

NIH Public Access

Author Manuscript

Nat Genet. Author manuscript; available in PMC 2012 February 9

Published in final edited form as: *Nat Genet.*; 44(1): 6–7. doi:10.1038/ng.1044.

Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set

Zhaoming Wang^{1,2}, Kevin B. Jacobs^{1,2}, Meredith Yeager^{1,2}, Amy Hutchinson^{1,2}, Joshua Sampson², Nilanjan Chatterjee², Demetrius Albanes², Sonja I. Berndt², Charles C. Chung², W. Ryan Diver³, Susan M. Gapstur³, Lauren R. Teras³, Christopher A. Haiman⁴, Brian E. Henderson⁴, Daniel Stram⁴, Xiang Deng^{1,2}, Ann W. Hsing², Jarmo Virtamo⁵, Michael A. Eberle⁶, Jennifer L. Stone⁶, Mark P. Purdue², Phil Taylor², Margaret Tucker², and Stephen J. Chanock²

¹Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA ²Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD 20892, USA ³Epidemiology Research Program, American Cancer Society, Atlanta, GA, 30303, USA ⁴Department of Preventive Medicine, Keck School of Medicine, University of Southern California/ Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA ⁵Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland ⁶Illumina, Inc. San Diego, CA 92121, USA

Statistical imputation of genotype data is an important statistical technique that uses patterns of linkage disequilibrium observed in a reference set of haplotypes to computationally predict genetic variants *in silico*¹. Currently, the most popular reference sets are the publicly available International HapMap² and 1000 Genomes datasets³. While these resources are valuable for imputing a sizeable fraction of common SNPs, they may not be optimal for imputing data for the next generation of genome-wide association studies (GWAS) and SNP arrays, which explore a fraction of uncommon variants.

We have built a new resource for imputation of SNPs for existing and future GWAS, known as the Division of Cancer Epidemiology and Genetics (DCEG) Reference Set. The dataset includes 728 cancer-free individuals of European ancestry from three large prospectively sampled studies⁴⁻⁶, 98 African-American individuals from the Prostate, Lung, Colon, and Ovary Cancer Screening Trial (PLCO), 74 Chinese individuals from a clinical trial in Shanxi, China (SHNX)⁷, and 349 individuals from the HapMap Project (see Table 1). The final harmonized dataset includes 2.8 million autosomal polymorphic SNPs on 1,249 subjects after rigorous quality control metrics were applied (see Supplementary Methods).

We compared the imputation performance of the DCEG Reference Set to the International HapMap and 1000 Genomes reference sets, which were available from the IMPUTE2 web site (URL below). We assessed imputation accuracy using directly genotyped SNP data from the DCEG Reference Set and masking subsets to simulate data from two common low-cost commercial genotyping arrays used in GWAS studies (Illumina Human Hap660 and OmniExpress). Probabilistic genotypes were imputed using both IMPUTE2 (ref. 8) and

Correspondence should be addressed to: Stephen J. Chanock, M.D., Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Advanced Technology Center- NCI, 8717 Grovemont Circle, Bethesda, MD 20892-4605, chanocks@mail.nih.gov, Tel: 301-435-7559, Fax: 301-402-3134.

URLs IMPUTE2: http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_pilot_plus_hapmap3.html dbGaP: http://www.ncbi.nlm.nih.gov/gap

BEAGLE (ref. 9) software and compared with the unmasked genotyped SNPs. Accuracy was measured using the squared-Pearson correlation coefficient (R^2) under a trend/dosage model (see Supplementary Methods). We observed higher imputation accuracy compared to the combination of 1000 Genomes and HapMap data across a spectrum of minor allele frequencies (MAF) (see Figure 1). Accuracy in individuals of European ancestry imputed from Hap660 or OmniExpress arrays, measured by the proportion of variants imputed with R^2 >0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively. We estimated the difference in power to detect associations in GWAS design between an imputed dataset and one composed of directly genotyped SNPs in the DCEG Reference Set based on a model of Park et al.¹⁰. When using Hap660 data to impute, we observed detection rates of 92.9% when imputing with the DCEG Reference Set and 84.7% with the 1000 Genomes and HapMap reference relative to the detection rates of 93.9% and 86.2%, respectively.

Since imputation accuracy depends on similarity of haplotypes between reference and study populations, we examined an extreme scenario in which we used a reference population from Finland (ATBC) to impute genotypes using OmniExpress data from a US population of European ancestry (PLCO) (Supplementary Figure 1). For common SNPs, there was minimal loss of imputation accuracy when using the reference population from Finland, relative to another US based study (CPSII) or to HapMap CEPH and Northern Italian reference (CEU+TSI populations). This suggests that for common variants a reference set of sufficient size can adequately predict common SNPs when there is a discrepancy in population genetics history, provided that comparable haplotypes are sufficiently represented. This observation could enable investigators to proceed more confidently with imputation without additional genotyping in related but not identical populations.

Although the current build of the DCEG Reference Set is primarily intended for use in European populations, we tested the accuracy of imputing OmniExpress data on an African-American sample set¹¹ (Supplementary Figures 2, 3) finding the accuracy lower than with the European samples, but still superior to the publicly available reference data for African-American populations. We attribute the lower accuracy to the relatively small number of individuals of African descent in the reference panels, though we observed that adding a sufficiently large sample set of individuals of European background can improve imputation in African-Americans. Although frequencies of variants may differ among population groups and subpopulations, our findings suggest that genotype imputation is relatively robust to these differences provided that a sufficient number of matching haplotypes appear in the reference data. These results could have an impact on the design of future studies in other populations with distinct substructures.

We compared the imputation performance using OmniExpress data from individuals of European background with a reference dataset that combined the DCEG Reference Set and 1,000 Genomes and HapMap data and observed no increase in accuracy over that achieved using the DCEG Reference Set alone. One explanation for the lack of improvement is that SNP array and sequencing data have distinct patterns of non-random errors. While suboptimal for imputation, it may also be necessary to preserve these errors when combining directly genotyped and imputed data in order to recapitulate the patterns of differential misclassification and perhaps retain statistical validity for association testing. Thus, SNP array data should be superior for imputation of genotypes obtained from SNP arrays, though not necessarily superior at imputing the true genotypes. While low-pass sequencing data may capture more variants, the cumulative effects of both higher false-positive and falsenegative rates may also decrease imputation accuracy. The DCEG Reference data set should be a valuable resource for the next-generation of GWAS with denser assays that include uncommon variants and it should enable investigators to conduct meta-analyses across SNPs arrays more efficiently. The DCEG Reference Set is available from the Database of Genotypes and Phenotypes (dbGaP accession number phs000396.v1.p1) in several formats along with documentation on how to use the data with the IMPUTE2 and BEAGLE programs. We anticipate generating subsequent data builds that will both expand the number of subjects from diverse populations and add new assay content from the Affymetrix 6.0/Axiom, Illumina Omni5 arrays, and other future commercial genotyping products.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The genotyping in the MEC was supported by a Department of Defense Breast Cancer Research Program Era of Hope Scholar Award to CA Haiman [W81XWH-08-1-0383], and National Institutes of Health grant CA132839.

References

- Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010; 11:499–511. [PubMed: 20517342]
- 2. Frazer KA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007; 449:851–61. [PubMed: 17943122]
- 3. A map of human genome variation from population-scale sequencing. Nature. 2010; 467:1061–73. [PubMed: 20981092]
- 4. Prorok PC, et al. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control Clin Trials. 2000; 21:273S–309S. [PubMed: 11189684]
- The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. Ann Epidemiol. 1994; 4:1–10. [PubMed: 8205268]
- Calle EE, et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer. 2002; 94:2490–501. [PubMed: 12015775]
- Ke L. Mortality and incidence trends from esophagus cancer in selected geographic areas of China circa 1970-90. Int J Cancer. 2002; 102:271–4. [PubMed: 12397650]
- Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009; 5:e1000529. [PubMed: 19543373]
- Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009; 84:210–23. [PubMed: 19200528]
- 10. Park JH, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010; 42:570–5. [PubMed: 20562874]
- Kolonel LN, et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am J Epidemiol. 2000; 151:346–57. [PubMed: 10695593]

Wang et al.

Figure 1. Imputation accuracy for individuals of European ancestry with DCEG and public reference set

The proportion of SNPs with allelic dosage $R^2 > 0.8$ by MAF, is shown on the log scale to emphasize differences at smaller values. Solid red depicts imputation of Hap660 data using the DCEG Reference Set. Dashed red depicts imputation of Hap660 using the 1000 Genome plus HapMap3 reference. Solid blue depicts imputation of OmniExpress data using the DCEG Reference Set. Dashed blue depicts imputation of OmniExpress using the 1000 Genome plus HapMap3 reference.

Table 1

Samples included in the DCEG Reference Set

Subjects passing quality control metrics for the SNP arrays indicated in the right hand columns. This table reports the content of Build 1.

Wang et al.

GroupEuropean American AfricanAmericanAfricanAsianHap660Hap1Omni1.ATBC 246 246 2 246 7 7 7 7 7 7 7 CPSII 227 227 255 98 7 7 7 7 7 7 7 PLCO 255 98 7 7 7 7 7 7 7 PLCO 255 98 7 7 7 7 7 7 7 PLCO 116 7 7 7 7 7 7 7 PLCO 116 7 7 7 7 7 7 7 HapMap 116 7 7 7 7 7 7 7 CEU 116 7 7 7 7 7 7 7 7 IPT 86 86 7 7 7 7 7 7 7 IPT 86 86 7 7 7 7 7 7 7 IPT 86 86 7 7 7 7 7 7 7 IPT 930 930 98 59 162 7 7 7 7		Popul	lations				Illumi	na Array	
ATBC 246	Group	European AmericanAfrican	American	African	Asian	Hap660	Hap1	0mni1	Omni2.5
CFSI 227	ATBC	246					>	>	>
PLCO 255 * <td>CPSII</td> <td>227</td> <td></td> <td></td> <td></td> <td></td> <td>></td> <td>></td> <td>></td>	CPSII	227					>	>	>
PLCO 98 SHNX 74 HapMap 74 HapMap 44 CEU 116 44 CEU 16 44 IFT 44 44 IFT 59 44 Total 930 98 59 162	PLCO	255					>	>	>
SHIX 74 / / / HapMap 116 /	PLCO		98				>		>
HapMap 4 CEU 116 CHB 44 PT 44 IPT 44 TSI 86 TSI 59 Value 930 98 59	XNHS				74	>			>
CEU 116 CHB 44 IPT 44 IPT 44 TSI 86 YRI 59	HapMap								
CHB 44 JPT 44 TSI 86 YRI 59 162	CEU	116							>
JPT 44 TSI 86 YRI 59 Total 930 98 59 162	CHB				44				>
TSI 86 YRI 59 5 Total 930 98 59 162	JPT				4				>
YRI 59 V Total 930 98 59 162	TSI	86							>
Total 930 98 59 162	YRI			59					>
	Total	930	98	59	162				