components can result in erroneous inference and inaccurate prediction. Recent theoretical
and methodological advances in transformation models have heightened the importance of model assess-
ment and model selection.

In this paper, we introduce time-dependent residuals for semiparametric transformation models in the
form of (1.2) or (1.3) and use the cumulative sums of the residuals to construct graphical and numerical
procedures for model assessment. These methods can be used to assess specific model components as
well as the overall fit of the model. A similar approach was taken byLin and others(1993) for the
proportional hazards model with survival data and time-independent covariates. It is substantially more
challenging, both theoretically and numerically, to deal with nonproportional hazards models because of
the nonlinearity ofG(∙) and the lack of an explicit expression for the estimator of3(∙) or μ(∙). To aid
the selection of appropriate models, we explore the use of residual patterns in determining the nature of
model misspecification.

2. METHODS

Let C denote the censoring time, which is assumed to be independent ofN∗(∙) conditional onX(∙). The
at-risk process isY(t) ≡ Y∗(t)I (C > t), and the observed counting process isN(t) ≡ N∗(t ∧ C), where
a ∧ b = min(a, b). The data consist ofn independent replicates of{N(t), Y(t), X(t); t ∈ [0, τ ]}, where
τ denotes the end point of the study.

We first focus on the class of models given in (1.2), under which the intensity function forNi (t)
is Yi (t) eβT Xi (t)λ(t)G′

{ ∫ t
0 Yi (s) eβT Xi (s) d3(s)

}
, whereλ(t) = 3′(t). Here and in the sequel,g′(x) =

dg(x)/ dx, and g′′(x) = d2g(x)/ dx2. The log-likelihood concerning parametersβ and 3(∙) is
given by

n∑

i =1

[ ∫ τ

0
logλ(t) dNi (t) +

∫ τ

0
logG′

{∫ t

0
Yi (s) eβT Xi (s) d3(s)

}
dNi (t)

+
∫ τ

0
βT Xi (t) dNi (t) − G

{∫ τ

0
Yi (t) eβT Xi (t) d3(t)

}]
. (2.1)

Let β̂ and3̂ denote the nonparametric maximum likelihood estimators (NPMLEs) ofβ and3 based on
(2.1). The existence and asymptotic properties of the NPMLEs were established inZeng and Lin(2006).
For the special case of the proportional hazards model,β̂ and 3̂ correspond to the maximum partial
likelihood estimator forβ and theBreslow(1972) estimator for3.

Define

Mi (t; β,3) = Ni (t) − G

{∫ t

0
Yi (s) eβT Xi (s) d3(s)

}
, i = 1, . . . , n. (2.2)

When the assumed model holds andβ and 3 are evaluated at their true values, theMi ’s are zero-
mean martingales. Replacingβ and 3 with their NPMLEs β̂ and 3̂ yields the martingale residuals
Mi (t; β̂, 3̂). Since they characterize the differences between the observed and model-predicted num-
bers of events, the martingale residuals are informative about model misspecification. One can plot these
residuals against certain coordinates (e.g. covariates or time) to check various model components (e.g.
Fleming and Harrington, 1991, pp. 163–178).

To develop more objective and more informative model-checking techniques, we study the cumulative
sums of martingale residuals over the covariate or time domain. To check the functional form of the effect
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of X( j ), the j th component of the covariate vectorX, we consider the cumulative sum of residuals over
that covariate, that is,

W( j )
c (x, t) = n−1/2

n∑

i =1

∫ t

0
I (X ji (u) 6 x) dMi (u; β̂, 3̂),

whereX ji is the j th component ofXi . To check the link function and the transformation function, we
consider the cumulative sums of residuals over the linear predictor and the argument of the transformation
function

Wl (x, t) = n−1/2
n∑

i =1

∫ t

0
I (β̂T Xi (u) 6 x) dMi (u; β̂, 3̂)

and

Wtr (x, t) = n−1/2
n∑

i =1

∫ t

0
I

(∫ u

0
Yi (s) eβ̂T Xi (s) d3̂(s) 6 x

)
dMi (u; β̂, 3̂),

respectively. To check the proportionality assumption forX( j ), we consider the score process

W( j )
p (t) = n−1/2

n∑

i =1

∫ t

0
X̃ j i (u, β̂, 3̂) dMi (u; β̂, 3̂),

whereX̃ j i (t, β,3) is the j th component of

X̃i (t, β,3) ≡
∂

∂β
logλ(t |Xi ) = Xi (t) +

G′′
( ∫ t

0 Yi (s) eβT Xi (s) d3(s)
)

G′
( ∫ t

0 Yi (s) eβT Xi (s) d3(s)
)
∫ t

0
Yi (s)Xi (s) eβT Xi (s) d3(s).

To assess the overall fit of the model, we consider the process

Wo(x, t) = n−1/2
n∑

i =1

∫ t

0
I (Xi (u) 6 x) dMi (u; β̂, 3̂).

Note thatx is a p-vector inWo(x, t) and a scalar in all other processes. For vectorsx andy, x 6 y means
that every component ofx is smaller than or equal to the corresponding component ofy. Because3̂
changes its values at observed event times only, all above processes involve the values of time-dependent
covariates at observed event times only. For processesW( j )

c andW( j )
p , we may suppress the superscript( j )

when we are interested in a specific covariate or when we wish to refer to the collection of the processes
over all j . We refer toWp(∙) as the score process because it pertains to the score function forβ (Andersen
and others, 1993, p. 103). In the special case of the proportional hazards model with time-independent
covariates,Wc(x, ∞), Wl (x, ∞), Wp(t), andWo(x, t) reduce to the processes studied byLin and others
(1993), who provided intuitions for the use of such processes in model checking. Under (1.2), the relation-
ship between the counting process and the argument ofG determines the functional form ofG; therefore,
Wtr (x, t) is informative about the adequacy of the transformation function.

All the aforementioned processes are special cases of the multiparameter process

Wn(x, t) = n−1/2
n∑

i =1

∫ t

0
f1(X̄i (u); β̂, 3̂)I ( f2(X̄i (u); β̂, 3̂) 6 x) dMi (u; β̂, 3̂),

where f1 and f2 are known smooth functions, and̄Xi (t) = {Xi (s): s 6 t}. We assume Conditions 1–4
of Zeng and Lin(2006) and impose a slightly stronger version of the first part of their Condition 2 by



22 L. CHEN AND OTHERS

assuming that, with probability 1,X(∙) is left-continuous with right limits, and there exist constantsK1
and K2 such thatX(∙) is bounded byK1 and its total variation is bounded byK2. We also assume that
there is at least one continuous covariate inWl (x, t) and Wtr (x, t); otherwise,Wl (x, t) and Wtr (x, t)
may not be centered at zero asymptotically at the discontinuous points ofx. Under these conditions and
model (1.2), we show in Section S.1 of the supplementary material (available atBiostatisticsonline) that
Wn(x, t) converges weakly to a zero-mean Gaussian process in the metric spacel∞(Rq × [0, τ ]) and is
asymptotically equivalent to the following process

W̃n(x, t) =
√

n(Pn − P0)

[ ∫ t

0
f (X̄(u); x, β0,30) dM(u; β0,30)

+ (Sβ0, S30)I −1
β0,30

(P0h1(Y, X; x, t; β0,30), P0h2(Y, X; ∙, x, t; β0,30))

]
,

whereq is the dimension off2, f (X̄(t); x, β,3) = f1(X̄(t); β,3)I ( f2(X̄(t); β,3) 6 x), Sβ0 andS30

are, respectively, the score operators forβ and3 at the true parameter values(β0,30), Iβ0,30 is the
information operator at(β0,30), Pn andP0 are, respectively, the empirical measure and the distribution
under the true model,

h1(Y, X; x, t; β,3)

= −
∫ t

0

[
f (X̄(u); x, β,3)G′′(A(Y, X; u))Y(u) eβT

0 X(u)

∫ u

0
Y(s)X(s) eβT

0 X(s) d30(s)

]
d30(u)

−
∫ t

0

[
f (X̄(u); x, β,3)G′(A(Y, X; u))Y(u)X(u) eβT

0 X(u)
]

d30(u),

h2(Y, X; v, x, t; β,3)

= −Y(v) eβT
0 X(v)

∫ t

0

[
f (X̄(u); x, β,3)G′′(A(Y, X; u))Y(u) eβT

0 X(u) I (u > v)
]

d30(u)

−I (v 6 t) f (X̄(v); x, β,3)Y(v) eβT
0 X(v)G′(A(Y, X; v)),

and A(Y, X; t) =
∫ t

0 Y(s) eβT
0 X(s) d30(s). Here, we useQ f to denote

∫
f dQ for a given measurable

function f and measureQ.
We use Monte Carlo simulation to evaluate the null distribution ofWn(x, t). Define

Ŵn(x, t) = n−1/2
n∑

i =1

{∫ t

0
f1(X̄i (u); β̂, 3̂)I ( f2(X̄i (u); β̂, 3̂) 6 x) dMi (u; β̂, 3̂) + Si

}
Qi ,

where theQi ’s (i = 1, . . . , n) are independent standard normal random variables, and theSi ’s are calcu-
lated in the following way. Lett1, . . . , tk be the distinct observed event times. We treatβ and the jump
sizes of3(∙) at (t1, . . . , tk) as the parameters. We calculate the score vector for these parameters for the
i th subject, denoted byl i , and the observed information matrix for these parameters, denoted byIn. Let
h1n(x, t) = Pnh1(Y, X; x, t; β̂, 3̂) and leth2n(x, t) be ak-dimensional vector with thei th component
beingPnh2(Y, X; ti , x, t; β̂, 3̂). Then, Si = l T

i I −1
n (hT

1n(x, t), hT
2n(x, t))T. We show in Section S.2 of

the supplementary material (available atBiostatisticsonline) that the conditional distribution of̂Wn(x, t)
given the observed data{Ni (t), Yi (t), Xi (t); t ∈ [0, τ ], i = 1, . . . , n} has the same limiting distribu-
tion asW̃n(x, t). To approximate the null distribution ofWn(x, t), we simulate a number of realizations
from Ŵn(x, t) by repeatedly generating the normal random sample(Q1, . . . , Qn) while fixing the data
{Ni (t), Yi (t), Xi (t); t ∈ [0, τ ], i = 1, . . . , n} at their observed values.
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The above results enable us to construct goodness-of-fit tests. For example, we can use the om-
nibus test statistic supx,t |Wo(x, t)| to assess the overall fit of the model and use supx |W( j )

c (x, ∞)|

or supx,t |W( j )
c (x, t)| to evaluate the adequacy of the functional form ofX( j ). Likewise, we can use

supx |Wl (x, ∞)| or supx,t |Wl (x, t)| to check the link function and use supx |Wtr (x, ∞)| or supx,t

|Wtr (x, t)| to check the transformation function. In addition, we can use supt |W( j )
p (t)| to test the propor-

tionality assumption forX( j ). To calculate thep value of a supremum test, we generate a large number,
say 1000, of realizations of the test statistic from its null distribution through the aforementioned Monte
Carlo procedure. We can also visually assess how unusual an observed residual process is by plotting it
against a few, say 20, realizations from the simulated process. The consistency of the supremum tests is
stated in the Appendix.

REMARK 2.1 If there is only a single covariate in the model, then the functional form of the covariate is
the same assumption as the link function. If the true model is proportional odds and the assumed model is
proportional hazards, then we may say that the proportional hazards assumption fails or that the transfor-
mation function is misspecified. Thus, testing functional forms of covariates is related to testing the link
function, and testing the proportionality assumption is related to testing the transformation function.

If a goodness-of-fit procedure reveals model misspecification, then the next step is to identify the
nature of the misspecification and to correct the misspecification. To this end, it is helpful to ascertain the
residual patterns under various forms of model misspecification. Figure1 displays the mean functions for

Fig. 1. The mean functions of the cumulative sums of residualsWc(∙, ∞) when the function form of the covariateX

is misspecified: (a) the true linear predictorγ log X is misspecified asβ1X; (b) the true linear predictorβ1X + γ X2

is misspecified asβ1X; (c) the true linear predictorβ1X + β2X2 + γ X3 is misspecified asβ1X + β2X2; and (d) the
true linear predictorγ I (X > 0.5) is misspecified asβ1X. We setX to be uniform(0, 1) andγ = 1. The solid and
dashed curves correspond to the proportional hazards and proportional odds models, respectively. The trends remain
the same for other transformation models. The curves will look upside down underγ = −1.
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the cumulative sums of residualsWc(∙, ∞) when the functional form of the covariate is misspecified in
a few hypothetical situations. The trends are the same for all transformation models. By comparing the
observed residual pattern with those of Figure1, one may find a more appropriate functional form for a
covariate. Figure2 shows the mean functions of the signed score processes (i.e.W( j )

p (∙) times the sign of
β̂( j )) under the Box–Cox and logarithmic transformations. When the observed curve is concave and above
zero, we should use a smallerρ, respectively, a largerr ; when the observed curve is convex and below
zero, we should use a largerρ, respectively, a smallerr . Figure3 shows the mean functions ofWtr (∙, ∞)
under the Box–Cox and logarithmic transformations. When the observed curve is convex at the beginning
and then becomes concave, we should use a smallerρ, respectively, a largerr ; when the observed curve
is concave at the beginning and then becomes convex, we should use a largerρ, respectively, a smallerr .
Figure2 applies to a specific component ofX, whereas Figure3 applies to the whole vector ofX in the
argument ofG.

REMARK 2.2 A faulty functional form of a covariate may manifest itself in the residual plot for a cor-
related covariate or the link function. Thus, all the proposed methods are checking the fit of the entire
model. However,W( j )

c andW( j )
p are most informative about the functional form and proportionality of

X j , respectively, whileWl andWtr are most sensitive to misspecification of the link function and transfor-
mation function, respectively. We suggest the following strategy: for a given transformation model, apply
the proposed tests in the order ofWc, Wl , Wp, Wtr , andWo; if one of the tests is significant, determine

Fig. 2. The mean functions of the signed score processes, that is,Wp(∙) times the sign ofβ̂, under3(t |X) =
G(3(t) exp(βX)): (a) Box–Cox transformation withρ = 2; (b) proportional hazards (ρ = 1; respectivelyr = 0);
(c) proportional odds (ρ = 0; respectivelyr = 1); and (d) logarithmic transformation withr = 2. In each panel, the
curves, as shown from top to bottom, pertain to the fitted models withρ = 2, 1, and 0.5 andr = 0.5, 1, and 2 in that
order. We setX to be uniform (0,9) andβ = −0.2.
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Fig. 3. The mean functions of the cumulative sums of residualsWtr (∙, ∞) under3(t |X) = G(3(t) exp(βT X)): (a)
Box–Cox transformation withρ = 2; (b) proportional hazards (ρ = 1; respectivelyr = 0); (c) proportional odds
(ρ = 0; respectivelyr = 1); and (d) logarithmic transformation withr = 2. In each panel, the curves, as shown from
bottom to top before crossing, pertain to the fitted models withρ = 2, 1, and 0.5 andr = 0.5, 1, and 2 in that order.
We setX to be uniform (0,9) andβ = 1.0.

the nature of model misspecification by examining the residual patterns and make appropriate correction;
repeat this process until allp values are greater than a threshold, say 0.05 or 0.10.

We now consider the class of transformation mean models given in (1.3). We obtain a pseudo log-
likelihood function forβ and μ(∙) from (2.1) by replacing3(∙) with μ(∙). The resulting maximum
pseudo-likelihood estimators are denoted byβ̂ andμ̂(∙). Define the residuals asMi (t; β̂, μ̂) = Ni (t) −
G
{ ∫ t

0 Yi (s) eβ̂T Xi (s) dμ̂(s)
}
, i = 1, . . . , n. Then, all the methods developed in this section can be

applied; see Section S.4 of the supplementary material (available atBiostatisticsonline) for theoretical
justifications.

3. SIMULATION STUDIES

Our first set of studies was aimed at assessing the type I error of the supremum tests. We generated
survival times from a special case of model (1.2): 3(t |X) = G(t exp(−X1 + 0.2X2)), where X1 is
Bernoulli with 0.5 success rate, andX2 is a continuous variable that may be time independent or time
dependent. For the time-independent case,X2 is the sum ofX1 and a standard normal variable. For the
time-dependent case,X2(t) = a+(b+2) log t +0.5ε(t), wherea andb are standard normal andε(t) is an
independent Gaussian process with mean 0 and variance 1. We also generated recurrent event times from
the random-effect transformation model:3(t |X, ξ) = ξG(t exp(−X1 + 0.2X2)), whereξ is a gamma
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random variable with mean 1 and standard deviation 0.5. We generated censoring times from the uniform
(1.5,5) distribution and setτ = 3. As shown in Supplementary Tables 1 and 2 of the supplementary
material (available atBiostatisticsonline), the supremum tests have adequate control of type I error when
there are more than 70 events for the case of time-independent covariates and more than 140 events
for the case of time-dependent covariates but tend to have inflated type I errors when there are fewer
events.

Because there are no other goodness-of-fit tests for transformation models, we compared the power
of the supremum tests against Wald tests in situations where the latter might be used. Wald tests are
asymptotically efficient against nested alternatives but are inappropriate for nonnested alternatives. To
illustrate this point, we compared the supremum tests to Wald tests in 2 simulation settings. In the first
setting, we generated survival times and recurrent event times from models3(t |X) = G(t exp(0.4X −
0.1X2)) and3(t |X, ξ) = ξG(t exp(0.4X − 0.1X2)), respectively, whereX takes values 0–9 with the
same probability, andξ is the same as before. We generated censoring times from the uniform(0, τ )
distribution. In the second setting, the true functional form ofX is exp{3(X − 5)}/[1 + exp{3(X − 5)}]
andβ = 3.5. In both settings, we performed the Wald test of the null hypothesis ofβ2 = 0 under the model
3(t |X) = G(30(t) exp(β1X + β2X2)). As shown in Supplementary Tables 3 and 4 of the supplementary
material (available atBiostatisticsonline), the proposed supremum tests have reasonable power (relative
to the Wald test) in the first setting and is much more powerful than the Wald test in the second setting. For
the proportional odds model in the second setting, the power of the Wald test is 0.174, while the powers
of supx |Wc(x, ∞)| and supx,t |Wc(x, t)| are 0.825 and 0.841, respectively.

One can use the Wald statistic to detect nonproportionality in the form of an interaction between
covariate and time. Such a Wald test will be asymptotically efficient if the form of the interaction is
correctly specified but may have poor power if the form is incorrectly specified. To illustrate this point,
we considered 2 simulation settings. In the first setting, we generated survival times from the model
3(t |X) = G(

∫ t
0 exp(0.2X + 0.2X × log(s)) ds), whereX takes values 0–9 with the same probability, and

we generated censoring times from the uniform(0, 3) distribution. The second setting was the same as
the first except that3(t |X = x) = G(

∫ t
0 exp(−0.1x − 0.5x × sin(2 × s)) ds). In both settings, we used

the Wald statistic to test the hypothesis ofβ2 = 0 under3(t |X) = G(
∫ t

0 exp(β1X + β2X × log(s)) ds).
As shown in Supplementary Table 5 of the supplementary material (available atBiostatisticsonline),
the supremum test has reasonable power (relative to the Wald test) in the first setting and is much more
powerful than the Wald test in the second setting. For the proportional odds model in the second setting,
the power of the Wald test is 0.345 while that of the supremum test is 0.957.

4. EXAMPLES

In this section, we illustrate the proposed methods with 2 examples, one on survival data and one on
recurrent events. A third example, which deals with time-dependent covariates, is provided in Section S.5
of the supplementary material (available atBiostatisticsonline).

4.1 Colon cancer data

Lin (1994) described a colon cancer study conducted to assess the efficacy of adjuvant therapy on cancer
relapse and death for patients with resected colon cancer. For this illustration, we consider the time to
cancer relapse and focus on the comparison between the observation and levamisole combined with 5-
fluorouracil (Lev+5-FU) groups. By the end of the study, 155 of the 315 observation patients and 103
of the 310 Lev+5-FU patients had cancer relapse. We consider 4 covariates: treatment (1= Lev+5-FU;
0= observation), number of days from surgery to randomization, depth of invasion, and number of nodes.
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Treatment and depth of invasion are binary, whereas number of days and number of nodes are treated as
continuous.

We start with the proportional hazards model. The supremum tests supx |Wc(x, ∞)| for checking the
functional forms of number of days and number of nodes havep values of 0.16 and 0.004, indicating
that number of nodes on its original scale is inappropriate. After comparing the observed cumulative
residual pattern with those of Figure1, we take the transformation log(1 + number of nodes). Then, the
p value of the supremum test is increased to 0.94. The supremum tests for checking the proportionality
of treatment, number of days, depth, and log(1 + number of nodes) havep values of 0.75, 0.40, 0.72, and
0.012, respectively, indicating nonproportional hazards for log(1 + number of nodes). Figure4 displays
the score processWp(∙) for log(1 + number of nodes). The observed curve is concave and above zero,
and the estimated regression parameter for log(1 + number of nodes) is positive. According to Figure2,
it is more appropriate to use a Box–Cox transformation withρ < 1 or a logarithmic transformation with
r > 0. Supplementary Figure 1 of the supplementary material (available atBiostatisticsonline) shows
the plot of the cumulative sum of residualsWtr (∙, ∞). The observed curve is convex at the beginning and
then becomes concave, which (in comparison with Figure3) also suggests a Box–Cox transformation with
ρ < 1 or a logarithmic transformation withr > 0. The omnibus test supx,t |Wo(x, t)| has ap value of 0.19.

We consider the Box–Cox transformations withρ = 2, 1, .5 and the logarithmic transformations with
r = 0.5, 1, 2. The Akaike information criterion selects the logarithmic transformation withr = 1, that
is, the proportional odds model. We then assess the adequacy of this model using the proposed goodness-
of-fit methods. The supremum tests supx |Wc(x, ∞)| and supx,t |Wc(x, t)| yield p values of 0.25 and
0.92 for the functional form of number of days andp values of 0.029 and 0.034 for number of nodes.
Thus, the functional form for number of nodes is problematic. Thep values for the link function tests
supx |Wl (x, ∞)| and supx,t |Wl (x, t)| havep values of 0.28 and 0.41. Figure5 plots the cumulative sum of
residualsWc(∙, ∞) for number of nodes. The observed pattern resembles the dashed curve of Figure1(a),
suggesting the log transformation. After the log transformation, the 2 supremum tests for the functional
form of number of nodes havep values of 0.84 and 0.52, and the 2 tests for the link function havep values
of 0.58 and 0.81. The supremum tests for the proportionality assumption havep values of 0.80, 0.43, 0.39,
and 0.25 for treatment, number of days, depth of invasion, and log(1 + number of nodes), respectively.

Fig. 4. Plot of the score processWp(∙) for log(1 + number of nodes) in the colon cancer data: the observed pattern is
shown by the solid curve while 20 simulated realizations from the null distribution are shown in dotted curves.
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Fig. 5. Plot of the cumulative sum of residualsWc(∙, ∞) for the functional form of number of nodes in the colon
cancer data: the observed pattern is shown by the solid curve while 20 simulated realizations from the null distribution
are shown in dotted curves.

Table 1. Analysis of the colon cancer data under the proportional hazards and proportional oddsmodels

Proportional hazards model Proportional oddsmodel
Parameter Est SE Est/SE p value Est SE Est/SE p value

Treatment −0.510 0.128 −3.977 <0.001 −0.638 0.165 −3.863 <0.001
Number of days −0.014 0.010 −1.456 0.145 −0.017 0.013 −1.325 0.185
Depth −0.720 0.229 −3.148 0.002 −0.980 0.269 −3.639 <0.001
Log(number of nodes + 1) 0.734 0.097 7.539<0.001 1.009 0.133 7.582 <0.001

Thus, the proportionality assumption is reasonable. The transformation function is also reasonable, thep
values of supx |Wtr (x, ∞)| and supx,t |Wtr (x, t)| being 0.35 and 0.44, respectively. The omnibus test has
ap value of 0.71.

Table1 contrasts the estimation results under the proportional hazards model and the selected pro-
portional odds model. Although the levels of statistical significance for the 4 regression parameters are
similar between the 2 models, the interpretations of the regression effects are very different under the pro-
portional odds model versus the proportional hazards model. Also, the logarithmic transformation entails
a different interpretation for the effect of number of nodes than the original scale.

4.2 Chronic granulomatous disease data

We consider the recurrent infection data from a placebo-controlled clinical trial on chronic granulomatous
disease (CGD) (Fleming and Harrington, 1991). The study was conducted to evaluate the ability of gamma
interferon in reducing the rate of CGD infection. A total of 128 patients were enrolled in the study. By
the end of the study, 14 of the 63 patients on gamma interferon and 30 of the 65 placebo patients had
experienced at least one infection.

We fit the proportional means model with treatment and age as covariates. As shown in Supplementary
Figure 2 of the supplementary material (available atBiostatisticsonline), there is no evidence of lack-of-fit
for any of the model components. The omnibus test has ap value of 0.224.
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For further illustration, we consider the transformation mean model withr = 1. The supremum test
supx,t |Wtr (x, t)| for checking the transformation function has ap value of 0.044, indicating that the
choice of the transformation parameterr = 1 is not appropriate. The observed cumulative sum of resid-
ualsWtr (∙, ∞) shows a pattern of being concave at the beginning and then becoming convex, which (in
comparison with Figure3) suggests that a transformation function in the direction ofρ = 1 is more
appropriate.

5. DISCUSSION

Although goodness-of-fit methods for the proportional hazards model have been developed extensively
over the last 3 decades, there are major limitations with the existing work. For example, there does not
exist any method for checking the functional forms of time-dependent covariates. Also, the use of the
observed cumulative sums of martingale residuals in determining the nature of model misspecification
has never been investigated before. Our work fills those important gaps in the existing literature.

Due to the potential nonlinearity ofG and the lack of an explicit form for̂3(∙) or μ̂(∙), it is much
more difficult to establish the weak convergence of the cumulative sum processes and the consistency
of the supremum tests for general transformation models than for the proportional hazards model. In the
special case of the proportional hazards model, it is straightforward to show that the supremum tests
supx |Wc(x, ∞)| and supx |Wl (x, ∞)| are consistent against misspecification of the functional forms of
covariates and misspecification of the link function, respectively. For other members of the transforma-
tion models, the consistency can only be established for supx,t |Wc(x, t)| and supx,t |Wl (x, t)|. Simulation
results, such as those shown in Supplementary Table 4 of the supplementary material (available atBio-
statisticsonline), reveal that supx |Wc(x, ∞)| is more powerful than supx,t |Wc(x, t)| for the proportional
hazards model and its neighbors but is less powerful than the latter for the proportional odds model and
logarithmic transformations withr > 1.

To capture the dependence of recurrent event times, one may include the event history as covariates
in model (1.3). The proposed methods remain valid as such covariates still satisfy our conditions. In
the presence of such internal time-dependent covariates,μX no longer has the mean function interpre-
tation. It is difficult to correctly formulate the dependence structure through time-dependent covariates
even when recurrent event times follow a simple frailty model, and the inclusion of the event history in
the model attenuates the estimates of treatment effects. Thus, we recommend not to use the event his-
tory as covariates. Indeed, an advantage of model (1.3) is that the dependence structure needs not be
specified.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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APPENDIX

A.1 Consistency of Supremum Tests

We state below the results on the consistency of the supremum tests while relegating the proofs to Section
S.3 of the supplementary material (available atBiostatisticsonline).

1. Omnibus test.The supremum test supx,t |Wo(x, t)| is consistent against the general alternative hy-
pothesis that there do not exist a transformation functionG, a vectorβ0 and a function30(∙)
such that3(t; x) ≡ 3(t |X = x) = G(30(t) exp(βT

0 x)) for all t > 0 and allx in the support
of X.

2. Functional forms of covariates.Assume thatX has independent components andG′(0) 6= 0. Then,
the supremum test supx,t |W( j )

c (x, t)| is consistent for testing the null hypothesis that3(t; x) =
G(3(t) exp(βTx(− j ) + γ x( j ))) for someβ, γ , and3(∙), against the alternative hypothesis that

3(t; x) = G(30(t)eβT
0 x(− j )

g(x( j ))) for someβ0, 30(∙), and functiong(∙), wherex( j ) is the j th
component ofx, x(− j ) consists of the other components ofx, and logg(x( j )) is not a linear function
of x( j ).

3. Link function.Assume that, for anyβ1 andβ2, if E
[
g(eβT

1 X)|eβT
2 X = x

]
= c0x for somec0 and

all x > 0, theng(x) = cxα for some constantsc andα. Then, the supremum test supx,t |Wl (x, t)|
is consistent against the alternative that3(t; x) = G(30(t)g(exp(βT

0 x))) for someβ0, 30(∙), and
functiong, where there do not exist constantsc andα such thatg(x) = cxα.

4. Proportionality. Suppose thatX is binary andxG′′(x)/G′(x) 6= −1. Then, the supremum test
supt |Wp(t)| is consistent against the alternative that3(t; x) = G

( ∫ t
0 eθ(s)x d30(s)

)
, whereθ(∙) is

not constant.
5. Transformation function.Assume that ifE

[
eβT

1 X
∣
∣ eβT

2 X = y
]

= y for all y > 0, thenβ1 = β2.
Also, assume thatG′(0) = 1 andλ(0) = 1. Then, the supremum test supx,t |Wtr (x, t)| is consistent
against the alternative that3(t; x) = G0(30(t) exp(βT

0 x)) for someβ0, 30 andG0, whereG0(∙) is
different from the assumed transformation functionG.

REMARK A.1 It is easy to show that the conditions onX in results 3 and 5 hold whenX follows a
multivariate normal distribution.
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