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Lagging exposure information is often undertaken to allow for a latency period in cumulative exposure-disease
analyses. The authors first consider bias and confidence interval coverage when using the standard approaches of
fitting models under several lag assumptions and selecting the lag that maximizes either the effect estimate or
model goodness of fit. Next, they consider bias that occurs when the assumption that the latency period is a fixed
constant does not hold. Expressions were derived for bias due to misspecification of lag assumptions, and
simulations were conducted. Finally, the authors describe a method for joint estimation of parameters describing
an exposure-response association and the latency distribution. Analyses of associations between cumulative
asbestos exposure and lung cancer mortality among textile workers illustrate this approach. Selecting the lag that
maximizes the effect estimate may lead to bias away from the null; selecting the lag that maximizes model
goodness of fit may lead to confidence intervals that are too narrow. These problems tend to increase as the
within-person exposure variation diminishes. Lagging exposure assignment by a constant will lead to bias toward
the null if the distribution of latency periods is not a fixed constant. Direct estimation of latency periods can minimize

bias and improve confidence interval coverage.

asbestos; cohort studies; latency; neoplasms; survival analysis

Abbreviations: Cl, confidence interval; ERR, excess rate ratio.

In an epidemiologic study of the association between a
protracted or repeated exposure and disease, an epidemiologist
may calculate a summary exposure metric, such as each
person’s cumulative exposure. Under the premise that there
is typically an induction and latency period between exposure
and its observed impact on disease (1, 2), a summary ex-
posure metric may be ‘“‘lagged” by excluding exposures
that occurred in the months or years immediately preceding
the outcome (3). Often an epidemiologist will evaluate several
exposure lags and select the lag that maximizes the magni-
tude of the resultant effect estimate or the model’s goodness
of fit (4).

In this paper, we show that such approaches are liable to
result in biased effect estimates or confidence intervals that
are too narrow. For simplicity, we will use the term “latency
period” to refer to the combined induction and latency periods.
Using analytical results and simulations, we illustrate the
impact of standard approaches to exposure lagging on effect
estimates under various assumptions about the population
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distribution of latency periods, and we propose an approach
that addresses these limitations.

MATERIALS AND METHODS

We focus on estimation of a cumulative exposure-disease
association in a setting of protracted or repeated exposures.
Repeated exposure measurements on the same person often
are correlated over time. To allow for the possibility of simple
exposure correlation over time, suppose that the exposure
measure for person i at time j may be described by a model
such as d;; = p + o; + €;;, where | is long-term overall mean
exposure, o, is the deviation of person i’s exposure from 1,
and e;; is the variation in exposure at time j from person i’s
mean. If o; and €;; are independent, normally distributed vari-
ables with ao; ~ N(O, G%) and €; ~ N(0, Gﬁ,), the variance
components 62, and o3 describe exposure variability within
and between persons, respectively. A similar model of the
form In(d;)) = p + o; + €; often is used in environmental
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and occupational settings where the distribution of exposure
tends to be lognormal (5), and simple extensions of this
model allow for a systematic change of exposure over time.

The cumulative exposure accrued by a person up to age ¢
is Z,t':o d;j. We focus on the common situation in which
exposure levels are nonnegative; therefore cumulative expo-
sure level is only increasing, so that that the cumulative ex-
posure level at one age must be at least as high as at any
earlier age.

Latency period

We are interested in scenarios in which there is a latency
period between exposure and resultant health outcome. Let
L denote the length of the period (where L > 0). Exposures
that occur during the L years immediately prior to age ¢ have
no effect on the health outcome. Let D(f) represent the
cumulative exposure accrued up to age ¢, discounting those
exposures that occurred during the L years immediately
prior to ¢,

t
Dj(t) = Zdzle(l‘ -J),
=)

where I;(t — j) equals 1 if L < (¢ — j), else 0.

With regard to exposure lags, an epidemiologist will often
evaluate a range of exposure lag assumptions, for example,
G = Guin, - - -» Gmax, Where G is a fixed constant (i.e., a value
that is identical for all study members). We denote the mea-
sured cumulative exposure at age ¢ for person i under a pro-
posed lag, G, as

t
Xi(t, G) = Zdlle(t 7‘]'),
=0

where I5(t — j) equals 1 if G < (t — j), else 0. Note that X; (¢, G)
denotes the cumulative exposure under a proposed lag G,
while D;(¢) denotes the cumulative exposure accounting for
the true latency period.

Choosing a lag based on magnitude of association

One approach to choosing a lag assumption is to estimate
the exposure-disease association under a range of lag assump-
tions and to select the lag that yields the largest effect estimate.
This approach is premised on the notion that the maximal
effect estimate will be the one that is least biased by exposure
misclassification (1).

We represent the expected estimate of association given
the cumulative exposure under the guessed lag by E(¢|X; (7,
G)). Suppose we assume that E(;|D; (1), X; (¢, G)) = E(o;|D;
(9); that is, once the true exposure is known, the measured
exposure under the proposed lag provides no additional in-
formation regarding the association of interest. If the excess
relative rate of the outcome of interest increases as a linear
function of D (), denoted by the function E(,|D; (¢)) = BD;
(1), where B is the parameter of interest to be estimated, then
it follows that E(;|X; (¢, G)) = E(E(@,|D; (1), X; (1, G))|X;
(1, G)) = E(E(@,|D; (0)|X; (1, G)) = E(BD; (1)|X; (1, G)) =
BE(D; (1)|X; (t, G)). Thus, the exposure-response association
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is a function of the conditional expectation of the true exposure
given the measured exposure under the guessed lag.

We express the conditional expectation of the true expo-
sure given a measured exposure, x, as follows: E(D; (¢)|X;
(t, G) = x) = x + E[A], where E[A] denotes the expected
difference between the true and measured dose,

E[A]=E Xt:dij(lL(f —J)—1Is(t—j))|.
=0

If we let n = [(x + E[A])/x], then E[D; () |X; (z, G) = x]
= mx, where n equals 1 if E[A] = 0, as occurs when the
proposed lag equals the true latency period, G = L. Therefore,
the exposure-response association under a proposed lag is
given by E(@;|X; (t, G) = x) = Bnx = B'x, where B~ = Bn
is the cumulative exposure-response estimate that would be
obtained under the proposed lag.

If G = L, then B* = B because 1 equals 1, confirming that
an investigator will obtain an unbiased estimate of association
if the proposed lag equals the true latency period (it is also
true that if p = 0 then p~ = ). However, will the proposed
lag that yields the largest estimated value for p* be the one
that is least biased (i.e., the value of B* closest to p)? Not
necessarily. To illustrate the potential for bias to occur if an
investigator selects the proposed lag that yields the largest
effect estimate, consider the situation in which exposure is
constant over time, such that exposure levels differ between
people but not within persons. If G > L, then n will take a
value greater than 1; and if L > G, then 1 will take a value
less than 1. Therefore, B* will be biased away from the null if
G > L and will be biased toward the null if L > G. Conse-
quently, the approach of selecting the lag that yields the
largest magnitude of association is susceptible to bias in
settings where there is constant exposure. More generally,
as the within-person variation in exposure diminishes, the
estimate of a cumulative exposure-response association under
the proposed lag that yields the largest estimate of associa-
tion may be biased away from the true association.

Choosing a lag based on model goodness of fit

Another approach to selection of a lag is to choose the lag
that maximizes the model goodness of fit (4). This approach
is premised on the idea that if the model is correctly specified,
the proposed lag that yields the best fit will yield an unbiased
estimate of association.

This approach also depends upon the degree of within-
person exposure variability over the period during which
exposure histories will be summarized. As the within-person
variation in exposure diminishes, the correlation of values
for X; (¢, G) obtained under various values for G increases, and
the ability to compare lags based on model goodness of fit
diminishes. Consider the scenario in which exposure is con-
stant over time. The likelihood for the regression function,
E(@iX; (t, G) = x) = Bnx, depends upon B and G.If X; (7, G)
values derived under a range of proposed lags are perfectly
correlated, the model likelihood will be identical across that
range. More generally, as &,, — 0, values of X; (¢, G) derived
under different values of G become increasingly correlated,
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and the likelihood surface becomes increasingly flat with
respect to G.

A flat likelihood with respect to a range of lags suggests
that the data in hand do not contain enough information for
one to choose between lags within that range. Indeed, at the
extreme, the parameters in the likelihood are not identifiable.
The epidemiologist may find that a range of models under
alternative lag assumptions yield similar goodness of fit but
imply markedly different estimates of association.

Under the assumption that there is enough information to
yield a nonflat likelihood surface, the approach of evaluating
a range of proposed lags and selecting a single lag value on
the basis of model goodness of fit will not lead to biased
estimates of the cumulative exposure-response association.
However, this approach will tend to yield confidence inter-
vals for the estimated exposure effect that are too narrow. If,
a priori, the investigator assumed that a range of values for
the latency period were equally plausible, then the appro-
priate confidence interval should reflect the range of values
for the exposure-response parameter that are statistically
compatible with the observed data given the joint estimation
of the lag assumption. If a range of lags are consistent with
the data and the estimated exposure-disease association varies
across this range of lags, then the appropriate confidence
interval obtained by the joint estimation of B and G will tend
to be wider than the confidence interval obtained had G been
chosen a priori. We discuss joint estimation of 3 and G in the
Web Appendix, which appears on the Journal’s Web site
(http://aje.oxfordjournals.org).

Random versus fixed latency periods

The standard practice of lagging exposure treats the la-
tency period as a fixed constant. Suppose, instead, that L
depends on unmeasured individual characteristics, such that
L; may be viewed as a random variable. Given a random
variable L;, the expected exposure-disease association may
be obtained by averaging over the population distribution of
L, denoted f;([), as follows:

E(o| Di(1)) = BE(Di(1)) = B X Z

= BXZdijpr(L gj) —
=0

ILtf

B X Zdl]FL(t 7.].)7
Jj=0

where Fy( fo f1()dl, which is the cumulative density
function for the random varlable L.

The expected cumulative exposure-disease association
obtained under a proposed fixed constant lag assumption,
G, is given by E(@;|X; (z, G)) = BE(D; (1)|X(t, G)), where
E(D; 1|X; (¢, G)) = X; (¢, G) + E[A]. For the scenario in
which d;; is constant over j,

E[A] = Zd,, Fi(t=j) = Is(t =) |-

Again, letting n denote [(x + E[A])/x], the observed
exposure-response is given by E(@;|X; (z, G) = x) =

BE(D; (1|X; (1, G) = x) = Pnx = B x. If F, approximates
a step function that transitions from O to 1 at L and if G = L,
then little or no bias will be observed. However, if the cumu-
lative density function, F;, does not approximate a step func-
tion (e.g., it is more gradual than a step function), then even if
an investigator selects the lag, G, that conforms to the mode
(or mean) of the underlying distribution of latency intervals,
L, bias may arise.

The guessed lag, G, which yields a function /5 that best
approximates the underlying cumulative density function of
the latency periods, F, will be the best fitting model. How-
ever, misspecification of the underlying distribution of latency
periods may lead to bias.

Regression models for latency periods

The estimation problems arising from the unobserved
latency periods described above may be addressed by using
a regression model that allows estimation of parameters de-
scribing the distribution of latency periods along with the
other regression model parameters. The Web Appendix pro-
vides SAS code (SAS Institute, Inc., Cary, North Carolina)
illustrating how point estimates and confidence intervals are
derived for the parameters describing the distribution of
latency periods along with other regression model param-
eters for linear excess relative rate models fit by maximum
likelihood, as well as for analyses based on a log-linear
model where the excess relative rate of the outcome of in-
terest increases as an exponential function of D; (1), @(D;

(®); B) = exp(BDi(1)) — 1.

Empirical example

To illustrate the proposed method for joint estimation of
parameters that describe an exposure-response association
and a latency distribution, we use empirical data analyses of
cumulative asbestos exposure-lung cancer mortality associ-
ations among 3,072 South Carolina asbestos textile workers
employed in production for at least 1 month between January
1, 1940, and December 31, 1965 (6). Vital status was ascer-
tained through December 31, 2001. The outcome of inter-
est, lung cancer mortality, was defined on the basis of
underlying cause of death. Cumulative asbestos exposure,
expressed in fiber-years per milliliter, was computed for
each worker as the product of the length of employment
in each job in a year by the estimated asbestos exposure rate
for that job. For each lung cancer death, a risk set was
formed that included all workers who were alive and eligible
to be in the study at the age of death of the index case;
controls were also matched to cases on sex, race, and cal-
endar year of birth (defined in 5-year categories from before
1960 to 1990 and later). Up to 40 controls were selected
for each lung cancer death by random sampling without
replacement from all controls from the risk set. As in pre-
vious analyses of these data, we fitted a linear excess rate
ratio (ERR) model for the association between cumulative
asbestos exposure and lung cancer mortality (7). Estimates
of the ERR per 100 fiber-years/mL, as well as associated
regression model goodness of fit, were derived under pro-
posed lags of 1, 2, 3, ..., 19, and 20 years. We identified the
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lag that yielded the largest estimated exposure-outcome co-
efficient, and we identified the lag that yielded the best
model fit (as determined by the —2 log likelihood). In
addition, we directly estimated the length of the latency
period under the assumption that this period is a fixed con-
stant, and we estimated the mode and coefficient of varia-
tion of an assumed underlying lognormal distribution of
latency periods.

The analysis included 198 lung cancer cases and 7,505
controls. The magnitude of the estimated association between
cumulative asbestos exposure and lung cancer mortality in-
creased with increasing duration of the exposure lag assump-
tion, from an estimated ERR per 100 fiber-years/mL = 1.07
under a 1-year exposure lag assumption to an estimated ERR
per 100 fiber-years/mL = 1.32 under a 20-year exposure
lag assumption.

If an investigator selected the exposure lag based on the
largest magnitude of association over the range of proposed
lags, this would yield an estimated ERR per 100 fiber-years/
mL = 1.32 (95% confidence interval (CI): 0.45, 2.62) under
the 20-year exposure lag. In contrast, if an investigator se-
lected the exposure lag based upon the best model goodness
of fit over the range of examined lags, this would yield an
estimated ERR per 100 fiber-years/mL = 1.15 obtained under
a9-year lag assumption. Now, treating the 9-year lag as if it
had been chosen a priori yields a 95% confidence interval of
0.43, 2.22. However, the 9-year lag was arrived at through a
“best fit search,” so, as expected, the 95% confidence interval
of 0.42, 2.33 that takes into account the joint estimation of
lag and exposure effect is slightly wider.

A regression model was fitted in which the latency pe-
riods were assumed to arise from a lognormal distribution,
resulting in an estimated ERR = 1.15 (95% CI: 0.43, 2.25)
with the mode of the lognormal distribution at 8.47 years
(95% CI: 0.66, 24.53) and coefficient of variation = 0.148.

Simulation example

Simulations were used to illustrate bias and confidence
interval coverage due to misspecification of lag assumptions.
Data were simulated for 10,000 hypothetical studies of the
association between cumulative radon exposure and lung
cancer mortality; the simulation method follows an approach
described previously for simulating nested case-control data
by using empirical data from the Colorado Plateau uranium
miners study (8). Letting i denote worker and j denote year
of observation, radon exposure histories were assigned
such that the exposure intensity for each worker-year, d;;,
conforms to the model In(d;;) = p + o; + €;;, where p = 0.1,
a; ~ N(0, 6°p), and €; ~ N(0, 6°,,). Data were simulated for
scenarios in which 6z =1 and ,, = 0.1, 0.5, or 1.0. Risk sets
were then formed from the cohort at each of the ages of the
258 lung cancer deaths. First, we randomly pick one mem-
ber of the risk set, k, as the index case by specifying the rate
of lung cancer death for each worker, i, at age t, A{(%), as
a function of the person’s exposure history up to that age
from the multinomial distribution with probabilities A(#;)/%;
Ai(ty), where the sum is over the risk set members, and then
randomly sampled up to 40 controls from the risk set; and
Ai(t) = exp(BD), where B = 1.0 and D is the cumulative
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exposure accrued L years prior to the index date. Two series
of simulations were conducted: In the first, the latency pe-
riod, L, was a fixed constant equal to 5 years; in the second,
the latency period was assigned to each person by random
sampling from a lognormal distribution with mode equal to 5
years and coefficient of variation = 0.1, 0.2, or 0.3. Each
simulated data set was analyzed by using conditional logistic
regression. Estimates of the cumulative exposure-outcome
association were derived under proposed lags of 1, 2, ...,
9, and 10 years. For each simulation, we identified the pro-
posed lag that yielded the largest estimated exposure-out-
come coefficient, and we identified the proposed lag that
yielded the best model fit (as determined by the —2 log
likelihood). For simulations in which the assigned latency
period was a fixed constant, an estimate of the cumulative
exposure-outcome association was derived by using a model
that jointly estimated the exposure effect estimate and latency
period (Web Appendix). For simulations in which a latency
period was assigned to each person by random sampling from
a lognormal distribution, an estimate of the cumulative
exposure-outcome association was derived by using a model
that simultaneously estimated the exposure effect and param-
eters for a lognormal distribution of latency periods (Web
Appendix). From 10,000 trials, we computed the mean log
rate ratio (“‘estimated B”’), empirical standard deviation of
the estimated log rate ratio (“‘empirical SE”’), average of the
estimated standard error of the log rate ratio (“‘estimated
SE”), and proportion of estimated 95% Wald-type confidence
intervals that covered the specified true value for B (“CI
coverage’’). We note that the framework laid out in the
paper is more general than the parametric model used in
the simulations.

We first simulated data specifying a 5-year fixed latency
period under scenarios in which ,, was 0.1, 0.5, or 1.0
(Table 1). For each iteration of the scenario, models were
fitted under a range of proposed lags (1-10 years). As in our
motivating example, as the proposed lag increased so did the
magnitude of the estimated association. Therefore, selecting
the proposed lag that yielded the largest estimate of the mag-
nitude of association consistently corresponded to the longest
lag evaluated (i.e., a 10-year lag). The average estimate of
association was 1.33, 1.31, or 1.24 under scenarios in which
c,, was 0.1, 0.5, or 1.0. Selecting the lag that yielded the
best model fit for each iteration of the simulation resulted in
estimates of association that were close to the true value
specified for the simulations. The average estimates of as-
sociation were 1.04, 1.03, and 1.02 under scenarios in which
o, was 0.1, 0.5, and 1.0; 95% confidence interval coverage
was estimated to be 62%, 68%, and 85% under these sce-
narios, suggesting that the practice of comparing the fit of a
series a models under various lag assumptions and selecting
the lag that yields the best model fit results in confidence
intervals for the effect estimate that are too narrow. Using
the same simulation data, we directly estimated the latency
period simultaneously with the parameter describing the
exposure-response association. The average estimates of as-
sociation were log(relative rate/100 units) = 1.01 (CI cover-
age, 88%), 0.99 (CI coverage, 88%), and 1.01 (CI coverage,
92%) under scenarios in which o,, was 0.1, 0.5, and 1.0,
indicating little bias and confidence interval coverage closer
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Table 1. Estimated Log Relative Rate per 100 WLMs Under Various Approaches to Selecting the Exposure Lag Assumption?

Three Scenarios Regarding o, Estimated Empirical SE Estimated SE Cl Coverage

o, = 0.1

Select “guessed” lag that yields largest estimate of association 1.33 0.126 0.120 0.218

Select “guessed” lag that yields best model fit 1.04 0.195 0.092 0.623

Simultaneously estimate lag and estimate of association 1.01 0.190 0.134 0.878
oy, =05

Select “guessed” lag that yields largest estimate of association 1.31 0.095 0.093 0.083

Select “guessed” lag that yields best model fit 1.03 0.147 0.072 0.684

Simultaneously estimate lag and estimate of association 0.99 0.114 0.077 0.880
ow=1.0

Select “guessed” lag that yields largest estimate of association 1.24 0.076 0.070 0.050

Select “guessed” lag that yields best model fit 1.02 0.078 0.056 0.851

Simultaneously estimate lag and estimate of association 1.01 0.071 0.055 0.915

Abbreviations: Cl, confidence interval; SE, standard error; WLM, working level month.
2 In all simulations, the specified true association is B = 1. The natural log of annual exposure is distributed with = 0.1 and cg = 1.

to the nominal 95% level. Of course, if the true latency period
was known a priori and the investigator specified a 5-year
lag for each iteration of the simulation, the confidence interval
will be narrower. In our simulations, the average estimates
of association under these scenarios equal log(relative rate/
100 units) = 1.00 (CI coverage, 95%) (not shown).

Data were also simulated for scenarios in which the latency
period was a random variable arising from a lognormal
distribution (Table 2). We first consider the approach of select-
ing the lag that yields the largest magnitude of association;

this estimate is obtained under the longest proposed lag value
and is a biased estimate of association. In the majority of
simulations, this corresponded to the longest lag assumption
considered. The average estimates of association were 1.36,
1.33, and 1.29 under scenarios in which the population var-
iations in the latency period were 0.1, 0.2, and 0.3. Next, we
considered the approach of selecting the lag that yielded the
best model fit. Bias increased as the population variation in
the latency period increased. The average estimates of as-
sociation were 0.99, 0.97, and 0.94 under scenarios in which

Table 2. Estimated Log Relative Rate per 100 WLMs Under Various Approaches to Selecting the Exposure Lag Assumption or Modeling the

Population Distribution of Latency Intervals®

Three Scenarios Regarding the CV of This Distribution Estimated 8 Empirical SE Estimated SE Cl coverage

CV=0.1

Select “guessed” lag that yields largest estimate of association 1.36 0.076 0.075 0.000

Select “guessed” lag that yields best model fit 0.99 0.079 0.053 0.814

Simultaneously estimate CV and estimate of association 1.05 0.148 0.122 0.947

Simultaneously estimate mode, CV, and estimate of association 1.05 0.182 0.141 0.923
Cv=0.2

Select “guessed” lag that yields largest estimate of association 1.33 0.076 0.075 0.002

Select “guessed” lag that yields best model fit 0.97 0.081 0.053 0.779

Simultaneously estimate CV and estimate of association 1.04 0.161 0.130 0.930

Simultaneously estimate mode, CV, and estimate of association 1.04 0.187 0.152 0.900
Cv=03

Select “guessed” lag that yields largest estimate of association 1.29 0.075 0.074 0.006

Select “guessed” lag that yields best model fit 0.94 0.087 0.051 0.654

Simultaneously estimate CV and estimate of association 1.04 0.182 0.148 0.897

Simultaneously estimate mode, CV, and estimate of association 1.04 0.214 0.176 0.870

Abbreviations: Cl, confidence interval; CV, coefficient of variation; SE, standard error; WLM, working level month.
2 In all simulations, the specified true association is B = 1. The natural log of annual exposure is distributed with u = 0.1, 5, = 1, and 6 = 1.
The population distribution of the latency interval, L, is lognormally distributed with a mode equal to 5.
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the population variations in the latency period were 0.1, 0.2,
and 0.3. The 95% confidence interval coverages were esti-
mated to be 81%, 78%, and 65% under these scenarios. We
fit a model to directly estimate the coefficient of variation of
a lognormal latency period distribution, as would be esti-
mated if the mode of the distribution of latency period was
known a priori to be equal to 5 years (or, as would be esti-
mated if the investigator specified a preferred lag assumption
and evaluated the sensitivity of results to the assumption that
the latency period was lognormally distributed rather than
a fixed constant). The average estimates of association were
1.05 (CI coverage, 95%), 1.04 (CI coverage, 94%), and
1.04 (CI coverage, 90%) under scenarios in which the pop-
ulation variations in the latency interval were 0.1, 0.2, and
0.3. We also fitted a model to directly estimate the mode and
coefficient of variation of a lognormal distribution of la-
tency periods. The average estimates of association were
1.05 (CI coverage, 92%), 1.05 (CI coverage, 91%), and
1.04 (CI coverage, 87%) under scenarios in which the
population variations in the latency period were 0.1, 0.2,
and 0.3.

RESULTS AND DISCUSSION

Lagging of exposure assignment is a widely used method
to account for a latency period between exposure and disease
(3, 4, 9). Common analytical approaches to account for the
latency period are to impose a number of lag periods and to
choose the one that either 1) maximizes the effect estimate
or 2) has the best fit. Both of these approaches implicitly
assume that the latency period is approximately the same
across persons. If this is the case, we showed that the former
approach can lead to bias in the effect estimate and that the
latter approach, while unbiased, will result in confidence
intervals that are narrower than they should be. If the equal
latency period assumption is true and the lagging method is
used, we showed that joint likelihood estimation of lag and
effect yields unbiased estimation of the exposure effect and
that confidence intervals provide reasonably accurate cov-
erage. We then showed that, when the equal latency period
assumption is not true, that is, when there is (moderate)
variability in the latency periods over persons, selecting the
lag that yields the best model fit produces a biased estimate of
exposure effect; the degree of bias increases with the co-
efficient of variation of the latency periods (Table 2). Finally,
because the equal latency period assumption is implausible,
we proposed a likelihood approach that accommodates vari-
able latency intervals across persons and showed that this
approach performed reasonably well.

Of course, one way to avoid the problems that arise from
an iterative search for the best lag assumption is to specify a
single lag assumption a priori based on biologic knowledge
or expert opinion. However, rarely do investigators have a
strong prior basis for selecting a specific value for the latency
period (or a basis for specifying the mode and variance for
a population distribution of such values). If the investigator
does have a strong prior basis regarding the latency period,
then this could be used to inform the joint estimation of the
exposure effect and latency period, suggesting extensions of
the approach described in this paper to explicitly incorporate
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prior knowledge in a Bayesian framework. As we illustrate,
in the absence of a strong prior basis, the data in hand often
may be consistent with a range of latency periods, and this
may impact confidence intervals for the estimate of the
exposure effect.

As illustrated in our simulations, if there is substantial
population variation in the latency period, then standard
approaches to lagging exposure assignment may lead to bi-
ased effect estimates. We propose an estimation technique,
implemented under the assumption that the distribution of
latency periods, L, conforms to a lognormal distribution,
denoted f;(I). If this assumption is wrong, bias may occur;
however, it should be noted that, because f;(I) asymptoti-
cally approaches the density function for a step function, the
proposed approach can necessarily perform at least as well as
a standard exposure lagging approach. Of course, other distri-
butions, such as exponential or gamma, could replace the
lognormal in our approach. However, a lognormal distribution
is a reasonable choice, as it precludes values for L at or below
0; in addition, it offers a cumulative density function that
may approximate those of many other reasonable popula-
tion distributions of latency periods (such as normal). Use
of a lognormal model for induction and latency periods was
discussed for cancer by Breslow and Day in 1987 and infec-
tious diseases by Sartwell in 1950 on the basis of the observa-
tions that latency (incubation) time distributions in several
malignant (infectious) diseases are skew with a marked tail
and that the logarithms of the times are approximately nor-
mally distributed (10, 11). As illustrated by our empirical
example, even in a moderately sized study, estimates of
these parameters may be obtained.

Models with additional parameters to describe variation
over time in the effect of exposure have been proposed (12—14).
However, the simple models discussed in the current paper
offer a useful connection to the standard approach of lagging
exposure assignment while overcoming some important
limitations.
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