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ABSTRACT Although mapping quantitative traits in inbred strains is simpler than mapping the analogous traits in humans, classical
inbred crosses suffer from reduced genetic diversity compared to experimental designs involving outbred animal populations. Multiple
crosses, for example the Complex Trait Consortium’s eight-way cross, circumvent these difficulties. However, complex mating schemes
and systematic inbreeding raise substantial computational difficulties. Here we present a method for locally imputing the strain origins of
each genotyped animal along its genome. Imputed origins then serve as mean effects in a multivariate Gaussian model for testing
association between trait levels and local genomic variation. Imputation is a combinatorial process that assigns the maternal and paternal
strain origin of each animal on the basis of observed genotypes and prior pedigree information. Without smoothing, imputation is likely to
be ill-defined or jump erratically from one strain to another as an animal’s genome is traversed. In practice, one expects to see long
stretches where strain origins are invariant. Smoothing can be achieved by penalizing strain changes from one marker to the next. A
dynamic programming algorithm then solves the strain imputation process in one quick pass through the genome of an animal.
Imputation accuracy exceeds 99% in practical examples and leads to high-resolution mapping in simulated and real data. The previous
fastest quantitative trait loci (QTL) mapping software for dense genome scans reduced compute times to hours. Our implementation
further reduces compute times from hours to minutes with no loss in statistical power. Indeed, power is enhanced for full pedigree data.

THERE are trade-offs in mapping quantitative trait loci
(QTL) in humans vs. model organisms. The primary ad-

vantage of human data is that any mapped gene is guaranteed
to be relevant. In addition, traits such as psychometric meas-
ures are limited to humans. On the other hand, gene mapping
in model organisms is considerably easier. For many model
organisms, generation times are short and environmental ef-
fects can be rigidly controlled. Any genes mapped can be
quickly located in humans by synteny. Murine mapping ex-
ploits inbred strains where all mice are completely homozy-
gous and genetically identical. Diversity is regained by
crossing the strains. It seems obvious that the more strains
involved in a cross, the greater the chance of mapping a rele-
vant gene. For this reason geneticists are contemplating more

ambitious crosses with more contributing strains. Unfortu-
nately, these complex crosses are harder to analyze statisti-
cally, particularly when pedigree structures are poorly
documented. In this article we tackle some challenges of an-
alyzing data from arbitrarily complex crosses. The Complex
Trait Consortium’s eight-way cross (Churchill et al. 2004;
Aylor et al. 2011) is just one of many conceptual possibilities.
Heterogeneous stocks (HS) also find wide application in map-
ping mouse QTL (Valdar et al. 2009). In addition to murine
mapping, ongoing efforts in Drosophila (Macdonald and Long
2007) and Arabidopsis (Kover et al. 2009) mapping are upping
the ante in the analysis of complex-cross data. Even though
we focus on mice, readers should keep in mind the broader
implications of our statistical and algorithmic agenda.

In humans the dominant mapping strategies are linkage
and association mapping. The former is more robust; the
latter has better resolution. The shift from linkage analysis to
association mapping has been accompanied by the replace-
ment of pedigree data by random sample and case–control
data. Although one can imagine random sampling of wild
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mice, the opportunities for strict environmental and dietary
control are lost. Association mapping is certainly possible by
sampling all available strains, but traditionally the number
and availability of rare strains have imposed limits on map-
ping resolution and power (Chesler et al. 2001; Grupe et al.
2001; Cervino et al. 2007; Scudellari 2010). Thus, pedigree
data retain some real advantages in mapping mouse genes.
Linkage mapping operates by tracking recombination events.
These accumulate more readily in deep pedigrees and allow
a trait to be mapped to the smallest region of overlap defined
by conserved strain blocks. The polymorphisms defining
the blocks usually do not drive trait variation. Of course, as
single-nucleotide polymorphism (SNP) panels in mice become
more dense (Frazer et al. 2007; Saar et al. 2008), the chances
of a panel including causative variants increases.

It seems to us that the best route to success in association
mapping with inbred strains is to use the local strain origins
of each mouse as fixed effects in a mixed-effects statistical
model. Although confined to quantitative traits, this strategy
has several advantages. First, it mimics what linkage
mapping is seeking to accomplish in tracking recombination
events and strain blocks. Second, in contrast to standard
association mapping, it does not rely on a single SNP at
a time to distinguish local strain origins. Third, the random
effects part of a mixed-effects model readily captures poly-
genic background. Our recent model of polygenic inheri-
tance in inbred strains (Bauman et al. 2008) makes it
possible to calculate trait variances and covariances across
a pedigree, regardless of the number of founding strains and
the internal complexity of the pedigree.

The literature on QTL mapping strategies for inbred
strains is longstanding and too large to review here. Recent
articles touting random effects models in inbred strains
include Xie et al. (1998), Liu and Zeng (2000), and Bauman
et al. (2008). Bennett et al. (2010) argue that association
mapping with large SNP mouse panels has the potential for
much higher mapping resolution. Early results from the Col-
laborative Cross support this contention (Aylor et al. 2011).

The new polygenic models for inbred strain data derived
by Bauman et al. (2008) involve certain combinatorial
(strain) coefficients that bear a strong resemblance to stan-
dard global (theoretical) kinship coefficients appropriate to
outbred populations. Both kinds of coefficients can be
quickly computed by simple recurrence relations. Calculat-
ing the local (conditional) analogs of these global coeffi-
cients is much more challenging. These depend on all
observed marker genotypes in the vicinity of a putative
QTL. On small pedigrees it is possible to compute local strain
coefficient matrices exactly by generating all possible de-
scent graphs (gene flow patterns) at the QTL and neighbor-
ing markers (Kruglyak et al. 1996). In practice, inbred strain
pedigrees are so large that the number of possible descent
graphs is astronomical, and current computation is limited
to slow Monte Carlo sampling (Sobel and Lange 1996). In
this article, we dispense with computation of local strain
coefficients and propose as a substitute direct imputation

of strain origins locally along each animal’s genome. Once
imputation is done by a very fast dynamic programming
algorithm, local strain origins serve as mean effects in a mul-
tivariate Gaussian model for association testing.

Our imputation approach is based on minimizing animal by
animal an objective function incorporating both loss and penalty
terms. The loss function cumulates the negative log-likelihood of
the observed data from each marker given the local strain
origins at the marker. The penalty terms suppress switches in
strain origin and encourage origin constancy over long stretches
of the animal’s genome. When a switch occurs, the jump to
another strain is biased by the global fraction of the animal’s
genome attributable to that strain. Here the global strain coef-
ficients supply prior information. In effect, the penalty terms
serve to smooth and guide origin imputation. Our dynamic pro-
gramming algorithm for minimizing the objective function
requires a single pass through the data and operates with linear
time and storage. The algorithm is also crafted to accommodate
missing strain genotypes, which are filled in by application of
a majorization–minimization (MM) algorithm (Hunter and
Lange 2004). The entire process is very fast and acceptably
accurate. The few errors made in imputation occur at strain
origin boundaries. Day-Williams et al. (2011) introduce an anal-
ogous approach to accurately imputing local kinship coefficients
in human data when pedigree origins are unknown.

It is worth emphasizing our modeling choices and how
they compare with traditional choices. First, our QTL effects
are mean effects rather than variance effects. In QTL mapping
in humans, the opposite is true. Variance effects are preferred
to mean effects in statistical modeling when the underlying
predictors are unobserved or too numerous for parsimonious
parameterization. Neither of these conditions holds for com-
plex crosses between inbred strains. Strain origins succinctly
capture the underlying genetics without committing to the
information provided by a single SNP. Second, in reconstruct-
ing strain origins most statisticians turn to hidden Markov
models (Mott et al. 2000; Liu et al. 2010). In our opinion,
penalized likelihoods achieve the same goal at a fraction of
the computational cost. Reasonable penalties introduce prior
information into frequentist inference in basically the same
way that priors do in Bayesian inference. Of course, penalties
have to be tuned. Fortunately, we show that statistical infer-
ence in the current setting is relatively insensitive to the value
of the penalty tuning constant.

The remainder of this article is organized as a progression
from theory and algorithms to data analysis. Ordered strain
coefficients and fractions are first introduced along with simple
algorithms for their computation. These global combinatorial
indexes summarize prior pedigree information. The dynamic
programming algorithm for imputing strain origins and missing
genotypes in the various founding strains is then sketched. This
is followed by a summary of our mixed-effects model and how it
plays out in QTL association testing. Both simulated and real
data demonstrate the accuracy of strain imputation and its
effectiveness in QTL association mapping. Finally, the broader
implications of the model and its limitations are discussed.
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Methods

Ordered strain coefficients and fractions

To pave the way for our imputation method, we generalize
the notion of strain coefficients (Bauman et al. 2008).
Imagine a pedigree generated by a set of complicated
crosses involving a certain number of inbred strains. Each
founder of the pedigree is assigned to a definite strain;
different founders are allowed to belong to the same strain.
The pedigree is then filled in with descendants of the orig-
inal crosses, who are bred according to an experimental
protocol. The ordered strain coefficient c

mp
ij ða; bÞ is deco-

rated by several indexes. The subscripts i and j denote two
animals in the pedigree; the possibility i ¼ j is permitted.
The superscripts m and p stress that a maternal gene is
sampled from animal i and a paternal gene is sampled
from animal j. Finally, the ordered pair (a, b) refers to
two strains. In this notation c

mp
ij ða; bÞ represents the joint

probability that the maternal gene of animal i at a random
locus is drawn from strain a and the paternal gene at
the same locus of j is drawn from strain b. Similarly, we
can define the coefficients c

pm
ij ða; bÞ; cmm

ij ða; bÞ; and
c
pp
ij ða; bÞ. In our previous article, we defined (unordered)

strain coefficients related to the current coefficients by
the equation

cijða; bÞ5
1
4

h
cmm
ij ða; bÞ1c

mp
ij ða; bÞ1c

pm
ij ða; bÞ1c

pp
ij ða; bÞ

i
:

The coefficient cij(a, b) corresponds to random sampling
from the combined pool of maternal and paternal genes.
When i ¼ j, sampling is done with replacement. Neither
the ordered nor the unordered strain coefficients take into
account observed genotypes.

The marginal probabilities

gmi ðaÞ5
P
b
cmm
ij ða; bÞ5 P

b
c
mp
ij ða; bÞ

g
p
i ðaÞ5

P
b
c
pm
ij ða; bÞ5 P

b
c
pp
ij ða; bÞ

are referred to as ordered strain fractions. The correspond-
ing unordered strain fractions

giðaÞ5
1
2

�
gmi ðaÞ1 g

p
i ðaÞ

�
were introduced by Bauman et al. (2008). Unordered strain
coefficients are analogous to global kinship coefficients in
outbred populations. Thus, it is not too surprising that one
can derive simple recurrences for computing unordered strain
coefficients and unordered strain fractions.

Recurrence relations

The various recurrences presuppose that parents are num-
bered before children in a pedigree. For a founder i belong-
ing to strain a, it is obvious that gi(a) ¼ 1; all other entries of
gi are 0. If a nonfounder i has parents k and l, then the

averaging law giðbÞ 5 1
2½gkðbÞ1glðbÞ� holds. If i is a founder

belonging to strain a and j is a founder belonging to strain b,
then cij(a, b) ¼ 1; all other entries of cij are 0. Finally, if i is
a nonfounder with parents k and l and j is an animal pre-
viously considered, then

cijða; bÞ5
1
2

h
ckjða; bÞ1cljða; bÞ

i
5cjiðb; aÞ

ciiða; bÞ5
1
4

h
1fb¼aggkðaÞ1 1fb¼agglðaÞ1cklða; bÞ1clkða; bÞ

i
:

These recurrences are logical consequences of simple
sampling arguments as noted by Bauman et al. (2008).

In computing the ordered versions of strain coefficients
and strain fractions, it is again convenient to begin with the
founders. If the founders i and j belong to strains a and b,
respectively, then we set

gmi ðaÞ5 g
p
i ðaÞ5 1; gmj ðbÞ5 g

p
j ðbÞ5 1

cmm
ij ða; bÞ5c

mp
ij ða; bÞ5c

pm
ij ða; bÞ5c

pp
ij ða; bÞ5 1:

All other strain coefficients and fractions involving founders
i and j are set to 0. The symmetries

cmm
ji ðb; aÞ5cmm

ij ða; bÞ
c
pm
ji ðb; aÞ5c

mp
ij ða; bÞ

c
mp
ji ðb; aÞ5c

pm
ij ða; bÞ

c
pp
ji ðb; aÞ5c

pp
ij ða; bÞ

apply to nonfounders as well as to founders.
The remainder of the strain coefficients is computed

recursively on the basis of the founder values. If we number
the animals so that parents precede children, then we can
compute all coefficients in one pass through the pedigree.
Consider an animal i whose mother k and father l have
already been visited. Taking into account the maternal and
paternal origins of i’s two genes at an arbitrary locus gives
the averaging laws

gmi ðaÞ5
1
2

�
gmk ðaÞ1 g

p
kðaÞ

�
; g

p
i ðaÞ5

1
2

�
gml ðaÞ1g

p
l ðaÞ

�
:

The analogous recurrences for ordered strain coefficients
are

cmm
ii ða; bÞ5 1fa¼bggkðaÞ5 1fa¼bg

1
2

�
gmk ðaÞ1 g

p
kðaÞ

�
c
mp
ii ða; bÞ51

4

�
cmm
kl ða; bÞ1c

mp
kl ða; bÞ1c

pm
kl ða; bÞ1c

pp
kl ða; bÞ

�
(1)

c
pm
ii ða; bÞ51

4

�
cmm
lk ða; bÞ1c

mp
lk ða; bÞ1c

pm
lk ða; bÞ1c

pp
lk ða; bÞ

�
c
pp
ii ða; bÞ5 1fa¼bgglðbÞ5 1fa¼bg

1
2

�
gml ðbÞ1 g

p
l ðbÞ

�
: (2)

Finally for any previously visited animal j 6¼ i, we set
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cmm
ij ða; bÞ5 1

2
cmm
kj ða; bÞ1 1

2
c
pm
kj ða; bÞ

c
mp
ij ða; bÞ5 1

2
c
mp
kj ða; bÞ1

1
2
c
pp
kj ða; bÞ

c
pm
ij ða; bÞ5 1

2
cmm
lj ða; bÞ1 1

2
c
pm
lj ða; bÞ

c
pp
ij ða; bÞ5

1
2
c
mp
lj ða; bÞ11

2
c
pp
lj ða; bÞ

and employ the symmetry relations noted earlier to facilitate
switching the order of i and j.

Imputation of strain origins

As the Introduction suggests, we approach imputation of
local strain origins through loss functions, penalty functions,
and dynamic programming. Our discrete optimization strat-
egy has the virtues of speed, simplicity, and accuracy. With
less dense genotyping, soft probabilistic imputation might be
preferable, but the information content of modern genome
scans is so great that hard imputation errors are confined to
the borders of recombination blocks. Although competing
methods of imputation such as hidden Markov chains have
proved their worth in haplotyping (Mott et al. 2000; Liu
et al. 2010), we see no compelling reason to commit to
models with more than the minimal number of parameters.
Furthermore, hidden Markov chains involve their own
sometimes dubious assumptions, such as the left to right
flow of the underlying probabilistic process. In our experi-
ence with haplotyping, penalized likelihood estimation is
competitive with hidden Markov modeling in accuracy and
computationally faster (Ayers and Lange 2008).

Strain origins can be imputed with or without defined
pedigrees. If pedigree status is available, then it furnishes
prior information that should improve imputation accuracy.
In practice, meticulous records are often lacking, and
empirically derived strain coefficients and fractions are
helpful. If strains are typed on different marker sets, then
missing strain genotypes (founder genotypes) also become
an issue. Before dealing with these complications, we first
turn to the case of full pedigree and strain genotype
data. Genotypes on individual pedigree members may be
missing.

Imputation with full data: Consider the ordered strain
origin pair uk ¼ (ak, bk) for animal i with observed genotype
rk/sk at marker k. Our imputation process incorporates the
log-penetrance (conditional log-likelihood)

LkðukÞ5 ln
�
Pr½rk=sk j ðak; bkÞ�

�
as the negative loss at marker k. At the first marker the log-
likelihood should also take into account the prior probabilities
determined by the strain coefficients; accordingly, we set

L1ðu1Þ5 ln
�
Pr½r1=s1 j ða1; b1Þ�cmp

ii ða1; b1Þ
�
:

For the sake of simplicity, we calculate the underlying
penetrances on the basis of a simple genotyping error model
that assigns probability 1 – e to a match between a strain
and an allele and probability e to a mismatch. Typically e .
0 is small, say #0.01. Table 1 specifies penetrances under
this SNP model with alleles labeled 1 and 2. In Table 1 ta is
the allele carried by strain a. The ordered genotype (ta, tb)
displays its maternal allele on the left and its paternal allele
on the right.

The objective function for animal i also includes a penalty
Pk(uk, uk11) for each pair of adjacent markers. Here the state
of the system at marker k is an element uk ¼ (ak, bk) from
the Cartesian product set {1, . . . , s} · {1, . . . , s} of strain
origin pairs possible for s strains. As the genome of animal
i is traversed, the penalty is designed to suppress jumps
between strains and guide jumps, when they do occur, to-
ward more likely states. With uk ¼ (ak, bk) and uk11 ¼
(ak11, bk11), one term of our penalty can be written as

Pkðuk; uk11Þ5

8>><
>>:

0; ak 5 ak11; bk 5 bk11
2 ln g

p
i ðbk11Þ1 l; ak 5 ak11; bk 6¼ bk11

2 ln gmi ðak11Þ1 l; ak 6¼ ak11; bk 5 bk11

2 ln c
mp
ii ðak11; bk11Þ1 2l; ak 6¼ ak11; bk 6¼ bk11:

For n consecutive markers and u ¼ (u1, . . . , un), the overall
objective function becomes

OðuÞ5 2
Xn
k51

LkðukÞ1
Xn21

k51

Pkðuk; uk11Þ: (3)

Dynamic programming algorithm: One can find the op-
timal sequence of states by a one-pass dynamic program-
ming algorithm. Dynamic programming proceeds by solving
the sequence of intermediate problems

OmðumÞ5 min
u1;...;um21

"
2
Xm
k51

LkðukÞ1
Xm21

k51

Pkðuk; uk11Þ
#

for m taking the successive values 1, . . . , n, starting with
O1(u1) ¼ – L1(u1). When we reach m ¼ n, the value
minunOnðunÞ equals the minimum of the objective function.
If we keep track of one solution sequence u1(um), . . . ,
um–1(um) for each partial objective Om(um), then we can
construct a best overall sequence by taking the best un and
appending to it u1(un), . . . , un–1(un). To better understand
the recursive phase of the algorithm, note that the partial
solution Om(um) is found by minimizing

Table 1 Penetrances Pr[r/s j (a, b)] for a SNP

Phenotype r/s

Genotype (ta, tb) 1/1 1/2 2/2 Missing

(1, 1) (1 – e)2 2e(1 – e) e2 1
(1, 2) e(1 – e) (1 – e)2 1 e2 e(1 – e) 1
(2, 1) e(1 – e) (1 – e)2 1 e2 e(1 – e) 1
(2, 2) e2 2e(1 – e) (1 – e)2 1

462 J. J. Zhou et al.



Om21ðum21Þ2 LmðumÞ1 Pmðum21; umÞ

over all um–1.
The astute reader will note the analogy between our

optimal strain origin sequence and the most probable
sequence delivered by the Viterbi algorithm in hidden
Markov modeling. The Viterbi algorithm is a special case
of dynamic programming. In general, the Viterbi algorithm
is preceded by maximum-likelihood estimation of the un-
derlying parameters and is therefore not fully Bayesian
despite its reliance on Bayes’ rule.

Imputation with missing data: We now extend our impu-
tation method to handle missing pedigree information and
missing strain genotypes. The obvious tactic is to substitute
empiric estimates of strain coefficients and fractions for their
theoretical counterparts in the imputation process. It is
important to keep in mind that imputation of strain origins
requires only the diagonal strain coefficients, where the two
underlying animals i and j coincide. Besides estimating these
quantities, we must also impute missing strain genotypes. The
latter goal is achieved by estimation as well. Let pak be the
unknown frequency of allele 1 in strain a at marker k. Assum-
ing strain a has a fixed allele at this marker, the estimate of pak

should obviously hover around either 0 or 1.
Our overall strategy is to put all of the mentioned

ingredients into one large pot and estimate global coeffi-
cients and fractions and missing strain allele frequencies
simultaneously with imputing strain origins. To succeed, the
process should be performed iteratively until successive re-
finements stabilize. In fact, we simplify matters by alternat-
ing two steps. The first is dynamic programming imputation
of strain origins given current strain coefficients and frac-
tions and current frequencies for the missing strain alleles.
The second is reestimation of all parameters given imputed
strain origins. The second step is iterative and depends on
an MM algorithm discussed in the Appendix. This two-step
strategy sounds complicated, possibly slow, and potentially
error prone. However, the amount of data delivered by mod-
ern genotyping chips is so overwhelming that these fears are
unwarranted. Observe that the data from all animals inform
estimation of missing allele frequencies. Thus, we iterate
over all animals simultaneously. The MM algorithm is fast
enough in this setting to cope with iterations within itera-
tions. Convergence is declared in the outer iterations when
all imputations stabilize. In practice this happy state of
affairs is achieved after only five or six rounds of the two-
step process.

QTL mapping

In this section, we briefly review the QTL association model
introduced by Bauman et al. (2008) and show how imputa-
tion can be incorporated. The basic model involves s strains
and t traits. These traits follow a multivariate Gaussian dis-
tribution over a pedigree, so it suffices to specify means,
variances, and covariances.

Let Xik denote the polygenic contribution to trait k
of animal i. Bauman et al. (2008) derive the means and
covariances

EðXikÞ5 2
Xs
a51

giðaÞmkðaÞ; Cov
�
Xik;Xjl

�
5 4 tr

�
CijVkl

�
;

(4)

where mk(a) is the polygenic mean effect of trait k for strain
a, Cij is an s · s combinatorial matrix with entries Cij(a, b) ¼
cij(a, b) – gi(a)gj(b), and Vkl is an s · s matrix of covariance
effects for traits k and l. The st · st matrix V with blocks Vkl

is positive semidefinite. Note that Cij is defined by unordered
strain coefficients and fractions. Although the parameter
matrix V is not identifiable, one can subtract its nonidentifi-
able part and estimate the residue. Readers are referred to
Bauman et al. (2008) for complete details.

The full null model adds random error/environment and
various fixed effects. In this setting, the means and
covariances for the trait values Yik are

EðYikÞ5hk1 2
Xs
a51

giðaÞmkðaÞ1
Xp
m51

zimbmk (5)

Cov
�
Yik; Yjl

�
5 4 tr

�
CijVkl

�
1 1fi¼jgϒkl; (6)

where h is an intercept vector, zim is the mth of p predictors
measured on animal i, and bmk is the corresponding regres-
sion coefficient for trait k. The matrix ϒ captures the envi-
ronmental covariation of the traits within a single animal. It
is noteworthy that the polygenic effects appear in both the
mean and the variance levels in the null model. To avoid
confounding polygenic mean effects with the intercept h, we
set

Ps
a51mkðaÞ 5 0 for each trait k.

Under the alternative hypothesis in association mapping,
the QTL mean effects are tied to the trait location along the
chromosome under consideration. This location is viewed as
containing a candidate gene whose alleles shift trait mean
values. These alleles are not directly observable, so we take
imputed strain origins as surrogates for alleles. Think of the
strain origin pair (a, b) (maternal strain a and paternal
strain b) as a kind of genotype. For an additive model,
strain a has impact ek(a) on trait k, and the strain origin
pair (a, b) has overall impact ek(a) 1 ek(b), with the con-
straint

P
aekðaÞ 5 0 understood. Therefore, the means un-

der the alternative are

EðYikÞ5hk 1 2
Xs
a51

giðaÞmkðaÞ1
Xp
m51

zimbmk1 ekðaÞ1 ekðbÞ:

(7)

The covariances displayed in Equation 6 remain the same.
This is the most parsimonious QTL model possible. For
crosses with just a few strains, one can contrast this model
with a nonadditive model with strain effects dk(a, b) on trait
k. Here the constraint

P
ða;bÞdkða; bÞ 5 0 is relevant. In
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Equation 7 we exchange the single term dk(a, b) for the sum
ek(a) 1 ek(b).

If we stack the observed values of the random traits Yik in
a vector y, the corresponding means in a vector n, and the
corresponding covariances in a matrix S, then the Gaussian
log-likelihood of the given pedigree can be written as

L5 2
1
2
ln det S2

1
2
ðy2nÞtS21ðy2 nÞ:

Association testing against the alternative hypothesis
reduces to computing a likelihood-ratio statistic that asymp-
totically follows a chi-square distribution with (s – 1)t d.f. To
implement likelihood-ratio testing (LRT), iterative maxi-
mum-likelihood estimation must be undertaken over the
entire parameter vector for each marker.

Results

We now evaluate strain origin imputation and its impact on
association testing in both simulated and real data. The next
section records strain imputation results for simulated data
mimicking the Collaborative Cross (Churchill et al. 2004;
Aylor et al. 2011). We pay particular heed to the consequen-
ces of missing pedigree information and missing strain gen-
otypes. Given the reassuring outcomes of imputation, we
examine QTL association mapping for simulated data under
random mating and for real expression QTL (eQTL) data
with MF1 mice, an outbred population constructed from
eight founding strains.

Imputation performance

To evaluate imputation accuracy, we employed the Gene
Dropping option of the genetic analysis program MENDEL
(Lange et al. 2001) and simulated the outcomes of various
mating designs assuming linkage equilibrium and a postu-
lated marker map. One of the virtues of simulated data is
that true strain origins are known. Imputation accuracy is
computed as the percentage of sites where the estimated
founder ancestry matches the truth. Our matching criterion
takes into account that many inbred strains are related (Flint
2010) and have common chromosome blocks identical by
descent (IBD). If two or more founder strains’ genotypes are
identical across an entire window of consecutive markers,
then we lump strains identical within the window and as-
sess matches accordingly. Our reported averages cover all
markers and assume a window 51 markers long with the
current marker at the center. Imputation accuracy is rela-
tively insensitive to the choice of the penalty tuning constant
l, which we take as 1 unless otherwise mentioned.

Collaborative cross example: As an example of data that
researchers may encounter in practice, we turn to the Col-
laborative Cross (CC), a large panel of recombinant inbred
(RI) strains derived from eight genetically diverse founder
strains. The founding strains include five classical inbred
strains (C57BL/6J, 129S1/SvImJ, A/J, NOD/LtJ, and

NZO/H1LtJ) and three wild-derived strains (CAST/EiJ,
PWK/PhJ, and WSB/EiJ). The CC is specifically designed
for complex trait analysis (Churchill et al. 2004; Aylor et al.
2011). Similar study designs are being implemented with
other model organisms (Macdonald and Long 2007; Kover
et al. 2009). As depicted in Figure 1, three generations of
rigid mating are followed by $20 rounds of brother–sister
mating. In each mating design the founder strains are per-
muted to randomize and balance the genomes of the result-
ing RI lines. Each permutation of the founders is called
a funnel. With no loss of generality, we analyze a data set
on the basis of only one funnel.

Based loosely on the Collaborative Cross mating scheme,
we simulated a 23-generation pedigree with 414 mice, 20
generations of inbreeding, and 20 mice per inbred genera-
tion. Note that we simulated random mating rather than
brother–sister mating after the first few generations. The
genotypes of the founder strains were downloaded from
The Jackson Laboratory mouse phenome database at
http://phenome.jax.org/SNP. We randomly chose 10,000
contiguous SNPs on chromosome 19 from among the
221,798 SNPs in the database. Our SNPs span the chromo-
some 19 map from 3.2 Mb to 61.3 Mb. The distances be-
tween adjacent markers range from 2 bp to 545.9 kb, with

Figure 1 The eight-way funnel breeding scheme for generating recom-
binant inbred (RI) strains.
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an average of 5.8 kb. All markers are informative. Data
across the entire mouse genome can be handled in exactly
the same manner. Figure 2 plots imputation accuracy as
a function of generational depth for a single random repli-
cate of the pedigree. Each point on the solid curve repre-
sents an average across 20 mice · 10,000 SNPs ¼ 200,000
data points. Imputation accuracy ranges from 99.6 to 100%,
with a mean of 99.7%. The maximum standard deviation of
these estimates is 0.87%. When we compare accuracy for
each generation across 20 simulation replicates, the stan-
dard errors range from 0.0 to 0.31%.

The CC example assumes full pedigree information and
gives high imputation accuracy. Across a pedigree, accuracy
drops as we descend to lower generations. This phenome-
non simply reflects the gradual accumulation of recombina-
tion events and the number of strain origin switches that
must be explained in imputation.

Imputation without pedigree information: In this section,
we comment on imputation performance in the simulated
data ignoring prior pedigree information. The dashed curve
in Figure 2 plots imputation accuracy against generation
number ignoring pedigree information in the simulated ped-
igree. Accuracy suffers no discernible degradation. It may
seem odd that imputation accuracy is equally good with
and without pedigree information, but there is no guarantee
that the average strain fractions and coefficients across
a mouse genome conform to theoretical strain fractions and
coefficients, which are valid only in an expected sense across
many replicates of the same pedigree. In any case, the com-
parison in Figure 2 makes it clear that detailed pedigree
records are unnecessary to achieve high imputation accuracy.

Imputation with missing founders’ genotypes: Many strains
are only incompletely typed on existing chips. For a test of
imputation in the partial absence of strain genotypes, we again
used our simulated pedigree with CC founder strains. We

randomly deleted 20% of the genotypes from the markers
of each founder strain. Average imputation accuracy is
now 98.1%, ranging from 90 to 100%. Across all selected
markers and strains, the average absolute difference
between the true allele frequency and the estimated allele
frequency for the minor allele is 7.05 · 1025. In fact, only
four of these allele frequency differences, 6 · 1025, 0.02,
0.03, and 0.93, fall outside the interval [0, 1026]. At the
marker with the most egregious difference, very few
descendants carry the allele in question, and a single pu-
tative genotyping error exerts enormous influence. Impu-
tation errors at the beginning of the iterative process of
imputation and allele frequency estimation can also occa-
sionally steer frequencies in the wrong direction.

Specification of the penalty constant l: As an illustration of
the relative insensitivity of imputation to the choice of the
penalty constant l, we consider again the 414 mice of the
simulated CC pedigree. Figure 3 plots imputation accuracy
as a function of the logarithm of l for one randomly chosen
mouse from the last generation of the pedigree and for the
average over all mice. Imputation accuracy stays .99.8%
over a broad range of l-values, including our recommended
value l ¼ 1.

Figure 2 Imputation performance for Collaborative Cross (CC) mice with
and without pedigree information. Figure 3 Overall imputation accuracy and mouse 414’s accuracy as

a function of the logarithm of the tuning constant l. Mouse 414 appears
in the last generation of the pedigree and gives the poorest imputation
results.

Table 2 Simulation parameters for the univariate QTL
simulation example

Inbred strain mstrain estrain

129S1 22.81 21.53
A 2.13 20.66
PWK 4.62 1.14
CAST 23.94 1.05
Intercept 6.75
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QTL association testing
Simulated univariate trait example: For mapping purpo-
ses, we simulated a cross involving a univariate trait, four
inbred strains, and six pedigrees of 15 generations each.
Given the short life span of mice, we used only the 600 mice
from the last 5 generations for imputation and association
testing. The four founding strains 129S1/SvImJ, A/J, PWK/
PhJ, and CAST/EiJ from the CC contributed equally to the
pedigrees. From the second generation onward, 10 mice
were randomly mated in each generation to form the next
generation. We employed the Gene Dropping option of
MENDEL to generate genotypes at 19,000 random SNPs
evenly distributed across the 19 mouse chromosomes. From
these 19,000 SNPs, we singled out SNP 5408 on chromo-
some 6 as the QTL and omitted its genotypes from associa-
tion testing. We then generated univariate trait values
independently for each pedigree by sampling from a multi-
variate Gaussian distribution with means and covariances
prescribed by the model. Table 2 displays the parameter
values used in the simulations. These values were chosen
randomly subject to the constraintsX

strain a

ma 50 and
X

strain a

ea 5 0:

In total we tested for association at 372 evenly spaced
locations, each location corresponding to the center of a
window of 51 SNPs. Founder strains that were IBD across the

window were lumped. The extended spacing between
window centers adjusts for linkage disequilibrium and reduces
the number of tests performed. Center-to-center spacing is
a user option in MENDEL. To examine whether pedigree
information is essential for association testing, we analyzed
the data with and without pedigree structure specified.

Imputation was performed under the tuning constant
l ¼ 1. Regardless of whether pedigree structure is specified,
imputation accuracy for all mice exceeded 98%. The per site
accuracy ranged from 64.7 to 100%. There are 10 sites with
accuracy,80%, of which 8 are the first site of a chromosome.
There are 335 sites out of 19,000 with accuracy ,90%. Most
of these are also near the 59 end of a chromosome. Figures
4 and 5 plot –log10(P-value) from the LRT as a function
of map position in base pairs. Polygenic background is
taken into account in both plots. In Figure 4, where pedigree
structure is exploited, 41 SNPs rise above the Bonferroni
threshold specified by the horizontal line. The SNP at loca-
tion 61,209,472 bp immediately adjacent to the QTL
(61,222,084 bp) gives the highest –log10(P-value). In Figure
5, where pedigree structure is ignored, 42 SNPs rise above
the Bonferroni correction threshold. The overlap between
the two sets of SNPs is almost complete. Ignoring pedigree
structure causes the most significant P-value to increase
from �10213 to �1029.

In fact, the plots are more complicated than meet the eye.
For one thing, they were constructed in two stages. The first

Figure 4 Four-way cross QTL association mapping
of a univariate trait using windows 51 SNPs long
and pedigree structure information. The vertical
line represents the QTL location. The horizontal line
represents the genome-wide significance threshold
after Bonferroni correction.
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stage involved the 372 SNPs defined by the subsampling
procedure. These stage-one SNPs were then supplemented
by 50 stage-two SNPs drawn from the window centered
around the best SNP discovered in stage one. Graphed
P-values are also adjusted by the conservative method of
genomic control (Devlin and Roeder 1999; Devlin et al.
2004). In genomic control, one multiplies all LRT statistics
by the ratio of the theoretical median of the relevant as-
ymptotic chi-square distribution to the sample median of the
LRT statistic across the genome. This reduces the largest com-
puted –log10(P-value) from �9.6 to the 9.0 value seen in
Figure 5. The method of genomic control is a crude attempt
to compensate for model failures and the large sample ap-
proximations inherent in the LRT. Only the stage-one SNPs
were used to compute the genomic control adjustment.

Comparison with competing software is subtle. The
program EMMA (Efficient Mixed-Model Association) (Kang
et al. 2008) is certainly the fastest of the competing pro-
grams and arguably the most sophisticated in how it handles
background polygenic inheritance. On the basis of computa-
tional speed, MENDEL easily bests EMMA. On a standard
personal computer, stage one of the MENDEL run took about
30 min to impute strain origins and test for association on
these data when pedigree structure is included. Total com-
putational time increased to �1 hr when pedigree structure
was ignored. In contrast, EMMA took �1 day to analyze
these data. The differences between MENDEL and EMMA

are entirely attributable to the smaller number of locations
MENDEL tests.

EMMA also correctly localizes the QTL in these simulated
data. See Figure 6, where seven SNPs rise above the Bon-
ferroni correction level. Four of these SNPs share the lowest
P-value. Probably the most relevant statistical comparison
between the programs is the increment of the maximum
–log10(P-value) over the Bonferroni threshold. By this mea-
sure EMMA’s power is slightly worse than the power of our
strain origin test without pedigree structure. EMMA’s power
is notably worse than the power of the strain origin test with
pedigree data. Note that EMMA’s P-values have also been
adjusted by the method of genomic control. In our view
this adjustment is less successful for EMMA than it is for
MENDEL. EMMA’s test statistics undergo more radical ad-
justment, suggesting a poorer match between the model and
the data (Price et al. 2010). (The peak value of 9.4 in Figure
6 was 10.6 before recalibration.) Furthermore, q-q plots of
the adjusted statistic suggests that further adjustment of
EMMA’s P-values is probably needed. See Figures 7 and 8.

Bivariate analysis of pleiotropic traits: An attractive
feature of the MENDEL software is its ability to analyze
multiple traits simultaneously. This capacity can increase the
power to detect associations (Bauman et al. 2005). To illus-
trate this, we simulated a single replicate of a CC funnel
cross with measured bivariate traits. The second column of

Figure 5 Four-way cross QTL association mapping
of a univariate trait using windows 51 SNPs long
and excluding pedigree structure. The vertical line
represents the QTL location. The horizontal line
represents the genome-wide significance threshold
after Bonferroni correction.
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Table 3 records the parameter values used during the sim-
ulation. The data involve four inbred strains (129S1,
A, PWK, and CAST) and four pedigrees. Each pedigree
had four founders, 15 generations, and 154 mice. To avoid
confounding and permit estimation of all four global strain
coefficients, each pedigree omits a different strain from its

founder list. Specifically, in pedigree 1 the founder crosses
involved strains 129S1 · A and 129S1 · CAST; in pedigree
2, A · CAST and A · PWK; in pedigree 3, CAST · PWK and
CAST · 129S1; and in pedigree 4, PWK · 129S1 and PWK ·
A. Again to maintain realism, we use only the trait values for
the 104 mice in the bottom 5 generations of each pedigree,

Figure 6 Four-way cross QTL association mapping
of a univariate trait using the program EMMA. The
vertical line represents the QTL location. The hori-
zontal line represents the genome-wide signifi-
cance threshold after Bonferroni correction.

Figure 7 q-q plot of the adjusted MENDEL P-values for the simulated
data assuming no pedigree structure information.

Figure 8 q-q plot of the adjusted EMMA P-values for the simulated
data.

468 J. J. Zhou et al.



416 mice in total. As in the previous example, we simulated
1000 SNPs per mouse chromosome. We also introduced
a QTL at SNP 555 of chromosome 1 (rs30642162). This
major gene accounted for �5% of the variability in each of
the two traits. The strains CAST and PWK carry genotype 2/2
at this locus and the strains 129S1 and A carry genotype 1/1.
This locus was omitted from subsequent imputation and as-
sociation analyses.

Our statistical analysis pinpoints the region around the
QTL; indeed, no other region reaches genome-wide signif-
icance in association testing. Table 3 provides the parameter
estimates and their standard errors, likelihood-ratio statis-
tics, P-values, and 1-LOD credible intervals (CI) at the most
likely positions. Two of the data columns of Table 3 tabulate
these values for each trait analyzed separately. The right-
most column lists the values for the two traits analyzed
jointly. In all three analyses, the most likely position for
the QTL occurs at the SNP nearest to the simulated QTL,

only 0.25 Mb distant. All of the 1-LOD credible intervals
cover the true position of the QTL. Trait 1 is more strongly
associated than trait 2 in the univariate analyses and has
a smaller credible interval. Joint analysis leads to little
change in parameter estimates. Almost all estimates are
within two standard errors of their simulation values. These
results are reasonable for a single simulation replicate. It is
also noteworthy that the P-value for the bivariate analysis is
more significant than for either univariate analysis, even
though the degrees of freedom increase to 6. The bivariate
analysis also maintains the tight credible interval seen in the
trait 1 univariate analysis despite the larger interval seen in
the trait 2 univariate analysis. These results reflect the extra
information exploited in a joint analysis.

Real MF1 mice expression data: The MF1 outbred mouse
lineage was created in the early 1970s by crossing the LACA
line, a standard prolific outbred mouse line, with another

Table 3 Univariate and bivariate analyses of simulated pleiotropic traits

Values used
in simulation

Estimates (SE) from
univariate analysis

of trait 1

Estimates (SE) from
univariate analysis

of trait 2

Estimates (SE) from
bivariate analysis
of traits 1 and 2

QTL Location (Mb) 118.74 118.99 118.99 118.99
CI (Mb) 2.98 7.03 2.98

Trait 1 values
m 5.00 4.47 (0.33) 4.53 (0.44)
bmale ¼ –bfemale 1.00 1.00 (0.11) 1.00 (0.11)
m129S1 20.20 0.29 (0.57) 0.31 (0.58)
mA 0.10 0.25 (0.60) 0.32 (0.58)
mCAST 0.30 20.68 (0.54) 20.74 (0.59)
mPWK 20.20 0.14 (0.55) 0.11 (0.57)
e129S1 21.25 20.86 (0.31) 20.82 (0.32)
eA 21.25 20.61 (0.33) 20.68 (0.36)
eCAST 1.25 0.90 (0.27) 0.97 (0.31)
ePWK 1.25 0.57 (0.30) 0.53 (0.31)

Trait 2 values
m 6.00 6.21 (0.42) 6.48 (0.43)
bmale ¼ –bfemale 0.00 20.14 (0.12) 20.13 (0.12)
m129S1 20.10 0.34 (0.59) 0.48 (0.58)
mA 0.10 0.45 (0.61) 0.44 (0.62)
mCAST 0.10 20.03 (0.58) 20.18 (0.61)
mPWK 20.10 20.75 (0.59) 20.74 (0.58)
e129S1 21.25 20.48 (0.32) 20.53 (0.31)
eA 21.25 20.70 (0.36) 20.70 (0.37)
eCAST 1.25 1.08 (0.32) 1.09 (0.33)
ePWK 1.25 0.10 (0.30) 0.14 (0.31)

s2
trait1 5.0 5.04 (0.42) 4.97 (0.42)

strait1,trait2 0.5 0.52 (0.33)
s2
trait2 5.0 5.06 (0.49) 4.89 (0.48)

LRT 46.98 24.94 54.88
DF 3 3 6
P-value 4.05 · 1029 1.60 · 1025 4.91 · 10210

We simulated a single replicate of a Collaborative Cross funnel with measured bivariate traits. The data involve four inbred strains (129S1, A, PWK, and CAST) and four
pedigrees. Each pedigree had four founders, 15 generations, and 154 mice. See the text for more details on pedigree structure and simulation procedure. The second column
displays the parameter values used to simulate the data, including intercept, m; sex effect, bmale ¼ –bfemale; polygenic mean effects, mstrain; major gene mean effects, estrain;
environmental variances, s2

trait; and environmental covariance, strait1,trait2. Simulation values for the polygenic variance effects in Equation 4 were V1,1(i, i) ¼ V2,2(i, i) ¼ 5.0,
V1,2(i, i) ¼ 0.50, and V1,1(i, j) ¼ V2,2(i, j) ¼ V1,2(i, j) ¼ 0.0 for strains i 6¼ j. V is not identifiable in the model, and thus no estimates are provided. The parameter estimates
displayed pertain to the most likely SNP found by the MENDEL package. SE is the standard error. CI is the width of the one-LOD credible interval. LRT is the likelihood-ratio
test statistic. DF is the degrees of freedom.
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outbred albino line called CF. It is thought that the MF1
mouse genome represents a complex mosaic of the genomes
of the inbred lines C3H, BALB/cJ, RIII, AKR, DBA/2, I, A/J,
and C57BL/6J (Yalcin et al. 2004). Because MF1 mice lack
good pedigree records, we used empiric strain fractions and
coefficients in strain origin imputation. The average genetic
contributions from strains C3H and BALB/cJ are only 5.9%
and 2.7%, respectively, so we assumed for the sake of sim-
plicity that the last six strains are the founding strains.

Ghazalpour et al. (2008) studied a total of 110 MF1 mice,
measuring their gene transcript levels in liver and genotyp-
ing them at 5024 SNPs on the Affymetrix 5K Mouse Chip.
Their motivation was to replicate earlier QTL mapping results
from an F2 intercross between the parental strains C57BL/6J.
ApoE2/2 and C3H/HeJ.ApoE2/2 (Wang et al. 2006). Map-
ping these eQTL in the MF1 mice appears to give better res-
olution and partially vindicates the use of outbred lines. Some
of the eQTL are cis-eQTL and consequently involve variants in
a gene influencing expression levels of that gene.

The Ttf2 gene is the most conspicuous eQTL in the study.
Its expression levels provide an opportunity for eQTL
association mapping based on imputed strain origins. The
Ttf2 gene is located on chromosome 3: 100,742,783–
100,773,586 bp on the minus (2) strand. Figure 9 compares
MENDEL’s mapping results with the results output by the
program EMMA (Ghazalpour et al. 2008). Both programs
map the QTL to the correct interval but differ in their peak
P-values. EMMA’s slightly better performance likely stems
from five reasons. First, the QTL may appear among the gen-
otyped SNPs. Second, EMMA’s test involves fewer degrees of
freedom and thus is at an advantage when genotypes at the
mapped SNP are highly correlated with genotypes at the un-
derlying causative mutation. Third, this example features
a sparse marker map. Bonferroni corrections of EMMA’s and
MENDEL’s P-values are therefore comparable, and imputation
of strain origin is more problematic. Fourth, the lack of decent
pedigree records also makes strain origin imputation more
challenging for MENDEL in these deep pedigrees. Fifth, ana-
lyzing a small region of the genome is inconsistent with geno-
mic control. Despite these handicaps, MENDEL performs well.

Discussion

Several recent innovations have improved the prospects for
mapping mouse genes influencing complex traits. First,
geneticists are now undertaking more ambitious crosses
with multiple strains and sophisticated mating schemes.
Second, it is now possible to incorporate polygenic back-
ground correctly in a mixed-effects model. Mixed-effects
models accommodate large pedigrees, arbitrary numbers of
contributing strains, and multivariate traits. Third, high-
density SNP mapping panels provide unprecedented map-
ping resolution. Fourth, recently introduced inbred lines
from wild mice capture more genetic diversity and reveal
the blind spots in the mouse genome where traditional
laboratory strains show little variation. Fifth, using strain

origins as predictors is arguably superior to using SNP-
by-SNP allele counts as predictors. The recent article by
Solberg-Woods et al. (2010) confirms the value of strain-
origin predictors.

Although mixed-effects models are ideal vehicles for
association testing, they carry considerable computational
baggage. The rate-limiting step is the imputation of local
strain origins in each animal. In this article we propose an
accurate and efficient imputation method that takes advan-
tage of dense SNP maps and prior pedigree information
when available. Alternation of dynamic programming and
the MM algorithm quickly solves the imputation problem.
Our examples demonstrate that it is possible to impute
missing genotypes for founding strains and to estimate
global strain fractions and coefficients in the absence of full
pedigree information. In highly symmetric pedigrees, em-
pirically derived global fractions and coefficients are nearly
as accurate as the corresponding theoretical fractions and
coefficients.

Imputation accuracy in a given pedigree is affected by
the mating scheme, the number of generations of crossing,
the diversity of the founder strains, and the density of the
markers. Under the Collaborative Cross design, we attain an
imputation accuracy of .99.6% even at generation 22, re-
gardless of whether we include or ignore pedigree informa-
tion. Local lumping of strains substantially improves
imputation accuracy as anticipated by Yalcin et al. (2005).
It also increases statistical power in subsequent QTL associ-
ation testing by reducing the degrees of freedom of the
likelihood-ratio test. When founder strains are closely re-
lated and several founder strains make approximately equal
contributions to subsequent generations, programs such as

Figure 9 eQTL mapping of the Ttf2 gene on chromosome 3 using results
from EMMA and MENDEL. Six founder strains were used: C57Bl6, DBA2,
A, AKR, ILn, and RIII. The solid curve displays the –log10(P-values) from
MENDEL’s association test. EMMA’s results are displayed as asterisks. The
physical location of the Ttf2 gene is shown by the small solid rectangle
near the x-axis directly under the dominant peak. The tick marks at the
top of the graph are the locations of the SNPs used by EMMA.
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GAIN (Liu et al. 2010) and HAPPY (Mott et al. 2000) give
probability distributions of strain origins that are likely pref-
erable to hard imputation.

The imputation methods in MENDEL scale linearly in
computational complexity and storage. For a pedigree
with s founding strains, n animals, and m markers, com-
putational complexity is proportional to s4mn. Other pro-
grams such as MERLIN (Abecasis et al. 2001), GAIN (Liu
et al. 2010), and HAPPY (Mott et al. 2000) scale less well.
On a computer with 2 GB of memory, we had trouble
running MERLIN on a pedigree with five generations of
inbreeding, 19 animals, and 10,000 markers. Although
GAIN incorporates prior pedigree information in imputa-
tion and enjoys high imputation accuracy, it relies on slow
MCMC sampling. HAPPY has the ability to include imputed
strain origins in QTL analysis, but its posterior distribu-
tions are less sharp than GAIN’s and lead to less efficient
mapping inference (Liu et al. 2010). Our combination of
methods performs well in both local strain imputation and
subsequent QTL association mapping.

Our simulation example suggests that accurate pedigree
records can improve the quality of gene mapping. However,
good records do not appear to help much in strain impu-
tation. Experimentalists might well object to the added
burden of pedigree record keeping, so it is reassuring that
considerable signal survives even when pedigree structure is
ignored.

It is worth stressing again the advantages of strain
association testing over single SNP association testing. In
a modern genome scan, the former strategy mitigates the
severity of Bonferroni corrections because the number of
locations tested is much smaller than the number of SNPs
genotyped. A ratio of 1:1000 is realistic. Unless most SNPs
are genotyped, it is also likely that the causative SNP will
be omitted. A correlated SNP can substitute, but if its
correlation with the primary SNP is too weak, then origin
attribution is apt to lead to more accurate prediction of
strain vulnerability to extreme trait values. Of course, there
will be exceptions where correlated SNPs align perfectly
with the primary SNP. Thus, our confidence in strain origin
predictors is tempered by a wait-and-see attitude. It is worth
noting that in simulating the Collaborative Cross, Valdar
et al. (2006) reach the general conclusion that single SNP
analysis is inferior to strain-origin analysis.

Our previous article (Bauman et al. 2008) was written
before mouse high-density genotyping attained its present
status. The current release of MENDEL incorporates all
methods discussed here. It relies on dense SNP scans, han-
dles multivariate traits, salvages missing data whenever pos-
sible, reports outlier pedigrees and outlier animals, performs
maximum-likelihood estimation under both Gaussian and
multivariate t models, and accommodates arbitrarily com-
plex crosses. Readers can download a free copy of MENDEL
from http://www.genetics.ucla.edu/software. Versions of
MENDEL are available for several different computing plat-
forms. Extensive documentation and sample problems are

provided. Mendel input files including the raw genotypes
and MF1 gene expression are provided in Supporting Infor-
mation, File S1. We encourage the use of MENDEL and
further refinement of the techniques discussed here.
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Appendix: Application of the MM Algorithm

In the dynamic programming algorithm, penetrances depend on the alleles that the strains possess at the different markers.
If the allele for strain a is unknown at marker k, then a penetrance at that marker depends on the postulated frequency pak of
allele 1. Let rl denote the probability that a gene contributed by strain a at marker k is interpreted as allele l. Clearly, we have

r1ðpakÞ5pakð12 eÞ1 ð12pakÞe
r2ðpakÞ5 ð12pakÞð12 eÞ1pake

:

Table A1 specifies penetrances under this naive model. A question mark in Table A1 indicates a missing strain allele.
Penetrances for the partially observed genotypes (1, ?) and (2, ?) follow the same rules as those governing the partially
observed genotypes (?, 1) and (?, 2). A fully missing phenotype still has penetrance 1 as in Table 1.

Initialization of parameters is required. The allele frequencies pak are set to 1
2. The strain fractions bear a strong re-

semblance to ethnic ancestry fractions and can be roughly estimated for each animal by the well-known EM algorithm (Tang
et al. 2005) implemented in the Ethnic Admixture option of MENDEL (Lange et al. 2001). Finally, strain coefficients are
initialized by product rules such as

Table A1 Penetrances Pr[r/s j (a, b)] for SNP k with missing data

Phenotype r/s

Genotype (ta, tb) 1/1 1/2 2/2

(?, 1) (1 – e)r1(pak) er1(pak) 1 (1 – e)r2(pak) er2(pak)
(?, 2) er1(pak) (1 – e)r1(pak) 1 er2(pak) (1 – e)r2(pak)
(?, ?) r1(pak)r1(pbk) r1(pak)r2(pbk) 1 r2(pak)r1(pbk) r2(pak)r2(pbk)

ta is the allele carried by strain a and tb is the allele carried by strain b.
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c
mp
ii ða; bÞ5 gmi ðaÞgpi ðbÞ;

assuming independent transmission of maternal and paternal gametes. For the sake of simplicity, let u denote the parameter
vector corresponding to the unknowns pak;  g

m
i ðaÞ;  gpi ðaÞ;  cmm

ii ða; aÞ;  cpm
ii ða; bÞ;  cmp

ii ða; bÞ; and cpp
ii ða; aÞ:

An MM algorithm for minimization operates by majorizing an objective function f(u) by a surrogate function g(u j ur)
anchored at the current iterate ur of a search (Hunter and Lange 2004). Majorization is defined by the two properties

f ðurÞ5 gður j urÞ; f ðuÞ # gðu j urÞ; u 6¼ ur:

In other words, the surface u/gðu j urÞ lies above the surface u/fðuÞ and is tangent to it at the point u 5 ur. Construction of
the majorizing function gðu j urÞ constitutes the first M of the MM algorithm. The second M of the algorithm minimizes the
surrogate gðu j urÞ rather than f ðuÞ: If ur11 denotes the minimum point of gðu j urÞ; then the descent property fður11Þ#f ðurÞ is
true. The proof of this claim follows from the inequalities

f
�
ur11� # g

�
ur11 j ur� # gður j urÞ5 f ðurÞ

determined by the definitions of majorization and the next iterate ur11: The fact that majorization is preserved under sums
permits one to work piecemeal on a complex objective function. The EM algorithm (Dempster et al. 1977) is a special case of
the maximization version of the MM algorithm. In this case the first M refers to minorization and the second M to
maximization.

In the present application of the MM algorithm, the argument of the objective function (3) is the parameter vector u

rather than the hidden state u, which is fixed throughout the MM iterations. Majorization is driven entirely by the concavity
of a logarithm function as manifested in Jensen’s inequality

2 lnðx1 yÞ#2
xr

xr 1 yr
ln
�
xr 1 yr

xr
x
	
2

yr

xr 1 yr
ln
�
xr 1 yr

yr
y
	

 5 2
xr

xr 1 yr
ln x2

yr

xr 1 yr
ln y1 cr:

Here cr is a constant that depends on xr and yr but not on x or y. Exploiting the property ln ab ¼ ln a 1 ln b, this majorization
yields, for example,

2 ln r1ðpakÞ52 ln½pakð12 eÞ1 ð12pakÞe�

#2
pr
akð12 eÞ

pr
akð12 eÞ1 �

12pr
ak

�
e
lnpak

2

�
12pr

ak

�
e

pr
akð12 eÞ1 �

12pr
ak

�
e
lnð12pakÞ1 dr;

where dr is another irrelevant constant. For some terms in the objective function such as the penetrance er1(pak) 1 (1 –

e)r2(pak), Jensen’s inequality must be applied first to separate er1(pak) from (1 – e)r2(pak) and then to separate the terms
hidden in r1(pak) and r2(pak).

The purpose of these maneuvers is to construct a surrogate function in which all parameters uj are separated and appear
in the form ej ln uj or ej ln(1 – uj) for appropriate constants ej. If the term ej ln(1 – uj) appears, then uj is a binomial parameter;
otherwise, uj is a multinomial parameter. In either case we consider the nonnegative constant ej to be a pseudocount of
successes and update uj by the ratio of its pseudosuccesses to its pseudotrials. The ultimate formulas are messy and omitted
here, but the basic idea is simple. One can derive the same updates by setting up an appropriate complete data structure and
constructing an EM algorithm. In our view, direct majorization has some didactic advantages over calculating the confusing
conditional expectations specifying the EM surrogate function.
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