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ABSTRACT In relating genotypes to fitness, models of adaptation need to both be computationally tractable and qualitatively match
observed data. One reason that tractability is not a trivial problem comes from a combinatoric problem whereby no matter in what
order a set of mutations occurs, it must yield the same fitness. We refer to this as the bookkeeping problem. Because of their
commutative property, the simple additive and multiplicative models naturally solve the bookkeeping problem. However, the fitness
trajectories and epistatic patterns they predict are inconsistent with the patterns commonly observed in experimental evolution. This
motivates us to propose a new and equally simple model that we call stickbreaking. Under the stickbreaking model, the intrinsic fitness
effects of mutations scale by the distance of the current background to a hypothesized boundary. We use simulations and theoretical
analyses to explore the basic properties of the stickbreaking model such as fitness trajectories, the distribution of fitness achieved, and
epistasis. Stickbreaking is compared to the additive and multiplicative models. We conclude that the stickbreaking model is qualitatively
consistent with several commonly observed patterns of adaptive evolution.

ADAPTIVE evolution is challenging to understand be-
cause it depends on a rich array of biological properties.

Among those receiving recent theoretical and experimental
attention are the magnitude and distribution of mutational
fitness effects, the length of adaptive walks, the rate of fitness
increase, and the population dynamics that drive it (e.g.,
Gerrish and Lenski 1998; de Visser et al. 1999; Orr 2002,
2003; Rozen et al. 2002; Cowperthwaite et al. 2005; Barrett
et al. 2006; Desai et al. 2007; Eyre-Walker and Keightley
2007; Joyce et al. 2008; Rokyta et al. 2008; Barrick et al.
2009; Betancourt 2009; Burch and Chao 1999; Kryazhim-
skiy et al. 2009; Schoustra et al. 2009). Equally important
are epistasis, pleiotropy, parallelism, mutation order, and the
number of beneficial mutations available (e.g., Wichman
et al. 1999, 2005; Holder and Bull 2001; Kim and Orr
2005; Weinreich et al. 2006; Silander et al. 2007; Rokyta
et al. 2009, 2011; Chou et al. 2011; Khan et al. 2011; Kvitek
and Sherlock 2011; Miller et al. 2011). Note that the latter

features of adaptation are more meaningful when the iden-
tities of the mutations are known and when we consider
adaptation as a process subject to replication. For example,
epistasis occurs when specific mutations have different ef-
fects on different genetic backgrounds (Bonhoeffer et al.
2004; Sanjuán et al. 2004). The rise of genomic sequencing
technologies is having a dramatic effect on the ability of
researchers to know the identity of mutations occurring dur-
ing adaptation.

Knowing the identities of adaptive mutations expands the
types of questions that can be addressed, but also creates
new challenges. All models of adaptation must assign fitness
values to genotypes that have arisen through mutation. In
connecting genotype and fitness, a model must have the
following property: if the wild-type background acquires
mutations A1, A2, and A3 to yield a genotype with fitness
w1,2,3, every possible order of these mutations must also
result in fitness w1,2,3. As the number of fixed mutations
grows, the number of possible pathways grows in a factorial
manner. We call this consistency requirement the bookkeep-
ing problem.

At least two groups of population genetic models address
the bookkeeping problem: one maps genotype change (i.e.,
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mutation) directly onto fitness (GF models), and the second
maps genotype onto phenotype and then phenotype onto
fitness (GPF models). Here we focus on the simpler GF
models. Among these, the additive model assumes mutations
have an additive effect on fitness. To be more precise, the
fitness after mutations A1 and A2 occur on the wild-type
background is w1,2 = wwt + Dw1 + Dw2, where Dw1 and
Dw2 are the intrinsic effects expressed as fitness differences
of mutations A1 and A2. The bookkeeping problem is solved
by the commutative property of addition (i.e., Dw1 + Dw2 =
Dw2 + Dw1). Under the multiplicative model, the intrinsic
effects are selection coefficients affecting fitness in a multi-
plicative fashion: w1,2 = wwt(1 + s1)(1 + s2), where s1 and
s2 are the intrinsic effects of mutations A1 and A2. Multi-
plication also has the same commutative property [i.e.,
(1 + s1)(1 + s2) = (1 + s2)(1 + s1)] and thus solves
the bookkeeping problem. Both of these solutions to the
bookkeeping problem are simple to simulate and test on
real data.

Another solution, implicit in the uncorrelated landscape
model (Gillespie 1991; Orr 2002; Joyce et al. 2008), is to
assume that the set of mutations arising in an adaptive walk
can arise in only one order because each mutation is bene-
ficial on exactly one background. This occurs because the
probability of a mutation being beneficial on more than one
highly fit background is small enough to be ignored. Thus
under the uncorrelated model, once replicate adaptive walks
depart from each other, they are 100% divergent. Since the
bookkeeping problem involves convergence, the bookkeep-
ing problem is avoided. However, the uncorrelated model
makes the extreme prediction for real data that no mutation
will be beneficial on two different backgrounds.

Another set of models that avoids the bookkeeping
problem is those that assume the number of beneficial
mutations on any background is effectively infinite. Under
this assumption, the probability of convergent evolution is
zero and the bookkeeping problem does not arise. Examples
of models that make this assumption include Gerrish and
Lenski (1998), Rozen et al. (2002), Desai et al. (2007), and
Kryazhimskiy et al. (2009).

The NK model (Kauffman 1993) is unusual among GF
models in that it can produce landscapes with intermediate
levels of epistasis. In the NK model, N is the number of sites
and K is the number of other sites each site interacts with.
When K= 0, it is the additive model and when K= N2 1 it is
equivalent to the uncorrelated model. When 0 , K , N 2 1,
the interaction terms mean that the mutational effects are
no longer background independent. The interactions bring
more biological realism and allow richer patterns of epista-
sis, but at the expense of model simplicity. Simulating data
when 0 , K , N 2 1, while ensuring the bookkeeping
criteria are met, is computationally challenging because it
requires assigning fitnesses to the entire fitness landscape.
The interactions also pose a problem for analyzing real data
because they introduce a large number of parameters that
must be estimated.

Kryazhimskiy et al. (2009) have also developed a flexible
GF modeling framework where the uncorrelated and addi-
tive models arise as special cases. These models allow dif-
ferent types of epistasis and decelerating fitness trajectories
to be produced. However, because the fitness of beneficial
mutations in such models depends only on the current fit-
ness, they do not solve the bookkeeping problem.

Thus there is an array of GF models. Among those that
offer simple solutions to the bookkeeping problem (additive,
multiplicative, and uncorrelated), they generally fail to
predict several commonly observed properties of real
adaptation. Specifically, in laboratory adaptations parallel
evolution is not uncommon, most fitness gain occurs early in
a walk, and epistasis is common (Lenski and Travisano
1994; Bull et al. 1997; Elena and Lenski 1997; Wichman
et al. 1999, 2005; Cooper and Lenski 2000; Burch et al.
2003; Sanjuán et al. 2004; Cowperthwaite et al. 2005;
Woods et al. 2006; Barrick et al. 2009; Betancourt 2009;
Rokyta et al. 2009, 2011; Chou et al. 2011; Khan et al.
2011).

This leads us to propose a novel GF model for combining
mutational effects that we call stickbreaking. The stickbreak-
ing model is premised on the familiar idea that mutations
have intrinsic effects. But rather than assuming fitness dif-
ferences are background independent (like the additive
model) or that differences scale by background fitness (like
the multiplicative model), differences in the stickbreaking
model scale by how near the current background is to a hy-
pothesized upper fitness boundary. For example, if mutation
A1 has stickbreaking coefficient u1 and the fitness distance
from the wild type to the boundary is d, then the mutation
will increase fitness by the amount du1 (Figure 1). We use
theory and simulations to show that stickbreaking both sol-
ves the bookkeeping problem and produces some qualitative
features commonly observed in adaptive evolution.

Models

Stickbreaking

We begin by introducing the stickbreaking model and
compare it to the additive and multiplicative GF models.
Suppose the maximum fitness achievable in the current
environment is wmax while the current fitness is wwt. Let d =
wmax 2 wwt be the maximum possible fitness gain through
adaptation. Let ui be the stickbreaking coefficient of Ai such
that its fitness on the wild-type background, wi, is given by
wi = wwt + dui, where ui # 1. In the stickbreaking model,
stickbreaking coefficients are assumed to be background in-
dependent. If a second mutation, Aj, with stickbreaking co-
efficient uj occurs on the Ai background, its fitness is given
by, wi,j = wwt + d(u1 + u2(1 2 u1)). To see why, note that
after the first mutation fixes, the remaining distance to the
boundary is d(1 2 ui) and the second mutation therefore
increases the fitness by ujd(1 2 ui). Adding this increase to
the fitness of the first mutation, wwt + dui + ujd(12 ui), and
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simplifying gives wwt + d(u1 + u2(1 2 u1)). But since u1 +
u2(1 2 u1) = 1 2 (1 2 u1)(1 2 u1), we can rewrite the
fitness of the double mutant as wi,j = wwt + d(1 2 (1 2 ui)
(1 2 uj)). In general, if m mutations with identities A1, A2,
. . . , Am and stickbreaking coefficients u1, u2, . . . , um accumu-
late on the wild-type background, the fitness is given by

w1;2;:::;m ¼ wwt þ d

 
12

Ym
i¼1

ð12 uiÞ
!
: (1)

The intrinsic effect of each mutation Ai thus closes the dis-
tance between the current background and the fitness limit
by a proportion ui. This process is analogous to a stickbreak-
ing exercise. With a stick of length d laid along a number
line, the first mutation dictates where, in a fractional sense,
it is broken. Setting the left portion of the stick aside, the
next mutation determines where the remaining right portion
is broken. The process continues with subsequent mutations
breaking the remaining right portion into ever smaller
pieces. Unless a stickbreaking coefficient of 1 is available,
fitness will never actually reach the fitness maximum.

The stickbreaking model solves the bookkeeping problem
because, as Equation 1 shows, the final fitness depends on
the product of intrinsic effects and is therefore order inde-
pendent. Note that mutations with intrinsic effects between
0 and 1 are beneficial. It is less obvious that intrinsic effects
may be zero or negative, representing neutral and deleteri-
ous mutations, respectively. We also note that the stick-
breaking metaphor appears in other modeling contexts, for
example, to describe niche partitioning and species abun-
dance in ecology (MacArthur 1957; Patil and Taillie 1977)
and in population genetics to derive the distribution of age-
ordered alleles under the infinite-alleles model (Donnelly
and Joyce 1989). To our knowledge, stickbreaking has not
previously been applied to the subject of adaptive evolution.

Stickbreaking compared to additive and
multiplicative models

Because of the mathematical similarities between the
stickbreaking, additive, and multiplicative models, it is
possible to assess when they yield similar results and when
they do not. Fitness effects are expressed as fitness differ-
ences (Dw) in the additive model, selection coefficients (s)
in the multiplicative model, and stickbreaking coefficients
(u) in the stickbreaking model. In each case, the model’s
respective fitness effects are assumed to be background in-
dependent. More precisely, if b is the genetic background
and i is the arising mutation, then Dwijb ¼ wi,b 2 wb, sijb ¼
(wi,b 2 wb)/wb, and uijb ¼ (wi,b 2 wb)/(wmax 2 wb).

Under the additive model, the fitness after A1, A2, . . . , Am

mutations with fitness differences Dw1, Dw2, . . . ,Dwm have
accumulated on the wild-type background is

w1;2;:::;m ¼ wwt þ
Xm
i¼1

Dwi: (2)

Under the multiplicative model, the fitness after m muta-
tions with selection coefficients s1, s2, . . . , sm have accumu-
lated is given by

w1;2;:::;m ¼ wwt
Ym
i¼1

ð1þ siÞ: (3)

The stickbreaking, additive, and multiplicative models
converge to the same model when effect sizes are small and
walks are not too long. This occurs when the product of
effect size and walk length is small. Note that if the product
in Equation 3 is expanded and all higher-order terms are
assumed to be zero, then fitness under the multiplicative
model is approximated by a sum,

Figure 1 Simple comparison of (A) stickbreaking, (B) additive, and (C) multiplicative models when all three begin with the same initial fitness (wwt = 1)
and fix three mutations of the same intrinsic effect (0.5) (i.e., u1 ¼ u2 ¼ u3 ¼ Dw1 ¼ Dw2 ¼ Dw3 ¼ s1 ¼ s2 ¼ s3 ¼ 0.5). In A–C, the thick horizontal
lines are fitness and the circles are genotypes with the first, second, and third mutations to fix. In the stickbreaking model (A), each mutation closes the
distance from the current fitness to the boundary by the mutation’s intrinsic effect. D displays the same information as A–C by plotting step vs. fitness
and better illustrates how stickbreaking produces diminishing effects and a decelerating fitness trajectory.
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w1;2;:::;m ¼ wwt
Ym
i¼1

ð1þ siÞ � wwt

 
1þ

Xm
i¼1

si

!
: (4)

Similarly, if Equation 1 is expanded and higher-order terms
are ignored, then fitness under stickbreaking is also approx-
imated by a sum,

w1;2;:::;m 5wwt þ d

 
12

Ym
i¼1

ð12 uiÞ
!

� wwt þ d
Xm
i¼1

ui:

(5)

Combining Equations 4, 5, and 2 gives

wwt

 
1þ

Xm
i¼1

si

!
� wwt þ d

Xm
i¼1

ui � wwt þ
Xm
i¼1

Dwi: (6)

If fitness effects are small and walks not long, it implies that
wwtsi � dui � Dwi.

Definitions of fitness

Before continuing, it is important to clarify our approach to
defining fitness. We have denoted and continue to denote
fitness in a generic sense as w. Fitness is more precisely de-
fined in two ways that we call Darwinian and Malthusian
fitness. Darwinian fitness is l in a discrete population growth
model, Nt = N0lt, where N0 and Nt are the population sizes
at time 0 and time t. Malthusian fitness is r in the continuous
growth model, Nt ¼ N0ert. One can be easily transformed to
the other by l ¼ er or ln(l) ¼ r. They can also be defined in
relative terms where the change in frequency of a mutant to
a reference type gives the ratio of growth rates (Hartl and
Clark 1997); their meaning and log relationship are the
same.

In this article, the definition of fitness is important when
we consider (i) how fitnesses arise during an adaptive walk
and (ii) what type of fitness is measured when a walk is
“observed”. In modeling walks (i), we maintain generality
by considering mutations acting in an additive, multiplica-
tive, or stickbreaking manner on either Darwinian or Mal-
thusian fitness. This yields six combinations. Note, because
multiplicative effects on l and additive effects on r are
equivalent, there are actually five different models. For clar-
ity, however, we describe them as a set of six models. After
an adaptive walk occurs, we imagine measuring fitness (ii).
Throughout this article we measure Malthusian, but not
Darwinian, fitness to simplify our results and because Mal-
thusian fitness is the predominant definition used in the
experimental evolution literature.

Fitness trajectories

The predicted fitness under the additive, multiplicative, and
stickbreaking models after m steps can be approximated if
we assume the pool of beneficial mutations (M) is large
enough that sampling is effectively done with replacement
(i.e., M ? m). Then, under strong selection, weak mutation

(SSWM) conditions, the expected effect of a mutation that
arises, escapes drift, and sweeps to fixation is given by
n 5

PM
i¼1x

2
i =
PM

j¼1xj (Gillespie 1991), where xi represents
the intrinsic effect under either of the three models (i.e.,
Dwi, si, or ui). We therefore replace Dwi, si, and ui in Equa-
tions 1, 2, and 3 with n. Note that when mutations affect l,
but we measure r, a log transformation is necessary. These
approximations as well as model abbreviations are given in
Table 1.

Distributions of fitness during replicate walks

We want to know the distribution of fitness achieved at step
m when the total number of beneficial mutations available is
M under each of the three models. Note that this differs from
the familiar distribution of fitness effects and the distribu-
tion of fitnesses across the landscape; rather, it is the distri-
bution of fitness achieved among replicate walks after m
steps when all walks begin at the same genotype. The details
of this derivation are provided in the Appendix. Denote the
intrinsic effect of mutation i as xi, where xi ¼ Dwi, xi ¼ si, and
xi ¼ ui under the three models. Assume the xi values are
drawn from a distribution and replicate walks occur using
this fixed set of mutations (i.e., on a fixed landscape). Let Yj
be the intrinsic effect of the mutation that fixes at step j.
Note that si and ui differ from Dwi by a scaling factor that
cancels when calculating the scale-free quantity Yj. If M is
large and m is an order of magnitude smaller, such that
as both M / N and m / N, m ln(M)/M / 0, then Y1,
Y2, . . . , Ym will be approximately independent and identically
distributed with PðYj 5 xiÞ 5 xiM=�x for j ¼ 1, 2, . . . ,m. On
the basis of the central limit theorem, this implies that the
distribution of

Pm
j¼1Yj will be approximately normal,Qm

j¼1ð1þ YjÞ will be approximately log normal, and
12
Qm

j¼1ð12YjÞ will be approximately negative log normal.
Thus, when M is large and m is small, but not extremely
small (i.e., when the pool of beneficial mutations is large
and the number to have fixed is moderately small), fitness
of replicate walks under the additive, multiplicative, and
stickbreaking models follows the normal, log-normal, and
negative log-normal distributions with density functions
and parameter values provided in the Appendix. These limit-
ing distributions can be obtained as a function of time, not
mutational step, using a scale transformation.

Table 1 Expected fitness afterm steps given the model generating
fitness effects

Model Model abbreviation Expected fitness (r)

Additive on l Add on l ln(lwt + mn)
Multiplicative on l Mult on l ln(lwt) + m ln(1 + n)
Stickbreaking on l Stick on l ln[lwt + d(1 2 (1 2 n)m)]
Additive on r Add on r rwt + mn

Multiplicative on r Mult on r rwt(1 + n)m

Stickbreaking on r Stick on r lwt + d(1 2 (1 2 n)m)

Fitness is measured on the Malthusian, r, scale. Expected fitness is obtained by
replacing mutational effects in Equations 1–3 with the mean intrinsic effect of
a fixing mutation, n. The second column gives model abbreviations used throughout
this article.
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Epistasis

Epistasis occurs when a mutation has different fitness effects
in different genetic backgrounds. One way to measure
epistasis is therefore to assess the fitness effect of a mutation
across different backgrounds. A second way to examine
epistasis is as a deviation of observation from prediction: (i)
measure the fitness effects of two or more mutations on the
same genetic background, (ii) predict their combined fitness
effect under an assumed model on the basis of their
individual effects, (iii) measure their combined fitness
effect, and (iv) define epistasis as the disparity between
predicted (ii) and observed (iii). The first approach is more
intuitive, and the latter is more commonly used in the
literature as a measure of epistasis. We pursue both here.

Epistasis as different effects of the same mutation across
backgrounds: For any mutation, we specifically wish to
know how its fitness effects change across the steps of
a walk beginning with the wild type and continuing until the
mutation actually fixed. Following convention, we define
fitness effects as differences in r. As above, we consider data
arising under each of six models. We assume the pool of
beneficial mutations is large and SSWM conditions operate
such that the expected fitness effect of a mutation at each
step is given by n. An adaptive walk of length m 2 1 occurs.
If we imagine a mutation of average (fixed) effect, n, is then
inserted (i.e., genetically engineered) as the mth mutation
on the m 2 1 background, the expected value of Dr that
results is contained in Table 2.

Epistasis as departure of observed from predicted effects of
combined mutations: An alternative way to measure
epistasis is as a departure of observation from prediction: e
¼ robs 2 rpred. Predicted values are based on additivity on r
while observed data arise according to one of the six models.
We are interested in how the disparity between observed
and predicted fitness depends on the model under which
fitness effects arise and the number of mutations considered,
m. Again, we assume SSWM conditions and a large pool of
beneficial mutations such that the expected effect of a ran-
domly fixing mutation is n. Table 3 gives the expected values
for e for each of the six models.

Simulations

Overview

Simulations written in R (R Development Core Team 2009)
were used to study the patterns of fitness trajectory, distri-
bution of fitness effects, and epistasis and to compare these
to the theoretical results derived above. All simulations were
done in the following basic framework. First, we assumed
SSWM dynamics (Gillespie 1991) such that the population
is described by a procession of fixed beneficial mutations.
Second, a fitness landscape was defined by a relatively small
number of beneficial mutations (M = 50) with fitness
effects, x, randomly drawn from a distribution. Neither the
pool of mutations nor their inherent effects change as adap-
tive walks proceed. Third, the time until the next mutation
fixed was simulated by drawing random exponential waiting
times for all M 2 m available mutations with rate Nmbp(si),
where N was set at 105, the per site per generation beneficial
mutation rate, mb, was set to 2 · 1027, and the fixation
probability for mutation Ai, p(si), is given by
ð12e22siÞ=ð12e22siNÞ (Kimura 1962), where si is the selec-
tion coefficient of Ai as traditionally defined [i.e., fractional
changes in l or differences in r (Chevin 2010)]. The muta-
tion that fixed was that with the shortest waiting time.

In conducting simulations, we had to decide whether to
conduct replicate walks on one landscape or single walks on
replicate landscapes. In other words, should we average
over replicate walks or replicate landscapes? We argue that
conducting replicate walks on the same landscape is more
analogous to experimental evolution where these models
may ultimately be tested empirically. Consequently, we
simulated a single landscape and ran 1000 replicate walks
on this landscape, collecting and summarizing relevant
information. We then repeated this entire process over
several landscapes and confirmed that the observed quali-
tative patterns that are our focus here do not depend on the
particular landscape (results not shown). To generate
a landscape, 50 beneficial mutations were drawn from the
positive region of a negative log normal (Appendix). If X �
Normal (m, s), then 12 eX is a sample from the negative log
normal. Parameters for the negative log normal (m ¼ 0.75,
s ¼ 0.6) were chosen so that 10% of the probability is
positive (Figure 2). This distribution was used because it
produces values #1 as required by the stickbreaking model

Table 2 Expected fitness effects for a mutation fixing after
m 2 1 steps

Model Expected fitness effect (Dr)

Additive on l ln[(lwt + mn)/(lwt + mn 2 n)]
Multiplicative on l ln(1 + n)
Stickbreaking on l ln[(lwt + d 2 d(1 2 n)m)/(lwt + d 2 d(1 2 n)m21)]
Additive on r n

Multiplicative on r rwtn(1 + n)m21

Stickbreaking on r nd(1 2 n)m21

The left column gives the model under which data arise. Fitness effects (right
column) are defined as the expected fitness differences in r as a consequence of the
mth mutation.

Table 3 Expected deviations from additivity on r (e)

Model Expected e

Additive on l ln(lwt + mn) 2 n ln(1 + n/lwt)
Multiplicative on l 0
Stickbreaking on l ln[(lwt + d 2 d(1 2 n)m] 2 rwt 2 m ln(1 + dn/lwt)
Additive on r 0
Multiplicative on r rwt (1 + n)m 2 rwt (1 + mn)
Stickbreaking on r d 2 d(1 2 n)m 2 mdn

e is defined as robs 2 rpred. The left column gives the model under which data arise
while the right column gives the expected value of e as a function of the number of
fixed mutations (m) and the mean intrinsic effect of mutations that fix (n).
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while also being consistent with the additive and multipli-
cative models. Once it was generated, we used this single set
of 50 values to simulate replicate walks under the six mod-
els: additive, multiplicative, and stickbreaking affecting Dar-
winian or Malthusian fitness. For all models the initial
fitness was set at 1, and for both stickbreaking models, the
fitness boundary was set at 2 such that d ¼ 1. Walks were
simulated until all 50 beneficial mutations fixed.

Analysis of simulations

Three analyses of simulated data were conducted. First, we
compared the mean fitness trajectory for each of the six
models. Because final fitness differs dramatically between
models, trajectories were rescaled for every simulated walk
to range from zero to one. Second, to assess the distribution
of fitness, we sampled fitness for each of the 1000 walks at
steps 5, 10, 20, and 30 and generated histograms from the
results. Third, epistasis was measured in the same two ways
we quantify it in the Epistasis section above: (i) as fitness
effects and (ii) as a departure from additivity on r. In ap-
proach i, we took a mutation that arose later in a walk,
simulated engineering it into each of the preceding back-
grounds, and measured its resulting fitness effect. We arbi-
trarily used the mutation fixing 10th and we defined fitness
effect as the difference in r. In the latter approach (ii), we
compared observed fitness with predicted fitness on the r
scale. For each simulated walk, we considered the first m
mutations that fixed for m = 2, 3, . . . , 10. We then imagined
measuring the effect of each of these m mutations on the
wild-type background (i.e., as first-step mutations) yielding
Dr1|wt, Dr2|wt, . . . , Drm|wt. Under the additive model, the

predicted fitness when all m mutations are combined is just
r1,2,. . .,m(pred) = rwt + Dr1|wt + Dr2|wt + . . . Drm|wt. Epistasis,
as a function of the number of mutations, is then em =
r1,2,. . .,m(obs) 2 r1,2,. . .,m(pred).

Results and Discussion

Our objective in this work is to propose and explore a new
model of combining mutational effects, which we call
stickbreaking. Stickbreaking is premised on the idea that,
in the current environment and on short evolutionary
timescales, there is a fitness boundary imposed by the laws
of biochemistry and by restrictions on how radically the
architecture of the genome can be altered by mutation. This
limits how dramatically phenotype can be changed over
a short evolutionary time span. Within the scope of available
phenotypes, the optimal one corresponds to the fitness
boundary. For example, if a set of mutations affects the rate
a virus attaches to its host, the accumulation of many such
mutations will not indefinitely push the attachment rate
higher; rather, a boundary on attachment and therefore
fitness will be imposed by the kinetics of collisions of objects
in random motion. Such boundaries help provide a basic
rationale behind the stickbreaking model.

Stickbreaking may also arise when organisms are mod-
erately redundant such that they may solve a given problem
multiple ways. Once substantial progress is made toward
one solution (through mutation), pursuing alternative
solutions to the same problem may be beneficial, but not
nearly as much as the first. In the attachment example
above, we might imagine multiple residues where binding
can occur to the host; a virus that attaches poorly requires
a mutation at only one of these residues to dramatically
increase attachment. Subsequent mutations offering alter-
native ways to bind will provide diminishing beneficial
effects. Conversely, when an organism is very near the
optimal fitness because it has found several, semiredundant
solutions to a problem, a deleterious mutation that disrupts
one solution will have a relatively small negative effect on
fitness. It is also noteworthy that patterns qualitatively
similar to stickbreaking can emerge from metabolic control
theory (Kacser and Burns 1981). When a mutation
changes the activity of an enzyme in a pathway, its effect
on the pathway’s flux is smaller than on the enzyme itself
and it diminishes the nearer the pathway is to the maxi-
mum flux.

In stickbreaking, these biological assumptions of a bound-
ary and diminishing effects are translated mathematically
by allowing mutations to further and further subdivide the
distance to the boundary in a multiplicative manner (Equa-
tion 1, Figure 1). Because it involves a product, stickbreaking
has the commutative property and, like the additive and mul-
tiplicative models, thereby solves the bookkeeping problem.
However, this process of subdivision leads to different walk
properties from those models.

Figure 2 Negative log normal distribution from which effects are drawn.
All mutations are drawn from 10% of the distribution .0 (indicated by
dashed line).
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Fitness trajectory

Different models lead to dramatically different trajectories of
fitness as a function of mutational step over an adaptive
walk (Figure 3A). When mutations affect r, the trajectories
for the additive, multiplicative, and stickbreaking models are
approximately linear, exponential, and rapidly decelerating,
respectively. When mutations instead affect l, the trajecto-
ries are shifted: additive becomes modestly decelerating,
multiplicative becomes approximately linear, and decelera-
tion under stickbreaking becomes very slightly exaggerated.
Note that the theoretical expectations from Table 1 (Figure
3A, shaded lines) are qualitatively correct; the disparities
between them and the simulations (Figure 3A, solid lines)
reflect the limited pool of beneficial mutations and the bi-
ased nature in which selection fixes mutations.

A survey of the experimental evolution literature indi-
cates that, in most cases, the observed fitness trajectory
decelerates as adaptation proceeds. This result has been
observed in Escherichia coli (Lenski and Travisano 1994; de
Visser et al. 1999; Barrick et al. 2009), the DNA bacterioph-
ages uX174 and G4 (Bull et al. 1997; Wichman et al. 1999;
Holder and Bull 2001), RNA bacteriophage (Burch and
Chao 1999; Betancourt 2009), and the animal RNA virus,
vesicular stomatitis virus (VSV) (Elena et al. 1998). The
exceptions we are aware of are approximately linear trajec-
tories in Saccharomyces cerevisiae (Desai et al. 2007) and in
one study on VSV (Novella et al. 1995). Of the models con-
sidered here, both stickbreaking models show rapidly decel-
erating trajectories and the additive model on l shows
a moderately decelerating trajectory.

This suggests that one of these three models is likely
nearer the truth than the model most commonly assumed in

the literature, additivity on r (multiplicative on l) with its
approximately linear trajectory. There are at least two reasons
to be somewhat cautious regarding this conclusion. First, our
results are based on SSWM dynamics while many experimen-
tal and real world systems involve interference dynamics with
more than one mutation contending simultaneously. Under
interference dynamics, selection is more efficient at fixing
bigger-effect mutations early in a walk compared to SSWM
conditions (Rozen et al. 2002; Barrett et al. 2006). We can
obtain a bound on this effect by assuming the pool of con-
tending mutations is the entire pool of beneficial mutations
and selection therefore fixes them in descending order from
the largest to the smallest. Figure 3B shows this trajectory. As
expected, interference shifts all the trajectories toward a de-
celerating pattern although the effect is modest.

Second, trajectories are affected by whether fitness is
considered a function of mutational step (as we have done
thus far) or time. Plotting fitness against time instead of step
bends most of the trajectories toward a more concave,
decelerating shape (Figure 3C). Under all models, there is
a tendency to fix mutations from larger to smaller intrinsic
effect. When all else is equal, this leads to selection coeffi-
cients (as traditionally defined, see Simulations) tending
from large to small and, therefore, to waiting times between
fixation events tending from short to long. In the “add on r”
model, this is the only effect, and the trajectory decelerates
moderately. In the “add on l” model there is also the effect
that as fitness grows in an additive way, the proportional
effect of each added mutation (the selection coefficient)
becomes smaller. The stickbreaking models are most dra-
matically affected by the timescale because as they approach
their boundary, selection coefficients become very small and

Figure 3 Mean fitness trajectory scaled as percentage of final fitness achieved under the six models indicated in the inset in C (see Table 1 for model
abbreviations). Symbols on trajectories identify model and denote mutations. Note “add on r” and “mult on l” are the same model with the same
trajectory. (A) Mean fitness trajectories by mutational step based on simulations (solid lines) and theoretical predictions from Table 1 that assume a constant
mean effect for all mutations (shaded lines). SSWM conditions are assumed. (B) Simulated trajectories under extreme clonal interference where mutations fix
in order of descending effect size. (C) Same fitness trajectories as in A except plotted by time, not step, for the first 3000 generations.
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waiting times very long. At the other extreme lies the “mult
on r” model where selection coefficients actually get larger
as the walk proceeds, causing the walk to accelerate in time
for most of its duration. We leave a statistical treatment of
trajectory data for later work and here emphasize three
things: (i) most of the models show decelerating trajecto-
ries, (ii) the slowdown is exaggerated both by clonal inter-
ference and by using time rather than step as the
explanatory variable, and (iii) with or without these influ-
ences, the stickbreaking models show much more dramatic
decelerating effects than the other models.

Distribution of fitness over replicate walks

When mutations affect Malthusian fitness, r, and fitness is
measured as r, the theoretical distributions from replicate
walks (Appendix) are log normal, normal, and negative log
normal for the additive, multiplicative, and stickbreaking
models (solid lines in Figure 4, A–C). When mutations affect
l instead, these qualitative patterns are only slightly changed
with heavier left tails (Figure 4, D and E). These predictions
are based on asymptotic assumptions that (i) the total num-
ber of beneficial mutations, M, is large, (ii) the step where
fitness is measured is far smaller than the number of

Figure 4 (A–E) Distributions of fitness achieved at the indicated step (top) under the six models (left) where the equivalent “add on r” and “mult on l”

are consolidated. Shaded bars show frequency of fitness over 1000 walks on the same landscape while solid lines are predicted distributions based on
asymptotic results in the Appendix. The x-axis (Malthusian fitness) is the same for all panels. When mutations affect r, the additive, multiplicative, and
stickbreaking models (A–C) yield normal, log-normal, and negative log-normal distributions of fitness.
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beneficial mutations, m > M, and (iii) m is large enough for
the law of large numbers to apply. In reality, M will often be
modest (e.g., 10 , M , 100) and m may be relatively small
(e.g., #30). The simulations shed light on what effect vio-
lating these assumptions has.

Early in a walk (m # 10) there is good agreement be-
tween the observed and predicted distributions (Figure 4) in
terms of both mean and variance. As a walk approaches its
midpoint, observed means are notably smaller than the pre-
dicted means because the theory assumes constant effect
sizes while, in simulated walks, fitness increase slows as
large-effect mutations are removed from the available pool.
Still, the shapes of the distributions remain the same even
when m is large. The different models make qualitatively
different predictions about the distribution of fitness during
replicate adaptive walks: both stickbreaking models predict
heavy left tails, the multiplicative on r model a heavy right
tail, and both additive models an approximately normal
distribution. Whether mutations affect r and l is relatively
minor. Note also that the distributions are in terms of num-
ber of mutations fixed (steps), not time elapsed. As shown in
the Fitness trajectory subsection above, different models fix
mutations in different lengths of time (Figure 3C) and will
therefore achieve the distributions shown in Figure 4 at
different rates (see the Appendix for details).

Epistasis

Epistasis occurs when the fitness effect of a mutation
depends on the genetic background. We investigate epistasis
in two ways: first as the effect of a single mutation across

a procession of backgrounds and second as departures from
additivity when a set of single mutations is combined. For
the first approach, we simulate replicate walks of 10
mutational steps under each model on a single landscape.
We then imagine taking the mutation that fixed 10th and
engineering it into each of the preceding backgrounds in the
walk. (Our choice of the 10th mutation is arbitrary, but using
other stop points does not change the qualitative patterns
observed; data not shown).

The solid lines in Figure 5 show the means of simulation
results when fitness effects are defined as differences in r
while the shaded lines give the theoretical relationships (Ta-
ble 2). The results show how the observed fitness effects
change along the walk under the different models for the
same mutation (or as the intrinsic effect is held constant).
Effect sizes grow exponentially for the mult on r model, are
constant for the add on r (mult on l) model, decay moder-
ately for add on l, and show rapidly diminishing effects for
both stickbreaking models. Of course, these patterns closely
reflect the previously discussed fitness trajectories. Here we
are considering how the vertical distance (fitness) between
steps qualitatively changes along a walk when the intrinsic
effect is held constant. It is also noteworthy that because
differences in r are, in fact, selection coefficients, Figure 5
illustrates how selection coefficients change across a walk
under each model. As discussed above, this, in turn, explains
how waiting times between mutations change across a walk
(Figure 3C).

In the literature, epistasis is more commonly quantified
as the departure from additivity when single mutations are
combined. We again simulated replicate walks under each
model on a single landscape. For the first m mutations that
fixed, we imagined engineering each into the wild type and
measuring their fitness effects (as difference in r). In keep-
ing with the literature, we predicted fitness on the basis of
the additivity of the r model (i.e., summing fitness effects).
Epistasis is then defined as e ¼ robs 2 rpred. For beneficial
mutations e , 0 and e . 0 are termed antagonistic and
synergistic epistasis, respectively.

The patterns of e (Figure 6) are similar to those observed
in Figure 5. The stickbreaking models show strong antago-
nistic epistasis, add on l shows moderate antagonistic epis-
tasis, add on l (mult on r) shows no epistasis (by
definition), and mult on r shows strong synergistic epistasis.
In fact, it is easy to understand why e (Figure 6) and fitness
effect (Figure 5) must follow the same basic pattern. Con-
sider two mutations, A1 and A2. If e , 0 (antagonistic epis-
tasis), then robs , rpred. Letting Dr denote fitness effect on r
and rwt denote the wild-type fitness, this implies that rwt +
Dr1|wt + Dr2|1 , rwt + Dr1|wt + Dr2|wt, which implies
Dr2|1 , Dr2|wt, or a diminishing effect. Similar arguments
can be made for e ¼ 0 and e . 0.

In the experimental evolution literature, the commonly
observed patterns of epistasis are (1) diminishing effects,
where the same mutation has smaller effects on more fit
backgrounds and conversely larger effects on less fit ones,

Figure 5 Mean fitness effect of the mutation fixing at step 10 inserted
into the procession of preceding backgrounds beginning with the wild
type. Shaded dashed lines are theoretical predictions from Table 2. Stick-
breaking on either r or l and, to a lesser extent, additivity on l produce
diminishing returns epistasis.
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and (2) antagonistic epistasis is more frequent than syner-
gistic epistasis (Burch et al. 2003; Sanjuán and Elena 2006).
For example, Bull et al. (2000) found that the fitness effect of
one mutation (1727T) in the bacteriophage uX174 decreased
across four backgrounds of increasing fitness. Recently, Chou
et al. (2011), Khan et al. (2011), and Kvitek and Sherlock
(2011) all showed a general pattern of diminishing returns
epistasis when beneficial mutations were inserted into closely
related backgrounds. Similar results are found in double-mu-
tant studies. Trindade et al. (2009) found that when antibiotic
resistance mutations in E. coli are combined, 42% of those
showing significant epistasis are antagonistic, while only
15% show synergistic epistasis. Rokyta et al. (2011) inserted
nine beneficial single mutations in a G4-like bacteriophage to
form 18 double mutants and found antagonistic epistasis for
all 18. Finally, a synthesis of 21 studies by Sanjuán and Elena
(2006) indicated that antagonistic epistasis is more prevalent
in viruses and prokaryotes, while synergistic or no epistasis is
more common in eukaryotes. Thus studies have tended to
show patterns of epistasis broadly consistent with the two
stickbreaking models and additivity on l.

It is important to clarify that the values of e and hence the
patterns of antagonistic vs. synergistic epistasis depend on the
null model used to calculate predicted fitness. It is easy to see
what the patterns would be under other nulls by noting that the
“predicted” and observed labels in Figure 6 are arbitrary. Figure
6 can also be thought of as showing the fitness divergence
between different models as mutations of the same intrinsic
effect are introduced. For any null and alternative model, the
distance between them corresponds to the values of e.

Conclusion

The stickbreaking model is based on the simple idea that
mutational fitness effects should diminish the nearer the
background is to the maximum fitness boundary. It solves
the bookkeeping problem while also producing patterns of
fitness trajectory and epistasis broadly consistent with
experimental findings. The next important step is to develop
statistical methods for fitting and testing the stickbreaking
model on real data. Like the additive and multiplicative
models, stickbreaking is too simple to be biologically correct.
Rather, our hope is that stickbreaking is mathematically
tractable like those models, but also captures a basic bi-
ological property and provides an explanatory power that
those models seem to miss.
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Appendix

Distribution of Total Fitness Effects After m Steps of
Adaptation

We show here that there are three limiting distributions for
the fitness achieved after m steps in a walk: the normal dis-
tribution under additivity, the log normal under the multipli-
cative model, and negative log normal under stickbreaking.

Denote the “intrinsic” fitness effect of the beneficial mu-
tation Ai by xi. For the additive model xi = Dwi, for the
multiplicative model xi = si, and for the stickbreaking model
xi = ui. Note that ui and si are just different ways to scale
Dwi. That is, ui = Dwi/(d 2 wwt) and si = Dwi/wwt.
Therefore

ujPM
i¼1   ui

¼ Dwj=ðd2wwtÞPM
i¼1   Dwi=ðd2wwtÞ

¼ DwjPM
i¼1   Dwi

and similarly

sjPM
i¼1   si

¼ Dwj=wwtPM
i¼1   Dwi=wwt

¼ DwjPM
i¼1   Dwi

:

Throughout we assume that the walks evolve according to
SSWM conditions. We also assume that for each value of M,
x1, x2, . . . , xM is fixed. That is, we use the same set of in-
trinsic fitness effects for replicate walks.

Consider an adaptive walk of length m. Let Yi be the in-
trinsic fitness effect of the mutation arising at step i. The
joint distribution of Y1, Y2, . . . , Ym can be described as

P
�
Y1 ¼ xi1 ; Y2 ¼ xi2 ; :::; Ym ¼ xim

�
¼ xi1PM

i¼1   xi

xi2PM
i 6¼i1

  xi

xi3PM
i6¼i1;i2

  xi
⋯

ximPM
i6¼i1;:::;im21

  xi
:

(A1)

Note that Y1, Y2, . . . , Ym are dependent random variables.
The dependence comes from the fact that once a mutation
is used in a walk it will not be used again, thus reducing the
number of available mutations at each step. However, if M is
large enough, we show below that Y1, Y2, . . . , Ym are approx-
imately independent and identically distributed. Let x(1) =
max{x1, x2, . . . , xM}. Note that xi1 þ :  :  :þ xim21#ðm21Þxð1Þ.
Therefore,

�x $
1
M

XM
i6¼i1;:::;im21

xi $ �x2
ðm2 1Þxð1Þ

M
: (A2)

Here is where the relationship between M and m becomes
important. We assume that m is an order of magnitude
smaller than M. More precisely, we assume that as M / N,
then m ln(M)/M / 0 and m / N. It follows from extreme
value theory that for large M, x(1) � c ln M. [More precisely
x(1)/ln(M) converges to a constant c as M / N.] Taking the
limit as M / N in inequality (A2) reveals that
limM/N�x2ð1=  MÞPM

i 6¼i1;:::;im21
xi ¼ 0: Thus for large M,

ð1=  MÞPM
i 6¼i1;:::;ik21

xi � �x, for k = 1, 2, . . . ,m. If we replace
the denominators in Equation A1 with M   �x, then this leads
to the assumption that Y1, Y2, . . . , Ym are approximately in-
dependent and identically distributed with
PðY ¼ xÞ � x=  M   �x: Note that EðYÞ ¼ ðPM

i¼1   x
2
i =MÞ=�x and

VarðYÞ ¼ ðPM
i¼1   x

3
i =MÞ=�x2ððPM

i¼1 x
2
i =MÞ=�xÞ2. Both converge

as M / N.

Normal, Log Normal, and Negative Log Normal

Below we review the three central distributions associated
with m steps of an adaptive walk. The normal distribution is
given by

fX
�
x
��m;s2� ¼ 1ffiffiffiffiffiffi

2p
p

s
e2ð1=2Þððx2mÞ=sÞ2 : (A3)

If X follows the normal distribution, we say that V = eX

follows the log-normal distribution with probability density
function given by

fV
�
v
��m;s2� 1ffiffiffiffiffiffi

2p
p

sv
e2ðlnðvÞ2mÞ2=ð2s2Þ; (A4)

and if V follows the log normal, we say that W = 1 2 V
follows the negative log-normal distribution with probability
density function given by

fWðwÞ ¼ 1ffiffiffiffiffiffi
2p

p
sð12wÞ e

2ðlnð12wÞ2mÞ2=ð2s2Þ: (A5)

Note that the parameters m and s appear in all three prob-
ability densities, but must be interpreted differently in each.
While m represents the mean and s2 represents the variance
of a normal, the mean of the log-normal distribution is
EðVÞ ¼ EðeXÞ ¼ emþs2=2 and the variance of a log normal is
VarðVÞ ¼ Eðe2X2ðEeXÞ2 ¼ e2mþs2ðes2

21Þ. If W is negative
log normal, then the mean is EðWÞ ¼ 12EðVÞ ¼ 12emþs2=2

and the variance of a negative log normal is the same as that
of a log normal.

Now if Yi represents the fitness differences, then the fit-
ness after m steps is given by w1;2;:::;m ¼ wwt þ

Pm
i¼1Yi: Un-

der the additive model, the central limit theorem applies
and the distribution of w1,2,. . .,m will be approximately normal
with mean m¼wwt þmEðYÞ ¼ wwt þmððPM

i¼1 x
2
i  =  MÞ=�xÞ and

s2¼m  VarðYÞ¼mððPM
i¼1   x

3
i =MÞ=�xÞ2mðððPM

i¼1   x
2
i =MÞ=�xÞÞ2 .

However, if the multiplicative model applies, then w1;2;:::; m¼
wwt
Qm

i¼1ð1þ YiÞ. This implies w1;2;:::;m=wwt¼ e
Pm

i¼1
lnð1þYiÞ:

The central limit theorem now applies to
Pm

i¼1lnð1þ YiÞ:
Thus m ¼ mEðlnð1þ YÞÞ ¼ m

PM
j¼1xj lnð1þ xjÞ=ðN   �xÞ and

s2 ¼ m  Varðlnð1þ YÞÞ

¼ m
XM
j¼1

 �
ln
�
1þ xj

��2xj
ðN   �xÞ 2

 PM
j¼1xjln

�
1þ xj

�
ðN   �xÞ

!2!
:

So w1,2,. . .,m/wwt is distributed log normal.
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Under the stickbreaking model, ðwi;1;:::;  m2wwtÞ=d ¼
12
Qm

i¼1ð12YiÞ is approximately negative log normal, where
m = mE(1 2 Y) and s2 = mVar(1 2 Y) and the formulas are
analogous to those of the log normal.

The assumption that M is large enough so that m is an
order of magnitude smaller yetm is still large enough for the
central limit theorem to apply is not always going to be
achieved. Simulations can help in determining the degree
to which violation of assumptions matters.

Number of Steps vs. Time to Adaptation

Under SSWM conditions the time it takes a mutation with
selection coefficient s to arise and fix in the population is
exponentially distributed with mean 1/Nms, where m is the
beneficial mutation rate and N is the population size. Now if
there are a total of M beneficial mutations available, the
time in generations to fixation of the first beneficial muta-
tion is on average 1=ðNmM�sÞ; where �s is the average selec-

tion coefficient among the M available mutations. All of our
theory is based on the asymptotic results formed by taking
the limit as M goes to infinity. As M goes to infinity the time
to fixation converges to zero. So a timescale change is re-
quired. If we assume that 1 unit of time is equivalent to NmM
generations, then the mean time for the first beneficial mu-
tation to fix using this timescale will be exponentially dis-
tributed with mean 1=�s. In the limit as M goes to infinity, �s
converges to the mean of the distribution of beneficial muta-
tions, which we denote by g. We now use an extension of the
central limit theorem that states

PMt
i¼1ððYi2mmÞ= ffiffiffiffiffiffi

Mt
p

sÞ
converges to the normal distribution as t / N. This shows
that the time limit prediction of the additive model is nor-
mal. Applying the analogous central limit theorem result toPMt

i¼1lnð1þ YiÞ shows that the multiplicative model leads
to a log-normal distribution. Applying the analogous cen-
tral limit theorem result to

PMt
i¼1lnð12YiÞ shows that

the stickbreaking model leads to a negative log-normal
distribution.
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