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Abstract

Genetic variation within and between species can be shaped by population-level processes and mutation; however, the
relative impact of ‘‘survival of the fittest’’ and ‘‘arrival of the fittest’’ on phenotypic evolution remains unclear. Assessing the
influence of mutation on evolution requires understanding the relative rates of different types of mutations and their
genetic properties, yet little is known about the functional consequences of new mutations. Here, we examine the spectrum
of mutations affecting a focal gene in Saccharomyces cerevisiae by characterizing 231 novel haploid genotypes with altered
activity of a fluorescent reporter gene. 7% of these genotypes had a nonsynonymous mutation in the coding sequence for
the fluorescent protein and were classified as ‘‘coding’’ mutants; 2% had a change in the S. cerevisiae TDH3 promoter
sequence controlling expression of the fluorescent protein and were classified as ‘‘cis-regulatory’’ mutants; 10% contained
two copies of the reporter gene and were classified as ‘‘copy number’’ mutants; and the remaining 81% showed altered
fluorescence without a change in the reporter gene itself and were classified as ‘‘trans-acting’’ mutants. As a group, coding
mutants had the strongest effect on reporter gene activity and always decreased it. By contrast, 50%–95% of the mutants in
each of the other three classes increased gene activity, with mutants affecting copy number and cis-regulatory sequences
having larger median effects on gene activity than trans-acting mutants. When made heterozygous in diploid cells, coding,
cis-regulatory, and copy number mutant genotypes all had significant effects on gene activity, whereas 88% of the trans-
acting mutants appeared to be recessive. These differences in the frequency, effects, and dominance among functional
classes of mutations might help explain why some types of mutations are found to be segregating within or fixed between
species more often than others.
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Introduction

Mutations are the ultimate source of genetic variation, thus

understanding the properties of new mutations is important for

both medical and evolutionary genetics. Large-scale sequencing

surveys have recently measured mutation rates for different types

of DNA lesions (e.g., transitions, transversions, indels, rearrange-

ments, duplications) in a variety of organisms [1–3], but little

remains known about the genetic properties of these mutations or

their effects on the activity of individual genes. Although not often

incorporated into population genetic models of the evolutionary

process, differences in the frequency and properties of different

types of mutations can influence evolutionary paths [4–6].

From the perspective of a single gene, mutations affecting its

activity can be divided into four functional classes: [nonsynon-

ymous] coding mutations that alter the sequence of the encoded

RNA or protein gene product, cis-regulatory mutations that alter

(typically, non-coding) sequences that regulate the gene’s expres-

sion in an allele-specific manner, trans-acting mutations that alter

coding or cis-regulatory sequences of other genes in the genome

and affect activity of the focal gene via a diffusible gene product,

and copy number mutations resulting from duplications or

deletions that change the number of copies of the focal gene in

the genome. As the raw material of evolutionary change, all of

these types of mutations have the potential to become polymor-

phisms segregating at an appreciable frequency within a species

and/or substitutions fixed between species, yet studies identifying

the genetic basis of trait differences suggest that some types of

changes underlie phenotypic differences more often than others

(reviewed by [7–9]).

The apparent inequality in the contribution of different types of

mutations to phenotypic evolution is often explained by invoking

differences in pleiotropy (i.e., the number of traits affected by a

mutation) among functional classes. Increased pleiotropy is

assumed to increase the chance that a mutation has deleterious

effects on fitness and will be disfavored by natural selection. One

example of this is that coding mutations are commonly expected to

be more pleiotropic (and hence have lower average fitness) than
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cis-regulatory mutations ([7,9,10], but see [11]). Although

undoubtedly important, pleiotropy is only one factor influencing

the probability that a certain type of mutation is fixed. For

example, the direction and magnitude of a mutation’s effect on

gene activity and whether or not the mutation is dominant to the

wildtype allele are also expected influence the evolutionary

trajectories of new mutations in diploid populations. Of course,

these factors matter only after a mutation has occurred, thus

mutation rates can influence the evolutionary process as well

[7,12–14]. The frequency, effects, and dominance of new

mutations have all been predicted to vary among functional

classes of mutations [15–17], but little data has been available to

test these predictions [13,15].

To directly compare these parameters among functional classes

of mutations, we systematically isolated and quantitatively

characterized over 200 mutations in Saccharomyces cerevisiae affecting

activity of a focal gene. To make this experiment feasible, we used

a mutagen to elevate the mutation rate and studied mutations

affecting activity of a reporter gene expressing Yellow Fluorescent

Protein (YFP) that could be scored quantitatively in thousands of

living cells per second using flow cytometry. Expression of this

heterologous fluorescent protein was controlled by native S.

cerevisiae promoter and terminator sequences (which allowed us to

interrogate endogenous S. cerevisiae transcriptional regulatory

networks) and the mutagen was expected to cause mutations

relatively uniformly across the genome.

Using this experimental system, we measured the proportion

of cells with new mutations that altered activity of the reporter

gene and used this proportion to estimate the spontaneous

mutation rate for this phenotypic change. We then isolated 231

mutants with altered activity of the reporter gene and subjected

them to further characterization, including determining the

relative frequency of different types of mutations, comparing

their effects on reporter gene activity, and assessing their

dominance relative to the wildtype allele. These data revealed

differences in the frequency, effects, and dominance among

coding, cis-regulatory, trans-acting, and copy number mutations

that are expected to influence the relative contribution of

different types of mutations to phenotypic variation within and

between species.

Results

To characterize the spectrum of mutations affecting activity of

a focal gene, we screened mutagenized cells containing a

fluorescent reporter gene and quantified cellular fluorescence

using flow cytometry. Mutagenesis was performed using ethyl

methanesulfonate (EMS), and the increase in mutation rate was

controlled by titrating exposure of cells to this chemical. The

reporter gene was constructed by fusing the coding sequence of

the Venus variant [18] of YFP to the S. cerevisiae CYC1 terminator

[19], and placing them both under the control of 59 intergenic

sequence of the S. cerevisiae TDH3 gene. This chimeric transgene

(PTDH3-YFP) was integrated into a pseudogene on the first

chromosome of S. cerevisiae, where integration of fluorescent

reporter genes has previously been found to have no measurable

effect on fitness (B. Williams, personal communication). For each

cell, the activity of PTDH3-YFP was measured as YFP fluorescence

per unit of ‘‘forward scatter’’ (FSC); FSC is proportional to cell

size [20] and is linearly related to YFP fluorescence (Figure 1A).

In the absence of amino acid changes in YFP, cellular

fluorescence is expected to be linearly related to YFP protein

abundance, as has been shown for the related Green Fluorescent

Protein [21].

Figure 1. EMS treatment increased the frequency of cells with
extreme YFP fluorescence. (A) The relationship between ‘‘forward
scatter’’ (‘‘FSC’’, a proxy for cell size) and YFP fluorescence is shown for a
population of control cells. FSC and YFP fluorescence are both reported
in arbitrary units on a log scale. A similar linear relationship was
observed for other genotypes. Approximately 2% of flow cytometry
‘‘events’’ had YFP fluorescence less than the range plotted and are not
shown. The fluorescence phenotype of each sample in the secondary
screen was calculated as the median YFP/FSC ratio for FACS events with
FSC values between 5.30 and 5.55 (indicated with dotted lines). (B) The
distribution of YFP fluorescence phenotypes is shown for EMS-treated
(dashed curve) and control cells (solid curve) from one of the nine
replicate populations of EMS-treated and control cells analyzed in the
primary screen. Locations of the 1st, 5th, 95th, and 99th percentiles of
the control sub-population are indicated, and vertical dashed lines
show the average thresholds used for cell sorting (see also Table S1). (C)
The difference between the number of EMS-treated and control cells in
the population is plotted for a range of fluorescence levels (grey line).
The black curve shows a spline fit to these data. Positive values indicate
fluorescence phenotypes that were more abundant in the EMS-treated
sample, whereas negative values indicate fluorescence phenotypes that
were more abundant in the control sample. The spline crosses zero at
approximately the 17th and 84th percentiles of the control population.
The percentage of the EMS-treated population that is either over or
under represented is shown for the following percentile ranges: 1–17,
17–84, 84–99. The X-axis representing YFP fluorescence levels has the
same scale as in panel B.
doi:10.1371/journal.pgen.1002497.g001

Author Summary

Genetic dissection of phenotypic differences within and
between species has shown that mutations affecting
either the expression or function of a gene product can
contribute to phenotypic evolution; mutations that alter
gene copy number have also been shown to be an
important source of phenotypic variation. Predicting when
and why one type of mutation is more likely to underlie a
phenotypic change than another remains a pressing
challenge for evolution biology. Understanding the
relative frequency and properties of different types of
mutations will help resolve this issue. To this end, we
isolated 231 mutants with altered activity of a focal gene.
Mutants were classified into one of four functional classes
(i.e., coding, cis-regulatory, trans-acting, or copy number)
based on the location and nature of mutation(s), or lack
thereof, within the focal gene. Mutant effects on focal
gene activity were assessed in both haploid and diploid
cells. These data identified differences in the frequency,
effects, and dominance (relative to the wild-type allele)
among functional classes of mutants that help explain
patterns of genetic variation within and between species.

Quantifying Properties of New Mutations in Yeast
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A spontaneous mutation rate affecting PTDH3-YFP activity
was estimated from an EMS-treated population

To determine the frequency of mutations that affected PTDH3-

YFP activity, which is expected to reflect the genome-wide

mutational target size for this phenotype, we measured YFP

fluorescence in each cell of a mixed sample containing both EMS-

treated and untreated cells. Cells that were not exposed to EMS

were considered control cells and labelled with Cy5 (a fluorescent

dye), but otherwise processed identically to the EMS-treated cells.

Comparing YFP fluorescence between .25,000 control cells

labelled with Cy5 and .20,000 unlabelled control cells showed

that Cy5 labeling had no significant effect on the measurement of

YFP fluorescence phenotypes (P = 0.9, t-test).

The EMS-treated population displayed an approximately equal

increase of cells with YFP fluorescence levels in both tails of the

distribution (Figure 1B, 1C), suggesting that mutations increasing

and decreasing fluorescence occurred at similar rates. The increase

in cells with both high and low fluorescence was taken as the

frequency (f = 0.0298) of EMS-induced mutants with altered

activity of PTDH3-YFP, whereas the remaining cells were assumed

not to carry any mutations affecting PTDH3-YFP activity. Assuming

mutations affecting PTDH3-YFP activity were Poisson distributed,

the inferred frequency of genotypes without a relevant mutation

(P0 = 12f = 0.9702) suggested an average of 0.0303 mutations

affecting PTDH3-YFP activity per genome in the EMS-treated cells.

Given this mutation rate, a Poisson process predicts that 2.94% of

the EMS-treated cells should have exactly one relevant mutation

(P1), whereas just 0.04% of the EMS-treated cells (1% of all

mutants) should have more than one mutation affecting PTDH3-

YFP activity (P.1).

To estimate a spontaneous mutation rate for PTDH3-YFP activity

from this mutagen-treated population, we measured the frequency

of canavanine resistance mutants in the same EMS-treated

population, and found that it was 5737-fold higher than the

spontaneous canavanine resistance mutation rate reported by [22].

Assuming that a similar proportion of sites affecting canavanine

susceptibility and PTDH3-YFP activity were targeted by EMS, our

data suggest a spontaneous mutation rate for quantitative changes

in PTDH3-YFP activity of 0.0303/5737 or 5.361026 per haploid

genome per generation (Text S1). An alternative estimate of the

spontaneous mutation rate, based on the number of empirically

confirmed mutants in each tail of the EMS-treated distribution

(described in the next section), was also calculated and is presented

in Table S4.

A collection of 231 mutants affecting PTDH3-YFP activity
was established using fluorescence activated cell sorting
(FACS)

To isolate individual cells with abnormal PTDH3-YFP activity for

further characterization, cells exhibiting YFP fluorescence less

than a minimum threshold near the 1st percentile of control cells

and greater than a maximum threshold near the 99th percentile of

control cells (Figure 1B) were collected using FACS. Exact sorting

thresholds for the nine replicate sorting experiments are shown in

Table S1. On average, cells with YFP fluorescence similar to that

of the lowest fluorescing 0.82% and highest fluorescing 0.64% of

the control population were sorted. These threshold levels of YFP

fluorescence resulted in sorting cells from the lowest fluorescing

1.21% and highest fluorescing 1.04% of the mutagenized

population, suggesting that (1.21–0.82)/1.21, or 32.2%, of EMS-

treated cells sorted from the low-fluorescence tail and (1.04–0.64)/

1.04, or 38.5%, of EMS-treated cells sorted from the high-

fluorescence tail were mutants. In all, 864 FACS ‘‘events’’ (i.e., cells

or other particles) were sorted from each tail of the EMS-treated

subpopulation, and 864 FACS events were sorted from each tail of

the control population, for a total of 3456 FACS events arrayed

individually on solid media. The percentage of sorted events that

formed colonies was similar between the EMS-treated and control

populations (68% vs 70%, P = 0.26, Fisher’s Exact test), suggesting

that EMS-induced mutations severely limiting growth were rare

among cells sorted from this population. A slightly larger, and

statistically significant, difference was observed, however, between

the percentage of sorted events from the high- and low-fluorescing

tails that formed colonies for both EMS-treated and control cells

(65% vs 70% for mutagenized cells, and 67% vs 72% for control

cells; P = 0.03 in each comparison, Fisher’s Exact Test). The

similar asymmetry observed in the mutagenized and control

populations suggests that it was not caused by the EMS treatment.

Each colony was used to inoculate a liquid culture, and YFP

fluorescence was measured in at least 5,000 cells from each of

these clonal cultures by flow cytometry. The YFP fluorescence

phenotype of each culture was calculated as the median YFP/FSC

ratio of all cells within a fixed range of FSC values (Figure 1A). To

determine the effect on PTDH3-YFP activity of any mutation(s)

present in a recovered genotype, we calculated the difference in

YFP fluorescence between each genotype and the mean YFP

fluorescence of replicate control cultures, and then divided it by

the standard deviation of YFP fluorescence phenotypes among the

replicate control cultures. This value is a test statistic known as a

Z-score (Z), and reflects the magnitude and direction of each

genotype’s effect on YFP fluorescence relative to the starting

(unmutagenized) genotype as well as the likelihood that this effect

is significantly different from 0. Given our experimental design,

only mutations that prevented colony formation on solid media,

slowed growth in liquid culture enough to preclude sampling 5,000

cells, or had effects on YFP fluorescence below our detection limits

should have been systematically eliminated from our collection.

Genotypes isolated from the EMS-treated population with

|Z|.2.58 were considered mutants and subjected to further

analysis. This statistical threshold corresponds to a 99%

confidence interval for the mean of the control population, and

implies that all genotypes considered mutants showed a change in

YFP fluorescence supported by a [two-tailed] p-value,0.01. On

the basis of this statistical cut-off, 231 (22%) of the 1064 liquid

cultures derived from the EMS-treated colonies were considered

mutants (Table S2). By contrast, only 16 (1%) of the 1137 cultures

derived from the control colonies exceeded the |Z| = 2.58

significance threshold (Table S2); these 16 isolates are not included

in the collection of mutants discussed below. In addition to these

changes in median YFP fluorescence, 18.6% of EMS-treated

genotypes classified as mutants, 4.4% of EMS-treated genotypes

not classified as mutants, and 1.8% of genotypes isolated from the

control population showed significant changes in the variance of

YFP fluorescence (Figure S1). Although changes in both the

median and variance of YFP fluorescence might or might not be

caused by the same mutation, the elevated proportion of genotypes

with altered variance among EMS-treated genotypes classified as

YFP fluorescence mutants suggests that they might often be one

and the same.

Frequency of mutants affecting PTDH3-YFP activity
differed among mutational classes

Mutants affecting PTDH3-YFP activity were identified solely on

the basis of their YFP fluorescence phenotype, thus we expected

them to include genotypes with (1) mutations in the coding

sequence of PTDH3-YFP, (2) mutations in cis-acting sequences of

PTDH3-YFP, (3) mutations outside of the known cis-regulatory and

Quantifying Properties of New Mutations in Yeast
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coding sequences of PTDH3-YFP that putatively have trans-acting

effects on the cell’s YFP fluorescence phenotype, and (4)

duplications or deletions changing the copy number of PTDH3-

YFP (copy number variants, CNVs).

To identify genotypes with mutations in the coding and cis-

regulatory sequences of PTDH3-YFP, we sequenced the entire

PTDH3-YFP transgene in each of the 231 mutants. 16 indepen-

dently isolated genotypes were each found to contain a mutation

predicted to change an amino acid or introduce a stop codon in

YFP; two of these observed mutations were found in two

genotypes each (Figure 2A). Additionally, one mutant was found

to contain a synonymous mutation within the YFP coding region

(Figure 2A). Four mutants had mutations within the cis-regulatory

promoter region of PTDH3-YFP, two of which carried the same

mutation (Figure 2A). None of the 231 mutants had a mutation in

the CYC1 terminator (Figure 2A), nor did any contain more than

one mutation in the entire PTDH3-YFP gene (i.e., TDH3 promoter,

YFP coding sequence and CYC1 terminator). Cases where the

same mutation was found in two mutants could have resulted from

recurrent mutation or common ancestry, although the experiment

was designed to minimize the potential for recovering clonally

related mutants (see Text S1) and in at least one case (described

below) the shared mutation exists on different genetic back-

grounds, suggesting independent origins.

EMS is not generally thought to induce changes in copy number

[23,24], but spontaneous duplications are common in S. cerevisiae

[1]. Therefore, we tested for changes in the copy number of

PTDH3-YFP by mating each haploid mutant to a closely related

genotype (of the opposite mating type) in which the YFP coding

sequence in PTDH3-YFP was replaced with the coding sequence for

a Cyan Fluorescent Protein (CFP, 95% amino acid sequence

identity with YFP [25]). Pyrosequencing was then used to compare

the relative frequency of YFP and CFP alleles in genomic DNA

extracted from each of the resulting diploid genotypes. 22 (10%) of

the 221 mutants tested showed evidence of PTDH3-YFP duplica-

tions (Figure 2B); 10 mutants were not analyzed because they

either failed to produce diploids or showed evidence of

contamination. 16 genotypes isolated from the control population

with |Z|.2.58 were also tested, and 5 (31%) showed evidence of

more than one copy of PTDH3-YFP. This high frequency of copy

number variants in the control population is consistent with the

idea that copy number variants in the EMS-treated population

also resulted primarily from spontaneous duplications. This in turn

suggests that duplications are the most common type of

spontaneous mutation affecting PTDH3-YFP activity, given that

we estimated the frequency of point mutations was elevated

,5700-fold by EMS in our screen.

On the basis of these data, we divided the 221 mutants tested for

copy number variation into four classes (Table S3): the 16 mutants

containing a mutation affecting the amino acid sequence of YFP

were classified as ‘‘coding’’; the 22 mutants containing a

duplication of PTDH3-YFP were classified as copy number variants,

or ‘‘CNV’’s; the 4 mutants containing a mutation in the TDH3

promoter were classified as ‘‘cis-regulatory’’; and the 179 mutants

that had neither a cis-regulatory or non-synonymous mutation in

PTDH3-YFP nor a change in its copy number were classified as

‘‘trans-acting’’. This large trans-acting class of mutants is expected

to include coding and noncoding changes in genes other than

PTDH3-YFP that regulate its transcription and post-transcriptional

processing as well as mutations that impact elements of the cell

that affect fluorescence per unit cell size (i.e., FSC) (e.g., pH [26]).

Epigenetic changes are also possible. Of the 10 mutant genotypes

that we were unable to test for PTDH3-YFP copy number, none

showed any sequence differences in PTDH3-YFP, indicating that

they could be either CNVs or trans-acting mutants (Table S3).

Because of this ambiguity, these 10 genotypes were excluded from

the comparisons among mutant classes described below.

Mutations affecting the amino acid sequence of YFP or the

number of copies of PTDH3-YFP were assumed to explain the

mutant phenotypes of genotypes in which they occur; however, we

Figure 2. Mutations in the coding and promoter sequences of
PTDH3-YFP as well as changes in its copy number were found
among the 231 mutant genotypes. (A) The schematic depicts the
PTDH3-YFP reporter gene and is drawn to scale. Annotations indicate the
location of each mutation relative to the transcription start site (+1) of
TDH3 [68], the nucleotide substitution observed, and the change in
amino acid sequence if applicable. Asterisks indicate mutations
observed in two mutant genotypes. Mutations at positions 2255,
2240 and 2140 are located within the promoter, and the mutation at
position 348 is a synonymous change. (B) In 221 of the 231 mutants, the
relative copy number of PTDH3-YFP and PTDH3-CFP was determined by
pyrosequencing. Clusters of points representing genotypes with one
copy of PTDH3-YFP (CFP and YFP<1/2) and two copies of PTDH3-YFP
(CFP<1/3 and YFP<2/3) are indicated with arrows. (C) Median YFP
fluorescence is plotted for each of the replicate populations analyzed
for eight distinct genotypes: unmutagenized cells containing the
‘‘wildtype’’ PTDH3-YFP sequence (diamonds); each of the four regulatory
mutant genotypes (8Q1D4, 4Q4E4, 3Q3C11, and 1Q4D11 in Table S3)
that contained a promoter mutation (filled circles); and genotypes in
which one of the promoter mutations (2255, 2240, or 2140) was
introduced into same genetic background as the wildtype PTDH3-YFP
gene (open circles). Populations of cells containing any one of the
promoter mutations showed a significant change in YFP fluorescence
relative to the wildtype genotype (P2255 = 0.002, P2240 = 0.002,
P2140 = 0.015, MWW test). The mutation at 2255 had an effect on
YFP fluorescence equivalent to that of mutant genotype 8Q1D4
(P = 0.261, MWW), but not to that of mutant genotype 4Q4E4
(P = 0.0002, MWW). The effects on YFP fluorescence of mutations at
2240 and 2140 were equivalent to those of the mutant genotypes
(3Q3C11 and 1Q4D11, respectively) that harbored them (P2240 = 0.262
and P2140 = 0.262, MWW).
doi:10.1371/journal.pgen.1002497.g002
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were less confident of this assumption for the promoter mutations.

Therefore, we empirically tested whether each of the three

mutations identified in the promoter region was (1) sufficient to

alter YFP fluorescence and (2) sufficient to recreate the YFP

fluorescence phenotype of the mutant genotype(s) that harbored it.

Site-directed mutagenesis was used to introduce each mutation

into the ancestral (unmutagenized) genotype, and YFP fluores-

cence was analyzed in a haploid population of these genetically

modified cells using flow cytometry. In all three cases, populations

of cells containing one of these promoter mutations showed in a

significant change in YFP fluorescence relative to cells with the

ancestral promoter (P,0.05, Mann-Whitney-Wilcoxon (MWW);

Figure 2C). For three of the four genotypes containing a promoter

mutation, this mutation was sufficient to recapitulate the change in

YFP fluorescence (Figure 2C), showing that the promoter

mutation was solely responsible for the observed mutant

phenotype. The one exception was a genotype that carried the

same promoter mutation as another strain; in this case, the

promoter mutation only partially recreated the mutant’s YFP

fluorescence (Figure 2C), indicating that this genotype (mutant

4Q4E4) contained more than one mutation affecting YFP

fluorescence.

Effects of mutations on PTDH3-YFP activity differed among
mutational classes

As described above, the Z-score calculated for each sorted

genotype describes the magnitude and direction of its effects on

PTDH3-YFP activity relative to the control (unmutagenized)

genotype. To determine the relative frequency of mutations that

increased and decreased YFP fluorescence, we examined the sign

of the Z-score for each of the 231 mutants with |Z|.2.58 and

found that 162 (70.1%) showed increased fluorescence (Z.0).

When alternative thresholds of either |Z|.1.96 or |Z|.1.645,

corresponding to p,0.05 and p,0.1, respectively, were used to

identify mutants, 68% showed increased fluorescence. This excess of

mutants with increased YFP fluorescence was surprising given the

similar increases in cell number observed in both tails of the full

EMS-treated population (Figure 1B, 1C). As described above,

differences in colony formation rates were observed between the

high- and low-fluorescing tails; however, they are unlikely to explain

the apparent excess of high-fluorescing mutants: 65.3% of FACS

events sorted from the low-fluorescing tail formed colonies and

38.5% of this group were expected to be mutants, whereas 70.1% of

FACS events sorted from the high-fluorescing tail formed colonies

and 32.2% of these were expected to be mutants, suggesting that

about half (52.7%) of recovered mutants should increase fluores-

cence. This discrepancy might instead result from a nonuniform

distribution of mutants within each tail, such that sorting from a

slightly larger tail at the low-fluorescing end of the distribution

(1.22% vs 1.04% of cells in the EMS-treated population) resulted in

a lower proportion of sorted cells being classified as mutants.

Comparing the distributions of Z-scores among the four

mutational classes showed differences in both the magnitude and

direction of effects among groups (Figure 3). For example, none of

the 16 coding mutants increased fluorescence, compared to 21

(95%) of the 22 CNVs, 2 (50%) of the 4 cis-regulatory mutants, and

131 (73%) of the 179 trans-acting mutants. Considering only the

magnitude of the change in YFP fluorescence caused by each

mutant (|Z|), we found statistically significant pairwise differences

among coding, CNV, and trans-acting mutants (P#0.02 in all 3

comparisons, MWW test). With only four cis-regulatory mutants

recovered from our screen, we had little power to detect

differences in comparison with other classes, and all three pairwise

tests involving this class failed to reach statistical significance

(P$0.15 in all cases, MWW test). Overall, coding mutants had the

largest effect on gene activity (median |Z| = 48), followed by cis-

regulatory mutants (median |Z| = 8.1) and CNVs (median

|Z| = 8.0), and finally trans-acting mutants (median |Z| = 4.6).

Figure 3. Effects on YFP fluorescence in haploid cells differ among mutational classes. The effects on YFP fluorescence of the 4 cis-
regulatory (black), 16 coding (green), 22 CNV (red), and 179 trans-acting (blue) mutants are summarized in histograms. For each mutational class, the
height of each bar indicates the number of mutants with the corresponding effect (as measured by Z-score) on YFP fluorescence in haploid cells.
Positive Z-scores indicate increases in YFP fluorescence relative to control cells and negative Z-scores indicate decreases in YFP fluorescence relative
to control cells. The relative frequency of mutants in each of the four mutational classes is also shown in the inset pie chart.
doi:10.1371/journal.pgen.1002497.g003
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Dominance of mutations affecting PTDH3-YFP activity
differed among mutational classes

We isolated mutants in haploid cells so that we could recover

recessive mutations; however, wild populations of many eukary-

otes, including S. cerevisiae, tend to be diploid. To determine how

the haploid mutant genotypes in our collection act in diploid cells,

we again crossed each mutant genotype with the reference strain

containing PTDH3-CFP that was used to identify CNVs. YFP and

CFP fluorescence was measured in at least 9,000 diploid cells for

each mutant genotype using flow cytometry. Z-scores describing

YFP and CFP fluorescence were calculated for each mutant by

comparing their fluorescence to that of replicate populations of

control diploid cells resulting from mating the ancestral,

unmutagenized PTDH3-YFP haploid genotype to the reference

haploid genotype containing PTDH3-CFP. We successfully tested all

16 coding mutants, all 4 cis-regulatory mutants, 21 of the 22

CNVs, and 171 of the 179 trans-acting mutants for their effects on

YFP and CFP fluorescence in diploid cells.

To assess the dominance of each mutant relative to the

reference strain (i.e., its ability to affect PTDH3-YFP activity in

heterozygous, diploid cells), we compared the Z-scores for YFP

fluorescence of each mutant from haploid and diploid cells

(Figure 4A). We found that the effects of coding, CNV, and cis-

regulatory mutants in diploid cells (median |Z| = 96, 15, and 10,

respectively) were more similar to their effects in haploid cells

(regression coefficients (b) of 1.67, 1.50, and 1.34, respectively,

from a model II regression) than were those of trans-acting mutants

(median |Z| = 1, b = 0.12). These data show that as a group, the

trans-regulatory mutants were much more recessive than mutants

from any of the other classes. This was also seen using a threshold

of |Z| = 2.58 to classify mutants as recessive (i.e., no significant

effect on YFP fluorescence in diploids): none of the coding, CNV,

or cis-regulatory mutants were called recessive, whereas 151 (88%)

of the 171 trans-acting mutants tested were.

To determine whether a mutant genotype had similar effects on

both alleles of the reporter gene present in diploid cells, we

compared the effects of each genotype on [diploid] YFP and CFP

fluorescence (Figure 4B). This analysis showed that CNVs had the

largest effect on CFP fluorescence (median |Z| = 4.2 compared to

median |Z| = 1 for all other mutant classes). Surprisingly, 15 of

the CNVs showed a significant decrease in CFP fluorescence

despite a significant increase in YFP fluorescence. Of the coding

mutants tested, the majority (14 of 16) showed no significant effect

on CFP fluorescence (|Z|,2.58), as expected. The remaining two

showed small increases in CFP fluorescence (Z = 2.6 and 2.8,

respectively) despite showing decreases in YFP fluorescence

(Z = 2167 and 228). These genotypes might harbor amino acid

changes that alter the emission spectrum of the mutant YFP

protein and cause it to overlap that of CFP. Mutants classified as

cis-acting were also not expected to alter CFP fluorescence, and

three of the four cis-acting mutants did not (|Z| = 0.75, 1.1, and

0.68). The one cis-regulatory mutant that showed an effect on CFP

fluorescence (1Q4D11, whose mutant phenotype in haploids

appeared to be caused solely by the identified promoter mutation,

Figure 2C) decreased both CFP and YFP fluorescence (Z = 22.7,

P = 0.006), suggesting transvection [27]. Finally, non-recessive

mutants in the trans-acting class were expected to have similar

effects on both YFP and CFP fluorescence in diploid cells, and 13

(65%) of the 20 trans-acting mutants with |Z|.2.58 for YFP

fluorescence in diploid cells also showed a significant (|Z|.2.58)

effect on CFP fluorescence in the same direction. Considering all

mutants in all classes, the relationship between CFP and YFP

fluorescence in diploid cells was strongest for the trans-acting

mutant class (Figure 4B; b = 1 compared with b = 0.00, 0.37, and

0.08 for coding, CNV, and cis-regulatory mutants, respectively).

Discussion

This study provides a systematic survey and functional analysis

of mutations affecting activity of a reporter gene (PTDH3-YFP) in S.

cerevisiae. By comparing unmutagenized and mutagenized subpop-

ulations of a clonal culture, we estimated a spontaneous mutation

rate for activity of PTDH3-YFP of 5.361026 per haploid genome

Figure 4. Effects of heterozygous mutant alleles on YFP and
CFP fluorescence differ among mutational classes in diploid
cells. (A) The effect of each mutant genotype on YFP fluorescence in
haploid cells (X-axis) is compared to the effect of the heterozygous
mutant genotype on YFP fluorescence in diploid cells (Y-axis). These
diploid cells were heterozygous for the mutant PTDH3-YFP haploid
genome and a reference haploid genome containing PTDH3-CFP. Black
squares indicate cis-regulatory mutants, blue circles indicate trans-
acting mutants, green triangles indicate coding mutants, and red
crosses indicate CNV mutants. (B) Using the same symbols to represent
the four mutational classes as in (A), the effect of each mutant on YFP
(X-axis) and CFP (Y-axis) fluorescence in diploid cells is shown. Insets in
(A) and (B) show only coding mutants and cover the larger ranges of Z-
scores needed to plot all of the mutants in this class.
doi:10.1371/journal.pgen.1002497.g004
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per generation, which, in S. cerevisiae, is intermediate between

spontaneous mutation rates reported for single gene loss-of-

function phenotypes (1026–1028, [22,28–32] and more complex

organismal phenotypes such as growth rate (1023, [33]), and

suggests that PTDH3-YFP activity is controlled by a moderate

number of genes. Further characterization of 231 mutants with

changes in PTDH3-YFP activity revealed differences in the relative

frequency, effects, and dominance of different types of mutations

(Table 1) that are expected to influence their likelihood of

contributing to phenotypic evolution.

EMS-induced mutations affecting PTDH3-YFP are expected
to be similar to spontaneous mutations affecting
endogenous genes

Before discussing the evolutionary implications of our results, it

is important to consider how the use of the fluorescent reporter

gene PTDH3-YFP and chemical mutagen EMS might cause our

data to differ from a spectrum of spontaneous mutations affecting

activity of an endogenous gene.

Activity of the chimeric PTDH3-YFP reporter gene was regulated

by the native S. cerevisiae TDH3 promoter and CYC1 terminator

sequences. The CYC1 terminator controls proper 39 end formation

of mRNA by binding to factors such as Rat1p and Sen1p that are

important for the termination of many genes transcribed by DNA

polymerase I and II in S. cerevisiae [34]. The TDH3 gene encodes

isozyme 3 of glyceraldehyde-3-phosphate dehydrogenase [35], is

not required for viability under normal culture conditions [36],

and is transcribed during growth on both fermentable and non-

fermentable carbon sources [37] with minimal fluctuations during

the cell cycle [38]. The TDH3 promoter exemplifies regulatory

principles shared by many eukaryotic genes. For example, it

includes both activating [39] and repressing [37] sequences that

bind transcription factors such as Gcr1p, Gcr2p, Hsf1p, Pho2p,

and Rap1p [40,41]. TDH3 is one of the ,19% of genes in the S.

cerevisiae genome whose promoter has a TATA box; this is

important to note because the expression of such genes appears to

be more mutable than genes whose promoters lack this sequence

[17]. Promoters with simple repetitive sequences have also been

shown to have increased evolvability of gene expression in yeast

[42], but the TDH3 promoter appears to lack such sequences.

Differences in promoter and terminator sequences among genes

are expected to cause differences in gene-specific mutational

spectra, but we do not expect the regulatory mutation spectrum

recovered for PTDH3-YFP to be fundamentally different from that

of an endogenous gene such as TDH3.

Unlike the regulatory sequences of PTDH3-YFP, its coding

sequence was not native to yeast: it encoded a Yellow Fluorescent

Protein derived from the Green Fluorescent Protein originally

isolated from Aequorea victoria [43]. The Venus variant of YFP used

in this study was previously optimized to speed maturation,

improve stability, and minimize sensitivity to environmental

changes such as pH and chloride concentration [18]. This

optimization might explain why none of the YFP coding mutants

we recovered showed increased fluorescence and suggests that

mutants affecting YFP fluorescence by altering the cellular

environment might be rare. Native yeast proteins might not

always have such optimal activity; however, nonsynonymous

mutations are generally thought to decrease a protein’s function

more often than they increase it, suggesting that the YFP coding

sequence is not extremely unrealistic in this respect. The length

and GC-content of the YFP coding region are also expected to

influence the coding mutation rate measured in this study by

affecting the mutational target size: at 238 amino acids, YFP is

near the 20th percentile for the length of native S. cerevisiae proteins

[44], and its GC-content of 35.56% is similar to the median GC-

content for all S. cerevisiae genes of 39.95% (Figure S2).

The use of the chemical mutagen EMS is perhaps the most

artificial element of our experimental design, although we are not

the first to use it to make inferences about spontaneous mutations

[45–48]. EMS predominantly causes G/C to A/T transitions

[23,24] and thus generates a subset of possible spontaneous

mutations. However, G/C to A/T transitions are tied with G/C to

T/A transversions as the most common type of spontaneous point

mutation in yeast [1]. We anticipate that many types of point

mutations will have similar distributions of genetic and phenotypic

effects, although it will be interesting to test this hypothesis in

future work. More importantly, we expect the proportion of sites

targeted by EMS to be similar for coding, cis-regulatory, and trans-

acting mutations, suggesting that comparing EMS-induced

mutations among these classes reveals differences that should also

be observed for spontaneous point mutations. We do anticipate,

however, that spontaneous mutations involving more than one

Table 1. Comparison of properties among mutational classes.

coding CNV cis trans

Frequency classified as mutant: |Z|.2.58 for YFP in haploids 7% (16/231) 10% (22/221)1 2% (4/231) 81% (179/221)1

Effects median effect (|Z|) on YFP fluorescence in haploids2 48 8 8 5

increased YFP fluorescence (Z.0) 0% (0/16) 95% (21/22) 50% (2/4) 73% (131/179)

Dominance median effect (|Z|) on YFP fluorescence in diploids2 98 15 10 1

regression coefficient (b) for YFP in haploids vs diploids 1.7 1.5 1.3 0.1

recessive: |Z|,2.58 for YFP fluorescence in diploids 0% (0/16) 0% (0/21) 0% (0/4) 88% (151/171)

trans effects median effect (|Z|) on CFP fluorescence in diploids2 1 4 1 1

regression coefficient (b) for YFP vs CFP in diploids 0.00 0.37 0.08 1.04

altered CFP fluorescence (|Z|.2.58) 13% (2/16) 81% (17/21) 25% (1/4) 65% (13/20)3

110 of the 231 mutants failed to form diploids or showed evidence of contamination and were thus not tested for changes in copy number of the reporter gene. These
genotypes showed no changes in the coding sequence, promoter, or terminator of the reporter gene, thus they were either trans-acting or CNVs, but could not be
definitively assigned.

2Z-scores were calculated separately for YFP and CFP in haploid and diploid populations using the mean and standard deviation of control populations with the same
ploidy. Therefore, the values of Z-scores should not be directly compared between haploid and diploid genotypes or between reporter genes.

3Only the 20 trans-acting mutants not classified as recessive were considered.
doi:10.1371/journal.pgen.1002497.t001
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base-pair (e.g., insertions/deletions (indels), segmental duplica-

tions, chromosomal rearrangements) will have different distribu-

tions of effects than single point mutations, and this was observed

when we compared mutants with (presumably spontaneous)

duplications of PTDH3-YFP to those with single copies of the

PTDH3-YFP gene. Consequently, we believe that the spectrum of

mutational effects described in this work provides a reasonable

approximation of the spectrum of mutational effects caused by

different types of spontaneous point mutations, but might not be

representative of other types of DNA lesions.

Differences in the frequency, effects, and dominance
among functional classes of mutations may impact their
relative contributions to phenotypic evolution

For any mutation, the likelihood of fixation depends upon the

probability that the mutational event occurs and the probability

that, once it occurs, it becomes fixed within a population. This

latter probability depends upon the phenotypic effects of the

mutation (specifically, its impact on fitness) and (for diploid

organisms) dominance. Mutations that arise more frequently have

more opportunities to become fixed; mutations with larger effects

on fitness should either be removed from or fixed within a

population faster than mutations with smaller effects on fitness

[49]; and adaptive mutations that are recessive are less likely to fix

in a diploid population than equally adaptive mutations that are

not recessive [50]. As described above, we observed differences in

the frequency, effects (on YFP fluorescence), and dominance of

different types of mutations affecting PTDH3-YFP activity. Below,

we discuss how these differences might influence the evolutionary

trajectories of (i) coding and regulatory mutations, (ii) cis-regulatory

and trans-regulatory mutations, and (iii) copy number variants.

Coding and regulatory mutations. In recent years, the

relative contributions of regulatory and coding changes to

phenotypic evolution have been discussed extensively; however

different authors have defined these categories differently [7,15].

Some authors contrast only cis-regulatory and coding changes [7–

10,13], while others make an additional distinction between

coding changes in transcription factors and coding changes in

other types of proteins [11]. A broader contrast is also common in

which all changes that alter gene expression are compared to

changes that alter the coding sequence of the gene of interest

[7,51]. Our data are suitable for contrasting coding mutations with

either cis-regulatory or broadly defined regulatory mutations, but

we do not currently have enough information to identify which of

the regulatory mutants, if any, harbor coding changes in

transcription factors.

Comparing only the coding and cis-regulatory mutants in our

collection suggests that coding mutations are more common than

cis-regulatory mutations (at least for genes similar to PTDH3-YFP),

and that cis-regulatory mutations have more moderate effects

(Table 1). Both classes of mutations showed similar effects in

haploid and diploid cells, suggesting that they are both non-

recessive and selectable as soon as they arise in diploid

populations. If the large changes in PTDH3-YFP activity we

observed in the majority of coding mutations tend to be strongly

deleterious, the more moderate effects of cis-regulatory mutations

(especially when coupled with the presumed lower degree of

pleiotropy of cis-regulatory mutations) might make them more

likely to fix than coding mutations despite their lower mutation

rate. This might be especially true when a favored phenotype

requires an increase in gene activity, as this type of change was

observed for 50% of the cis-regulatory mutants recovered, but

none of the coding mutants.

The broader definition of ‘‘regulatory’’ mutants described above

includes all genotypes classified as cis-regulatory, trans-acting, and

copy number mutants in this study because they all change YFP

fluorescence without altering the coding sequence of YFP.

Considering these three classes together, regulatory mutations

were over 10-times more common than coding mutations in

PTDH3-YFP. And this is without accounting for the fact that the

gene duplication rate was not expected to be increased by EMS.

Regulatory mutations (broadly defined) may therefore be a much

more abundant source of variation in a gene’s activity than

mutations changing its protein sequence. This higher frequency

might be at least partially offset, however, by the fact that over

75% of the regulatory mutants we characterized (all of which were

categorized as trans-acting) appeared to be recessive. Like cis-

regulatory mutants, this broader class of regulatory mutants had

more moderate effects on YFP fluorescence than coding mutants

and the activity of PTDH3-YFP was increased at least half of the

time. The frequent recovery of regulatory mutants with elevated

YFP fluorescence was unexpected and particularly surprising given

that the TDH3 promoter drives high levels of expression in

wildtype cells [52] and Tdh3p is in the 98th percentile for protein

abundance in S. cerevisiae [53]. It will be interesting to see in future

work whether mutational spectra for other genes also show a high

rate of mutations that increase the gene’s activity.

cis-regulatory and trans-acting changes. The relative

contribution of cis- and trans-acting mutations to polymorphic

and divergent gene expression has also been examined in a variety

of species, either using genetic mapping or allele-specific

expression to infer changes in cis- and trans-regulation (reviewed

by [14,54–56]). These analyses have revealed differences in the

frequency, effects, and dominance of segregating cis- and trans-

regulatory variation that our data suggest might result (at least in

part) from inherent properties of cis- and trans-regulatory mutations

rather than selection for a biased subset of regulatory mutations.

For example, trans-regulatory variation has been observed to be

more abundant within a species than cis-acting variation, and we

found that the mutational target size for trans-acting mutations

affecting activity of PTDH3-YFP was ,45 times larger than for cis-

regulatory mutations affecting activity of this gene. A larger

mutational target size for trans-regulatory variation was also

inferred from mutation accumulation lines [17,57]. cis-acting

quantitative trait loci affecting gene expression (eQTL) generally

have larger average effects on a gene’s expression than trans-

regulatory eQTL, and we found that cis-regulatory mutations

trended toward having larger effects on YFP fluorescence than

trans-regulatory mutations in both haploid (P = 0.07, one-sided

MWW test) and heterozygous diploid (P = 0.0007, one-sided

MWW test) cells. Finally, segregating cis-regulatory alleles have

been shown to be recessive less often than trans-regulatory alleles

[58,59], and we found that the effects of cis-regulatory mutants in

heterozygous cells were masked less often than the effects of trans-

acting mutants.

Taken together, these observations suggest that, trans-acting

variation might be more common within a species than cis-

regulatory variation for individual genes because of the higher rate

of trans-acting mutations, their tendency to have smaller effects on

gene activity than cis-acting mutations, and their propensity to be

recessive in diploid cells. If the size of the effect on gene activity is

correlated with the selection coefficient, cis-regulatory variants

might contribute more to expression differences between than

within species (as has been observed for Drosophila [60] and

Saccharomyces [61]) because the tendency of cis-regulatory mutations

to have larger and more non-recessive effects on gene activity than

trans-regulatory mutations should cause them to be selected for or
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against more strongly. This should lower the probability that a cis-

regulatory mutation segregates for long periods of time within a

species and raise the probability that a cis-regulatory mutation

contributes to adaptive regulatory changes between species.

Copy number variants. Gene duplications or deletions can

alter the number of copies of a gene and, assuming all copies are

expressed, this will affect the abundance of the gene’s product.

Such copy number variants are known to contribute to phenotypic

diversity in humans, yeast and other eukaryotes [62–64]. In S.

cerevisiae, spontaneous gene duplications are almost 5 times more

common than spontaneous point mutations: in one genome

replication, 0.019 gene duplications are expected, compared to

only 0.004 point mutations [1]. Consistent with this high

spontaneous mutation rate, duplications containing PTDH3-YFP

were found in 10% of the mutants we examined despite the fact

that EMS is not expected to influence their occurrence.

Duplications of other genomic regions that affect PTDH3-YFP

activity might also be present in our mutant collection as trans-

acting mutants, but determining the frequency and location of any

such duplications (as well as the extent of the duplications

including PTDH3-YFP) requires further analysis. As expected,

nearly all mutant genotypes harboring a duplication of PTDH3-

YFP increased the YFP fluorescence of both haploid and diploid

cells. The one exception was a mutant that showed decreased YFP

fluorescence, which could be caused by the duplication of one or

more negative regulators of PTDH3-YFP. Interestingly, the majority

of duplications that increased YFP fluorescence decreased CFP

fluorescence in diploids, which might reflect a mechanism that

silences both the original and new copy of a gene following a

duplication event [65]. Despite their high mutation rate, copy

number variants appear to rarely be fixed between yeast species

[66], suggesting that they are often deleterious and eliminated by

natural selection or have a high rate of spontaneous reversion.

Unresolved questions: Pleiotropy, fitness, and the
genomic locations of mutations affecting PTDH3-YFP
activity

This study provides an unprecedented survey of the functional

characteristics of new mutations; however, our understanding of

mutational properties remains far from complete, even for the

PTDH3-YFP reporter gene. For example, the effect of a mutation on

fitness is what matters most for evolution, but we measured only

the effects of mutations on YFP fluorescence. If fluorescence were

an adaptive trait, a relationship between mutational effects on

PTDH3-YFP activity and fitness is expected, but the effects of each

mutation on other traits (i.e., pleiotropy) will also influence fitness,

complicating this relationship. Similarly, we assessed the domi-

nance of mutant effects on YFP fluorescence, but dominance at

the level of a single gene’s activity might not always translate to

dominance at the level of higher-order phenotypes, which are

more likely to be the targets of natural selection.

The unique collection of mutants described here provides a rare

opportunity to address these issues, however, by mapping each of

the mutations affecting PTDH3-YFP activity, engineering them

individually into the ancestral genetic background, and directly

measuring pleiotropy (quantified as the number of genes in the

genome that change expression in response to the mutation) and

fitness under different conditions (quantified as the effect of the

mutation on relative growth rate). Determining the identity of

mutations responsible for these mutant phenotypes will also allow

us to assess their distribution within the genome and among factors

expected to influence PTDH3-YFP activity and to compare the

overall contributions of coding and non-coding changes to the

mutational spectrum for PTDH3-YFP. Integrating these data with

those presented here, as well as performing similar analyses of

reporter genes using promoters from other S. cerevisiae genes,

should greatly improve our ability to predict the types of genetic

changes most likely to contribute to phenotypic evolution under

different conditions.

Materials and Methods

An abbreviated version of the materials and methods follows.

Complete materials and methods, including calculation of the

spontaneous mutation rate, are included as Supporting Informa-

tion (Text S1).

Mutagenesis
Chemical mutagenesis with Ethyl Methane Sulfonate (EMS)

was performed as previously described [67], except that the

volume of the cell suspension was doubled to 2 ml, the cell density

was reduced by 50% to 66107 cells/ml, the concentration of EMS

was reduced by 75% to 7.5%, and the time of exposure was

reduced by 25% to 45 minutes. Following mutagenesis, control

and mutagen-treated cells were cultured at 30–32uC for 42 hours

in arginine dropout liquid media (Synthetic Complete media

lacking arginine) [67].

Canavanine resistance assay
The canavanine resistance mutation rate in the EMS-treated

population was calculated by comparing colony forming units on

arginine dropout plates with and without 60 mg/l canavanine

sulfate (Sigma-Aldrich, St. Louis, MO) [67].

Flow cytometry and primary screen for prospective
mutants

Prior to analysis and sorting, cells from the control culture were

stained with Cy5 (GE Healthcare, Piscataway, NJ) so that they

could be distinguished from EMS-treated cells when analyzed

simultaneously. Aliquots of both populations were mixed together

in Phosphate Buffered Saline (PBS) for analysis and sorted in a

FACSaria flow cytometer/cell sorter (BD Biosystems, San Jose,

CA). The sorting and analysis of the mixed suspensions was

restricted to a FSC-defined subset of events to reduce the influence

of non-cell particles. In each of nine consecutive sorting runs, 96

events were collected from each tail of the EMS-treated and

control populations, for a total of 384 events collected in each

sorting run. Thresholds used for sorting during each run are

presented in Table S1. Sorted events were arrayed onto YPD agar

plates [67], then incubated at 30uC for 28 hours.

Liquid cultures for secondary screen of candidate
mutants and diploid testing

High-throughput parallel liquid culturing of genotypes was

performed by inoculating from a colony or patch and culturing for

24 hours at 30uC in 96-well deep well plates in YPD. Saturated

cultures were diluted 1006 into arginine dropout liquid and

cultured at 30uC for at least 2 doublings until the density reached

0.5–1.06107 cells/ml.

Quantification of fluorescence in flow cytometry data
Haploid YFP fluorescence and FSC were evaluated by a C6

flow cytometer (Accuri, Ann Arbor, MI); diploid YFP, CFP, and

FSC were evaluated by a FACSaria flow cytometer (BD

Biosciences, San Jose, CA). After log-transformation of FSC and

fluorescence values, filters were applied to cull events with extreme

FSC values; generally, these filters corresponded to approximately
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the 20th and 80th percentiles of FSC. The fluorescence phenotype

of each genotype was defined as its median YFP/FSC or CFP/

FSC ratio. This ratio was converted to a Z-score using the mean

and standard deviation calculated from at least 10 (and up to 143)

replicate control cultures containing cells with the unmutagenized,

ancestral genotype.

Pyrosequencing to assay YFP copy number
PCR primers hybridizing to DNA sequences shared by YFP and

CFP that flanked a position of dissimilarity were used to amplify a

small region of DNA for analysis. Using the PSQ96 pyrosequencer

(Qiagen, Valencia, CA), an internal sequencing primer was

hybridized to these amplified fragments and extended to a

diagnostic position that differed between YFP and CFP, allowing

the relative frequency of YFP and CFP alleles to be compared in

heterozygous diploid cells.

Testing the sufficiency of promoter mutations
After introducing each promoter mutation into the unmuta-

genized ancestral genotype using site-directed mutagenesis, we

quantified YFP fluorescence using the C6 flow cytometer (Accuri,

Ann Arbor, MI). Two 80,000-event samples were collected for

genotypes into which the mutations identified at positions 2255,

2240, and 2140 had been introduced into the unmutagenized

progenitor, a strain in which a wildtype copy of the promoter had

been re-introduced in parallel, and the four mutant genotypes in

which the promoter mutations were originally detected (including

the two different isolates with the mutation at 2255). Taking the

median YFP/FSC as the fluorescence phenotype of each culture,

we compared the genotypes with site-directed promoter mutations

to the reengineered wildtype control, and the genotypes with site-

directed promoter mutations to the mutant(s) in which it was

originally observed using MWW tests.

Supporting Information

Figure S1 A minority of mutant genotypes showed increased

variance in YFP fluorescence. The histograms of Z-scores shown

represent the variance in YFP fluorescence for genotypes isolated

from the control (black) and EMS-treated populations. EMS-

treated genotypes with (green) and without (red) a statistically

significant change in median YFP fluorescence relative to the

control population are plotted separately, but the frequency of

each class was calculated using the total number of EMS-treated

genotypes tested. These Z-scores were calculated as described for

median YFP fluorescence: the difference between variance in YFP

fluorescence for a particular genotype and the mean variance of all

control genotypes was divided by the standard deviation of

variance values among the control genotypes. Of the 231 EMS-

treated genotypes classified as mutants for YFP fluorescence

(green), 47 (11 CNV, 5 coding, and 26 trans-acting mutants)

showed a significant (|Z|.2.58) change in variance. By

comparison, 37 of the 833 EMS-treated genotypes without a

significant change in median YFP-fluorescence (red) and 20 of the

1137 genotypes from the control population (black) showed

statistically significant changes in variance.

(PDF)

Figure S2 The GC content of YFP is similar to that of native S.

cerevisiae genes. Because EMS preferentially causes mutations at G-

C base pairs, we compared the percentage of nucleotides that are

either guanine or cytosine (%GC) in the YFP coding sequence to

the %GC in coding sequences of genes endogenous to the S.

cerevisiae genome. A histogram summarizing the %GC for all genes

in the annotated S. cerevisiae genome (median %GC = 39.95%) is

shown with the %GC of YFP (35.56%) indicated with a red arrow.

Sequences for S. cerevisiae genes are from the Saccharomyces

Genome Database EF3 assembly (Ensembl, Release 64).

(PDF)

Table S1 Percentile thresholds used for sorting in replicate

populations.

(PDF)

Table S2 YFP fluorescence for all 2201 genotypes recovered

from fluorescence activated cell sorting (FACS).

(XLS)

Table S3 Assignment to mutant class and effects on fluorescence

phenotypes in haploid and diploid cells for all 231 genotypes

considered mutants.

(XLS)

Table S4 Estimation of spontaneous mutation rate for PTDH3-

YFP activity based on validated mutants.

(PDF)

Text S1 Expanded Materials and Methods.

(PDF)

Acknowledgments

We thank Barry Williams and David Yuan for yeast strains; Barry

Williams, Calum MacLean, Anuj Kumar, Julian Adams, Amy Chang,

Carlos Bustamante, and Malcolm Whiteway for technical advice; Chen-

Shan Chin for the Cy5 labeling protocol; and Christian Landry, Richard

Lusk, Audrey Gasch, and members of the Wittkopp lab for helpful

comments on the manuscript.

Author Contributions

Conceived and designed the experiments: PJW JDG GK. Performed the

experiments: JDG KV GK. Analyzed the data: JDG PJW KV GK.

Contributed reagents/materials/analysis tools: JDG GK. Wrote the paper:

PJW JDG.

References

1. Lynch M, Sung W, Morris K, Coffey N, Landry CR, et al. (2008) A genome-

wide view of the spectrum of spontaneous mutations in yeast. Proceedings of the

National Academy of Sciences 105: 9272–9277.

2. Nishant KT, Singh ND, Alani E (2009) Genomic mutation rates: what high-

throughput methods can tell us. BioEssays 31: 912–920.

3. Conrad DF, Keebler JE, DePristo MA, Lindsay SJ, Zhang Y, et al. (2011)

Variation in genome-wide mutation rates within and between human families.

Nat Genet 43: 712–714.

4. Braendle C, Baer CF, Felix MA (2010) Bias and evolution of the mutationally

accessible phenotypic space in a developmental system. PLoS Genet 6:

e1000877. doi:10.1371/journal.pgen.1000877.

5. Yampolsky LY, Stoltzfus A (2001) Bias in the introduction of variation as an

orienting factor in evolution. Evolution & development 3: 73–83.

6. Stoltzfus A, Yampolsky LY (2009) Climbing mount probable: mutation as a

cause of nonrandomness in evolution. The Journal of heredity 100: 637–647.

7. Stern DL, Orgogozo V (2008) The loci of evolution: How predictable is genetic

evolution? Evolution 62: 2155–2177.

8. Hoekstra H, Coyne J (2007) The locus of evolution: Evo-Devo and the genetics

of adaptation. Evolution 61: 995–1016.

9. Wray GA (2007) The evolutionary significance of cis-regulatory mutations.

Nature Reviews Genetics 8: 206–216.

10. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic

theory of morphological evolution. Cell 134: 25–36.

11. Lynch VJ, Wagner GP (2008) Resurrecting the role of transcription factor

change in developmental evolution. Evolution; international journal of organic

evolution 62: 2131–2154.

12. Lynch M (1988) The rate of polygenic mutation. Genetical research 51:

137–148.

13. Stern DL, Orgogozo V (2009) Is genetic evolution predictable? Science 323:

746–751.

Quantifying Properties of New Mutations in Yeast

PLoS Genetics | www.plosgenetics.org 10 February 2012 | Volume 8 | Issue 2 | e1002497



14. Fay JC, Wittkopp PJ (2008) Evaluating the role of natural selection in the

evolution of gene regulation. Heredity 100: 191–199.

15. Streisfeld MA, Rausher MD (2011) Population genetics, pleiotropy, and the
preferential fixation of mutations during adaptive evolution. Evolution;

international journal of organic evolution 65: 629–642.

16. Wittkopp PJ (2005) Genomic sources of regulatory variation in cis and in trans.

Cell Mol Life Sci 62: 1779–1783.

17. Landry CR, Lemos B, Rifkin SA, Dickinson WJ, Hartl DL (2007) Genetic
Properties Influencing the Evolvability of Gene Expression. Science 317:

118–121.

18. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, et al. (2002) A variant of
yellow fluorescent protein with fast and efficient maturation for cell-biological

applications. Nat Biotech 20: 87–90.

19. Zaret KS, Sherman F (1982) DNA sequence required for efficient transcription
termination in yeast. Cell 28: 563–573.

20. Salzman HM, Singham SB, Johnston RG, Bohren CF (1990) Light scattering

and cytometry. In: Melamed MR, Lindmo T, Mendelsohn ML, eds. Flow

cytometry and sorting. 2nd ed. New York: Wiley. pp 81–107.

21. Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence
determinants of gene expression in Escherichia coli. Science 324: 255–258.

22. Lang GI, Murray AW (2008) Estimating the per-base-pair mutation rate in the

yeast Saccharomyces cerevisiae. Genetics 178: 67–82.

23. Coulondre C, Miller JH (1977) Genetic studies of the lac repressor : IV.
Mutagenic specificity in the lacI gene of Escherichia coli. Journal of Molecular

Biology 117: 577–606.

24. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, et al. (2003)
Spectrum of Chemically Induced Mutations From a Large-Scale Reverse-

Genetic Screen in Arabidopsis. Genetics 164: 731–740.

25. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan

fluorescent protein variant useful for FRET. Nat Biotech 22: 445–449.

26. Kneen M, Farinas J, Li Y, Verkman AS (1998) Green fluorescent protein as a
noninvasive intracellular pH indicator. Biophys J 74: 1591–1599.

27. Duncan IW (2002) Transvection effects in Drosophila. Annual Review of

Genetics 36: 521–556.

28. Drake JW (1991) A constant rate of spontaneous mutation in DNA-based
microbes. Proceedings of the National Academy of Sciences 88: 7160–7164.

29. Kunz BA, Kohalmi L, Kang XL, Magnusson KA (1990) Specificity of the

mutator effect caused by disruption of the RAD1 excision repair gene of
Saccharomyces cerevisiae. J Bacteriol 172: 3009–3014.

30. Magni GE (1964) Origin and Nature of Spontaneous Mutations in Meiotic

Organisms. J Cell Physiol 64: SUPPL 1: 165–171.

31. Magni GE, Vonborstel RC, Sora S (1964) Mutagenic Action during Meiosis and

Antimutagenic Action during Mitosis by 5-Aminoacridine in Yeast. Mutat Res
106: 227–230.

32. Gottlieb DJ, von Borstel RC (1976) Mutators in Saccharomyces cerevisiae:

MUT1-1, MUT1-2 and MUT2-1. Genetics 83: 655–666.

33. Wloch DM, Szafraniec K, Borts RH, Korona R (2001) Direct estimate of the
mutation rate and the distribution of fitness effects in the yeast Saccharomyces

cerevisiae. Genetics 159: 441–452.

34. Kawauchi J, Mischo H, Braglia P, Rondon A, Proudfoot NJ (2008) Budding
yeast RNA polymerases I and II employ parallel mechanisms of transcriptional

termination. Genes & Development 22: 1082–1092.

35. McAlister L, Holland MJ (1985) Differential expression of the three yeast

glyceraldehyde-3-phosphate dehydrogenase genes. The Journal of biological
chemistry 260: 15019–15027.

36. Giaever G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional

profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391.

37. Kuroda S, Otaka S, Fujisawa Y (1994) Fermentable and nonfermentable carbon
sources sustain constitutive levels of expression of yeast triosephosphate

dehydrogenase 3 gene from distinct promoter elements. J Biol Chem 269:

6153–6162.

38. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, et al. (1998)
Comprehensive identification of cell cycle-regulated genes of the yeast

Saccharomyces cerevisiae by microarray hybridization. Molecular biology of
the cell 9: 3273–3297.

39. Bitter GA, Chang KKH, Egan KM (1991) A multi-component upstream

activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phos-
phate dehydrogenase gene promoter. Molecular and General Genetics MGG

231: 22–32.

40. Lieb JD, Liu X, Botstein D, Brown PO (2001) Promoter-specific binding of

Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet
28: 327–334.

41. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, et al. (2002)

Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:
799–804.

42. Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ (2009)

Unstable Tandem Repeats in Promoters Confer Transcriptional Evolvability.
Science 324: 1213–1216.

43. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, Purification and
Properties of Aequorin, a Bioluminescent Protein from the Luminous

Hydromedusan, Aequorea. Journal of Cellular and Comparative Physiology

59: 223–239.
44. Warringer J, Blomberg A (2006) Evolutionary constraints on yeast protein size.

BMC evolutionary biology 6: 61.
45. Keightley PD, Ohnishi O (1998) EMS-induced polygenic mutation rates for nine

quantitative characters in Drosophila melanogaster. Genetics 148: 753–766.
46. Yang HP, Tanikawa AY, Van Voorhies WA, Silva JC, Kondrashov AS (2001)

Whole-genome effects of ethyl methanesulfonate-induced mutation on nine

quantitative traits in outbred Drosophila melanogaster. Genetics 157:
1257–1265.

47. Ohnishi O (1977) Spontaneous and ethyl methanesulfonate-induced mutations
controlling viability in Drosophila melanogaster. I. Recessive lethal mutations.

Genetics 87: 519–527.

48. Keightley PD, Davies EK, Peters AD, Shaw RG (2000) Properties of
ethylmethane sulfonate-induced mutations affecting life-history traits in

Caenorhabditis elegans and inferences about bivariate distributions of mutation
effects. Genetics 156: 143–154.

49. Hartl DL, Clark AG (1989) Principles of Population Genetics. Sunderland, MA:
Sinauer Associates, Inc.

50. Haldane JBS (1927) A mathematical theory of natural and artificial selection

part V: selection and mutation. Proceedings of the Cambridge Philosophical
Society Mathematical and physical sciences 23: 838–844.

51. Streisfeld MA, Rausher MD (2009) Genetic changes contributing to the parallel
evolution of red floral pigmentation among Ipomoea species. The New

phytologist 183: 751–763.

52. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled
expression of heterologous proteins in different genetic backgrounds. Gene 156:

119–122.
53. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, et al. (2003)

Global analysis of protein expression in yeast. Nature 425: 737–741.
54. Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene

regulation: the promise of eQTL studies. Trends Genet 24: 408–415.

55. Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat Rev
Genet 7: 862–872.

56. Kliebenstein DJ (2009) Quantification of variation in expression networks.
Methods in Molecular Biology 553: 227–245.

57. Denver DR, Morris K, Streelman JT, Kim SK, Lynch M, et al. (2005) The

transcriptional consequences of mutation and natural selection in Caenorhabdi-
tis elegans. Nat Genet 37: 544–548.

58. Lemos B, Araripe LO, Fontanillas P, Hartl DL (2008) Dominance and the
evolutionary accumulation of cis- and trans-effects on gene expression. Proc Natl

Acad Sci U S A 105: 14471–14476.
59. McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, et al. (2010)

Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20:

816–825.
60. Wittkopp PJ, Haerum BK, Clark AG (2008) Regulatory changes underlying

expression differences within and between Drosophila species. Nat Genet 40:
346–350.

61. Emerson JJ, Hsieh LC, Sung HM, Wang TY, Huang CJ, et al. (2010) Natural

selection on cis and trans regulation in yeasts. Genome Res 20: 826–836.
62. Schrider DR, Hahn MW (2010) Gene copy-number polymorphism in nature.

Proceedings Biological sciences/The Royal Society 277: 3213–3221.
63. Carreto L, Eiriz MF, Gomes AC, Pereira PM, Schuller D, et al. (2008)

Comparative genomics of wild type yeast strains unveils important genome

diversity. BMC genomics 9: 524.
64. Cooper GM, Nickerson DA, Eichler EE (2007) Mutational and selective effects

on copy-number variants in the human genome. Nature Genetics 39: S22–29.
65. Camblong J, Beyrouthy N, Guffanti E, Schlaepfer G, Steinmetz LM, et al.

(2009) Trans-acting antisense RNAs mediate transcriptional gene cosuppression
in S. cerevisiae. Genes & Development 23: 1534–1545.

66. Tirosh I, Reikhav S, Levy AA, Barkai N (2009) A yeast hybrid provides insight

into the evolution of gene expression regulation. Science 324: 659–662.
67. Amberg DC, Burke DJ, Strathern JN (2005) Methods in Yeast Genetics.

68. Zhang Z, Dietrich FS (2005) Mapping of transcription start sites in
Saccharomyces cerevisiae using 59 SAGE. Nucleic Acids Res 33: 2838–2851.

Quantifying Properties of New Mutations in Yeast

PLoS Genetics | www.plosgenetics.org 11 February 2012 | Volume 8 | Issue 2 | e1002497


