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DNA Methylation Signatures in Development
and Aging of the Human Prefrontal Cortex

Shusuke Numata,1 Tianzhang Ye,1,2 Thomas M. Hyde,1,2 Xavier Guitart-Navarro,3 Ran Tao,1

Michael Wininger,1 Carlo Colantuoni,1,2,4 Daniel R. Weinberger,1,2 Joel E. Kleinman,1,5

and Barbara K. Lipska1,5,*

The human prefrontal cortex (PFC), a mastermind of the brain, is one of the last brain regions to mature. To investigate the role of epige-

netics in the development of PFC, we examined DNAmethylation in ~14,500 genes at ~27,000 CpG loci focused on 50 promoter regions

in 108 subjects range in age from fetal to elderly. DNA methylation in the PFC shows unique temporal patterns across life. The fastest

changes occur during the prenatal period, slow downmarkedly after birth and continue to slow further with aging. At the genome level,

the transition from fetal to postnatal life is typified by a reversal of direction, from demethylation prenatally to increased methylation

postnatally. DNA methylation is strongly associated with genotypic variants and correlates with expression of a subset of genes,

including genes involved in brain development and in de novo DNAmethylation. Our results indicate that promoter DNAmethylation

in the human PFC is a highly dynamic process modified by genetic variance and regulating gene transcription. Additional discovery is

made possible with a stand-alone application, BrainCloudMethyl.
Introduction

The human prefrontal cortex (PFC) plays a critical role in

complex cognitive behaviors, personality, decision

making, and orchestration of thoughts and actions and

thus has been referred to as the CEO of the brain. From

an evolutionary perspective, it has emerged relatively

recently and shows the greatest expansion at the gross

anatomy level. The PFC also shows an especially prolonged

period of postnatal maturation.1,2 Recent global transcrip-

tome analyses of the developing human PFC have shed

light on some of the key processes and genes that con-

tribute to the uniqueness of the human PFC and have

implicated involvement of epigenetic mechanisms.3–5

DNA methylation at CpG dinucleotides has long been

considered a key mechanism of transcriptional regulation

and a critical factor in embryonic development and in

cancer.6,7 However, little is known about the normal

developmental changes in DNA methylation of the

human PFC, particularly during early life. These early

epigenetic changes could be particularly relevant for

understanding the mechanisms of neurodevelopmental

brain disorders, such as autism (MIM 209850) and schizo-

phrenia (MIM 181500).8,9 Tissue-, sex- and age-specific

effects on DNA methylation in human samples have

been reported,10–17 but there are no reports of genome-

wide DNA methylation in the human brain across the life-

span. In this study, we investigated the genome-wide

temporal dynamics of DNA methylation in a large cohort

of well-characterized human PFC specimens from the

second trimester of gestation until old age, identified
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genetic determinants of DNA methylation in a genome-

wide SNP association analysis and examined relationships

with mRNA expression. We focus in this report on CpG

dinucleotides located primarily in the putative 50 promoter

regions of known genes. Although recent work has empha-

sized the importance of DNA methylation in gene regions

outside 50 domains,13 understanding how DNA methyla-

tion varies in promoter regions in normal brains across

the lifespan and how it is associated with genetic variance

is an important element in the interpretation of patholog-

ical changes in brain disorders and in understanding gene

expression and gene function.
Subjects and Methods

Human Postmortem Brain Tissue Collection
Postmortem human brains from nonpsychiatric controls (108)

were collected at the Clinical Brain Disorders Branch (National

Institute of Mental Health) under protocol 90-M-0142 with

informed consent from the next-of-kin and at the Brain and Tissue

Bank for Developmental Disorders of the Eunice Kennedy Shriver

National Institute of Child Health and Human Development

(NICHD) under protocols NO1-HD-4-3368 and NO1-HD-4-3383.

Clinical characterization, neuropathological screening, toxicolog-

ical analyses, and dissections of the dorsolateral prefrontal cortex

were performed as previously described.18 Demographic data for

these samples are summarized in Table S1, available online.
Genotyping Methods
SNP genotyping with HumanHap650Y_V3 or Human 1M-Duo_V3

BeadChips (Illumina, San Diego, CA) was carried out according
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to the manufacturer’s instructions with DNA extracted from

cerebellar tissue. Genotype data were analyzed with the genotyp-

ing analysis module within the BeadStudio software (Illumina).

For data analysis, 605,371 SNPs with missing calls < 2%, Hardy-

Weinberg equilibrium p values R 0.001, and minor allele fre-

quenciesR 0.03 were used, from among a total of 654,333 shared

SNPs between the two types of chips.
Methylation Methods
Genomic DNA was extracted from 100 mg of pulverized dorsolat-

eral prefrontal cortex (DLPFC) tissue with the phenol-chloroform

method. Bisulfite conversion of 600 ng genomic DNA was per-

formed with the EZ DNA methylation kit (Zymo Research). Meth-

ylation of DNA extracted from DLPFC was assessed according to

the manufacturer’s instructions with Infinium HumanMethyla-

tion27 BeadChips (Illumina). Quantitative measurements of

DNA methylation were determined for 27,578 CpG dinucleotides

spanning 14,495 genes. CpG sites were selected in CpG islands

(CpGIs) of the gene proximal promoter regions within 1 kb

upstream and 500 bases downstream from the transcription start

sites whenever possible, that is for 14,475 consensus coding

sequencing (CCDS) in the National Center for Biotechnology

Information database (genome build 36). Approximately 40% of

genes have no CpGIs in their promoter regions. On average, two

assays were selected per CCDS gene and from 3 to 20 CpG sites

for more than 200 cancer-related and imprinted genes. Among

27,578 total CpG sites, 20,007 are in CpGIs, 7,571 are in non-

CpGIs, and 1,086 are on the X chromosome. A CpGI is defined

as a nucleotide sequence of (1) 200 bp or greater in length; (2)

50% or greater in G-C percent and (3) 0.60 or greater in the ratio

of observed CpG sites over expected CpG sites. Methylation data

were analyzed with the methylation analysis module within

the BeadStudio software (Illumina). Methylation status of the

interrogated CpG sites was calculated as the ratio of signal from

amethylated probe relative to the sum of bothmethylated and un-

methylated probes. This value, known as b, ranges continuously

from 0 (completely unmethylated) to 1 (fully methylated). The

technical schemes of this array have been described in detail in a

previously published paper.19 To ensure data reproducibility, ten

samples were analyzed in duplicates starting from the bisulfite

conversion step, and high reproducibility was observed (r2 ranged

from 0.9973 to 0.9921). For validation, we used 92 samples from

the current study andmeasuredmethylation status at 34 CpG sites

by using an Illumina custom GoldenGate platform. The CpG site

positions for the probes were exactly the same as in the Infinium

arrays. The correlation between the data from the two platforms

was very high (r2 ¼ 0.79; Figure S1).

In this study, DNA was derived from tissue homogenates. We

cannot distinguish differential DNAmethylation within a popula-

tion of cells that are stable in their cell type from a change in the

abundance of cell types. It is most likely that both phenomena

contribute to signals measured in this study.
Statistical Methods
We used surrogate variable analysis to account for known and

unknown factors, including batch effects.20 A step-wise analysis

was used for model selection for each CpG site. The influences

of age and sex on DNA methylation were examined by multiple

linear regression with age, sex, race, developmental life stage,

and age-by-stage interaction as the primary variables. Age was a

continuous predictor, whereas sex (male or female), race (individ-
The America
uals of European descent or African Americans) and develop-

mental stage (fetal period, childhood [0–10 years], and postchild-

hood [ages older than 10 years]) were categorical predictors. The

use of age, stage, and age-by-stage interaction allowed the effects

of age on DNA methylation to be independent in each age stage

(i.e., to have different slopes between the stages) and thus enabled

fitting nonlinear trajectories over the entire lifespan into linear

models within the three life stages. In the age analysis, a false-

discovery-rate (FDR) correction was applied at the 0.05 level for

multiple testing.21 In the sex analysis, Bonferroni correction was

applied at the 0.05 level as in a previously published paper.14 In

order to eliminate the effects of age, sex, and race in the methyla-

tion quanatitative trait loci (mQTL) analysis, we used the residuals

from multiple regression (as described above) to analyze the asso-

ciations with SNP genotypes by utilizing an additive model

(multiple regression with allele dosage) in PLINK.22 We also used

multidimensional scaling (MDS) in PLINK across all genotypes

to identify population clusters and population outliers. Because

two races (individuals of European descent and African Ameri-

cans) showed two distinct clusters in the identity-by-state (IBS)

analysis, we also performed separate mQTL analyses in these

separate race groups. The methods were the same as those per-

formed in the combined cohort of individuals of European

descent and African Americans. SNPs within 1 Mb of a CpG site

were arbitrarily defined as cis-SNPs, and all the other SNPs were

defined as trans-SNPs, as in previous studies.11,23 A total number

of such cis-SNP associations were ~11 million, whereas a total

number of all possible associations were ~16 billion. In this

analysis, FDR was applied at the 0.05 level for multiple testing

corrections. We used the web tool DAVID functional annotation

to examine enrichment of gene ontology terms in the sets of

genes.24 We used weighted correlation network analysis

(WGCNA), an R package for weighted correlation network anal-

ysis,25 to describe the correlation patterns among CpG loci across

all the samples. For calculating correlations between expression

and DNA methylation levels, we used Pearson’s r.
Results

Global Patterns of DNA Methylation

DNA methylation levels across all samples and CpG sites

showed a bimodal distribution with 63.3% of loci being

relatively hypomethylated (b < 0.2, where b is the ratio

of signal from a methylated probe relative to the sum of

both methylated and unmethylated probes) and 13% of

loci hypermethylated (b > 0.8; Figure S2). Among the

27,578 CpG sites surveyed on the array, 20,007 CpG sites

are in CpGIs and 7,571 CpG sites are in non-CpGIs.

Consistent with a previous study,19 the average DNAmeth-

ylation level (b value) across all samples was significantly

higher for the sites in non-CpGIs than for the CpGs in

CpGIs (0.62 5 0.26 and 0.14 5 0.23, respectively, p <

10�15; Figure S3). Moreover, the distance of the methyla-

tion loci within CpGIs from transcription start sites (TSS)

predicted their level of methylation: the greater the

distance, the greater the proportion of hypermethylated

sites (Figure S4), consistent with a previous report.26 In

contrast, methylation status in non-CpGI sites was not

dependent on the distance from TSS. Finally, a relatively
n Journal of Human Genetics 90, 260–272, February 10, 2012 261



Figure 1. Depiction of Global DNA Methylation Patterns in Human Subjects across the Lifespan
(A) Histograms of subject ages in the brain collection. All fetal samples (left panel) are between 14 and 20 gestational weeks.
The following color scale is used: red, male fetal samples (n ¼ 14); orange, female fetal samples (n ¼ 16); light blue, male children
(n ¼ 10); green, female children (n ¼ 5); blue, males older than 10 years (n ¼ 32); and purple, females older than 10 years (n ¼ 31).
The same color scale is used in (B and C).
(B) Global DNA methylation pattern examined by multidimensional scaling for autosomal CpG sites. Each DNA methylation sample is
represented as a single point colored by the age of the subject. There is a tight cluster of the fetal samples, a progression of methylation
levels from the fetal period to childhood, and another cluster for postchildhood.
(C) Global DNAmethylation pattern of CpG sites on the X chromosome examined bymultidimensional scaling. Each DNAmethylation
sample is represented as a single point colored by the age of the subject and sex. Samples were distinctly segregated by sex. A progression
of methylation was also observed from the fetal period to postchildhood within each sex group.
higher proportion of hypomethylated sites was observed

in larger CpGIs than in small CpGIs (<1,000 bp; Figure S5).

DNA Methylation Is Age Dependent

In order to visualize global patterns of DNA methylation

within the entire collection of samples, we used MDS27
262 The American Journal of Human Genetics 90, 260–272, February
and showed that the overall pattern of genome-widemeth-

ylation is highly age dependent (Figure 1). For autosomal

loci, we observed a tight cluster of fetal samples, a progres-

sion of methylation levels in fetuses and children, and

another cluster of subjects older than 10 years, indicating

similarity of global methylation patterns within these age
10, 2012



Figure 2. Depiction of Rates of DNA Methylation in Three Life Stages
(A) Rates of methylation change with age during three developmental life stages (the fetal period, childhood, and postchildhood/adult)
at each CpG site for 27,578 CpG loci. A rate of change is plotted on the x axis. The �log10 p value is on the y axis, such that increasing
values indicate more significant changes in methylation with age within a given stage. Red dots represent significant age-related meth-
ylation changes at FDR < 0.05. The fastest rates of methylation changes occurred during the fetal period, involving predominantly
decreases inmethylation (negative values on the x axis). In contrast, during the childhood and adulthood the changes weremuch slower
and involved mainly increased methylation with aging (positive values on the x axis).
(B) Average rates of significant methylation changes with age within three developmental stages (red ¼ the fetal period, green ¼ child-
hood, blue¼ postchildhood). The absolute rate of the methylation change per year for the significant age-related CpG loci (FDR < 0.05)
is on the y axis. The fastest changes in methylation occurred during the prenatal period, followed by childhood and postchildhood. The
error bars represent standard deviations.
(C) Diagram showing the numbers of the CpG sites with significant age-related changes during the life stages. Of 27,578 CpG sites,
significant age-related changes in DNA methylation (FDR < 0.05) were observed at 865 sites during the fetal period, 5,506 sites during
childhood, and 10,578 sites during postchildhood. One hundred and thirty-eight sites out of the 252 sites that overlapped between the
fetal period and the childhood and 188 sites out of the 3,529 sites that overlapped between children and postchildhood showed the
opposite patterns of methylation (an increase followed by a decrease or vice versa) between these life stages. The transition from the fetal
life to childhood is frequently associated with a reversal of direction in DNA methylation profile.
clusters and relative dissimilarity between the clusters

(Figure 1B). Also, the fetal group dramatically stands out

as the most dissimilar from all the other samples, reminis-

cent of our observations of the global prefrontal cortical

transcriptome in an expanded cohort of subjects.4 The

MDS analysis of methylation patterns for X chromosomal

loci showed that, as expected, the samples were distinctly

segregated by sex (Figure 1C).Within the sex groups, more-

over, we observed further clustering by age; again, fetal

samples formed separate clusters distinct from children

(0–10 years), whereas children’s methylation patterns

diverged from the older individuals. These results confirm

that both sex and age are important determinants of DNA

methylation at CpG sites on the X chromosome.

DNA Methylation Changes Rapidly during the Fetal

Period

In order for any investigator to conveniently explore DNA

methylation patterns as a function of age, sex, and other

demographic and genetic factors in our data, we have

created a user friendly web interface (BrainCloudMethyl;
The America
see Subjects and Methods for details). We found that

DNA methylation showed remarkable variation in the

DLPFC across human life, as indicated by the rate of

changes (Figure 2). By far, the fastest changes in DNA

methylation occurred during fetal period with methyla-

tion levels dropping or increasing by almost 80% per

year (with a 100% change reflecting complete demethyla-

tion or full methylation). During childhood and later in

life methylation changed at a much slower pace (2�3

orders of magnitude slower, Figure 2B), mimicking again

the DLPFC transcriptome data.4

Of the 27,578 CpG sites, significant age-related changes

in DNA methylation (FDR < 0.05) were observed at 865

sites during the fetal period (corresponding to 3.1% of all

sites; 2.1% decreased and 1% increased), 5,506 sites during

childhood (20%; 6.9% decreased and 13.1% increased),

and 10,578 sites during postchildhood (38.3%; 12.5%

decreased and 25.8% increased; Table S2). It is surprising

that the overall methylation changes during the fetal

period were much greater but involved fewer loci than in

other life stages, though this could reflect in part the
n Journal of Human Genetics 90, 260–272, February 10, 2012 263



limited age span of the fetal samples and/or greater vari-

ance in the fetal period.

Consistent with earlier reports,10,28 CpG sites in genes

involved in cancer and implicated in processes such as

tumor suppression, telomere maintenance, and DNA

repair, mostly increased methylation with aging. These

genes included MGMT (MIM 156569), ESR1 (MIM

133430), RASSF1 (MIM 605082), RAD50 (MIM 604040),

GSTP1/GTS3 (MIM 134660), RARB (MIM 180220),

MYOD1 (MIM 159970), LAMB1 (MIM 150240), and the

Werner gene WRN (MIM 604611), the latter gene associ-

ated with a premature aging syndrome (MIM 277700).

Interestingly, changes in age-related methylation of

many of these cancer-related genes started to occur during

childhood and continued into old age (e.g., PRDM1 [MIM

603423], LOX [MIM 153455], BAP1 [MIM 603089], APC

[MIM 611731], and TP53 [MIM 191170], known to be

tumor suppressors, as well as some oncogenes; Table S3).

Moreover, our data confirmed the ten top CpG sites with

increased methylation levels during aging of adult subjects

from a recent study of the brain.12

Transition from Fetal to Postnatal Age Is Associated

with Reversal of Direction in DNA Methylation

We found that 252 CpG sites showed correlations with age

during both the fetal period and childhood. Furthermore,

3,529 CpG sites were significantly correlated with age

during both childhood and postchildhood. Interestingly,

138 of 252 sites (54.8%) that overlapped between the fetal

period and childhood showed the opposite patterns

between these life stages (a shift from a decrease to an

increase of methylation with age or vice versa), whereas

only 188 sites of 3,529 (5.3%) that overlapped between

children and subjects older than 10 years demonstrated

this pattern (Figure 2C). This indicates that the transition

from fetal life to early childhood is associated with a

reversal of direction in DNA methylation change at

many loci, most often from demethylation prenatally to

increased methylation postnatally. This pattern is again

precisely the inverse of that which we have observed at

the transcriptional level, where there is a preponderance

of genes showing increases in expression with age in utero

followed by decreases postnatally.4 DAVID functional

annotation clustering analysis of the genes showing these

shifts revealed significant enrichment (2- to 4-fold, cor-

rected p < 0.05) for the terms ‘‘disulfide bond,’’ ‘‘glycopro-

teins,’’ and ‘‘signaling peptide,’’ characteristic of secreted

proteins involved in cell-cell signaling and interactions

with the extracellular matrix and known to play key roles

in morphogenesis, cellular differentiation, angiogenesis,

apoptosis, and modulation of the immune responses.

Figure 3A shows examples of different patterns of age-

related methylation.

Age-Related Changes in the Context of CpGI Location

To examine the effect of CpGI context on age-related

changes, we divided significant correlations with age on
264 The American Journal of Human Genetics 90, 260–272, February
the basis of location within CpGI and non-CpGI, Figure 4.

We found that the effect sizes of age-related DNA methyl-

ation changes were larger at CpG sites in non-CpGIs than

in CpGIs in all three life stages. This is in agreement with

a rat study29 and the human adult brain study of Hernan-

dez et al.,12 which has also found that the effect sizes of

age-related effects were larger in non-CpGI sites, although

this study reported also more age-related associations in

CpGIs. The proportions of age-related changes in non-

CpGIs and CpGIs were 5.6% and 2.2% during the fetal

period, 28.1% and 16.9% during childhood, 47.6% and

34.9% during postchildhood (Fisher’s exact test p ¼
4.1 3 10�42, p ¼ 3.4 3 10�91, and p ¼ 7.9 3 10�83, respec-

tively). Moreover, those CpG sites in CpGIs that did show

age-dependent changes were more likely to become more

methylated with age than the sites in non-CpGIs, which

were generally demethylated with aging, similar to the

report of Christensen et al.10 The ratios between increased

and decreased methylation at CpG sites in CpGIs versus

non-CpGIs were, respectively, 2.4 and 1.3 during child-

hood, and 2.7 and 1.2 during postchildhood (two-propor-

tion Z scores ¼ 10 and 11, respectively, p < 10�15).

DNA Methylation Is Sex Biased

A majority of loci (85.8%) on the X chromosome showed

a sexually dimorphic pattern of DNA methylation (of

932 CpG sites significantly different between the sexes,

678 showed higher methylation in females and 254

showed higher methylation in males), whereas only 5%

of autosomal loci were significantly associated with sex

(of 1,333 CpG sites, 986 showed higher methylation in

females and 347 showed higher methylation in males,

5% Bonferroni correction, p < 1.8 3 10�6; Table S4). In

agreement with a previous report in human blood,30 meth-

ylation of X chromosome CpG sites showed markedly

larger sex differences than autosomal CpG sites, as indi-

cated by the average absolute values of beta regression

coefficients (0.21 and 0.015, respectively). Table 1 lists

top autosomal genes that showed sex differences. Exam-

ples of sex-biased genes include MAOA (MIM 309850) on

X chromosome and TLE1 (MIM 600189) on chromosome

9, a mammalian transcriptional corepressor participating

in neuronal differentiation as a negative regulator in the

central nervous system31 (Figure 3B). This gene is also asso-

ciated with hypermethylation and gene silencing in hema-

tologic malignancies.32

Comethylation Networks

To gain insight into the relationships among all 27,578

loci, we conducted WGCNA.25 The WGCNA is used here

to find clusters (modules/groups) of highly correlated

CpG sites, to relate modules to each other and to external

sample traits (such as age and sex). Modules were created

on the basis of high absolute correlations (i.e., they formed

an unsigned comethylation network). Using the absolute

values of the correlation coefficients between the profiles

of CpG loci, we detected five modules, corresponding to
10, 2012



Figure 3. Depiction of Individual Loci’s DNA Methylation Signatures across the Human Lifespan
(A) Depiction of individual loci’s DNAmethylation signatures across the human lifespan, illustrating three patterns of DNAmethylation
across the fetal, child and adult life periods. Methylation levels are on the y axis, with age on the x axis. The CpG site of CDH22
(cg04640913) showed significant age-related increases during the fetal period, childhood, and postchildhood (p ¼ 2 3 10�6, p ¼ 1 3
10�3, and p¼ 2.33 10�4, respectively). The CpG site of SCGB3A2 (cg19530885) showed significant age-related decreases during the fetal
period, childhood, and postchildhood (p ¼ 4.5 3 10�13, p ¼ 9.5 3 10�3, and p ¼ 2.4 3 10�4, respectively).The CpG site of NOS1
(cg21006686) showed a significant age-related decrease during the fetal period (p ¼ 8.6 3 10�4) and increases during childhood
and postchildhood (p ¼ 2 3 10�8 and p ¼ 1.1 3 10�2, respectively).
(B) Depiction of individual loci’s DNAmethylation signatures across the human lifespan, illustrating sex differences. Females are red and
males are blue. The CpG sites of MAOA (cg19441691) and TLE1 (cg15915418) showed significant sex differences (p ¼ 1.04 3 10�62 and
1.27 3 10�65, respectively).
the blocks of highly interconnected loci, which contained

10,422; 5,989; 825, 361, and 288 CpG loci in modules 1–5,

respectively, Figure 5A. The remaining loci (n ¼ 9,693) did

not intercorrelate and thus were not included in the clus-

ters. Module 3 clustered sex-biased CpG loci. Loci clustered

in modules 2, 4, and 5 were highly correlated with age and

showed module-specific patterns of age-related methyla-

tion (Figure S6). This is also clearly seen in the heat map

of DNA methylation across all five modules (Figure 5B).

To determine whether comethylation modules were bio-

logically meaningful, we used functional enrichment and

gene ontology analysis. DAVID functional annotation

clustering revealed significant ~2-fold enrichment of genes

related to glycoproteins, glycosylation, disulfide bonds,

and signaling in modules 2, 4, and 5 (Benjamini corrected

p values ¼ 310�6 to 310�30). Interestingly, the most

numerous module 1 contained CpG sites, principally

located in the CpGIs (92%), which were almost completely

unmethylated (average methylation b ¼ 0.033), and by

and large showed no age dependence across the life span,

suggesting that this module might represent sites involved

in permissive transcription.
The America
DNA Methylation Correlates with Expression of

a Subset of Genes

Genome-wide transcriptional profiling was performed in

the DLPFC in the same subjects with custom-spotted two-

color microarrays.4 Expression data are available at the

Gene Expression Omnibus (GEO) database. To interrogate

relationships betweenDNAmethylation and transcription,

we correlated (Pearson’s correlation) methylation status at

CpG loci in gene promoters with expression of all probes

on the array corresponding to the same gene (a total

number of such correlations was 45,499 for 12,277 genes).

Overall, across all CpG sites, there was poor correlation

with expression as indicated by the preponderance of

values near zero in the distribution of correlation coeffi-

cients across all comparisons, Figure 6A. Moreover, the

distribution of correlation coefficients was almost com-

pletely symmetrical, indicating that methylation might

suppress aswell as activate transcription of a subset of genes

that showed concordant changes in methylation and

expression (3,363 significant correlations after Bonferroni

correction, p < 310�6, of which 1,774 [52.7%] were nega-

tive; Table S5). Importantly, CpGI context appeared to
n Journal of Human Genetics 90, 260–272, February 10, 2012 265



Figure 4. Depiction of Age-Related Changes in DNA Methylation in Three Life Stages as a Function of CpGI Context
Black lines show density distributions of regression coefficients for age term for the CpG loci located in the CpGIs. Red lines show density
distribution of regression coefficients for age term for the CpG loci located outside the CpGIs. More loci are demethylated than hyper-
methylated during the fetal period, whereas increasedmethylation with age dominates in postnatal life (childhood and postchildhood).
The effect sizes are larger for loci outside the CpGIs than those located in the CpGIs.

266 The American Journal of Human Genetics 90, 260–272, February 10, 2012



Table 1. Top Ten Autosomal Genes with Most Significant Sex
Differences

CpG Locus Chromosome
Gene
Symbol

p Value
(�log) Difference

cg15915418 9 TLE1 64.9 female > male

cg07711515 9 BAG1 60.8 female < male

cg27063525 6 C6orf68 46.7 female > male

cg11673803 10 GLUD1 44.3 female > male

cg21243096 1 POUF3F1 44.2 female > male

cg04455759 11 SDHD 28.4 female < male

cg08284151 12 DPPA3 20.1 female > male

cg05924191 15 FLI20582 17.8 female > male

cg23758485 16 SMPD3 17.4 female > male

cg07494248 2 HSPD1 16.4 female > male

Figure 5. Depiction of Hierarchical Clustering with the
Weighted Correlation Network Analysis
(A) Hierarchical clustering dendrogram obtained with the
weighted correlation network analysis. The first color row under-
neath (labeled Group) shows the module assignment determined
by the Dynamic Tree Cut. The second color row (labeled chrX)
represents autosomal (gray) or X chromosomal (red) location of
the loci in the module. The third row (labeled CpGI) shows
whether the loci are located in the CpGIs (red) or outside the
CpGIs (gray).
(B) Heat map visualization of DNA methylation status of six
modules. A hierarchical clustering was conducted across 108
subjects shown in rows (a vertical color bar on the left indicates
sex: red ¼ females, blue ¼ males; a vertical color bar on the right
of the picture indicates age groups: red¼ fetal, green¼ childhood,
blue¼ postchildhood) and sixmodules in columns (CpG loci were
clustered into comethylation modules: groups 0–5, with group
0 containing unclassified loci). Color key on top indicates DNA
methylation values: lowest, pink highest, blue lowest.
play a role in predicting gene expression as there was an

over 2-fold higher proportion of significant correlations

involving sites outsideCpGI thanof significant correlations

involving those sites in CpGIs (out of all correlations with

loci outside CpGIs 12.6% were significant at p < 310�6,

whereas only 5.7%of loci inCpGIs were significantly corre-

lated). Of particular interest is NNAT (neuronatin [MIM

603106]), an imprinted gene on chromosome 20, with the

second highest negative correlation between DNAmethyl-

ation and expression (r¼�0.922, p¼ 1.33 10�45). NNAT is

expressed only from the paternal allele, is involved in the

regulation of ion channels during early brain development,

and has been implicated in pituitary cancers by means of

loss of expression due to hypermethylation at the promoter

CpG sites.33 Our data suggest that promoter DNAmethyla-

tionofNNATmight alsobe important in the transcriptional

regulation of NNAT during normal PFC development

because its expression falls dramatically during the transi-

tion from the fetal period to infancy and slowly thereafter,

whereas DNA methylation follows exactly the opposite

pattern (Figure 6B).

Remarkably, transcription of a group of methyltrans-

ferases of the DNMT3 family, carrying out dramatic reprog-

ramming of DNA methylation during early embryonic

development, appears to be, at least in part, also regulated

by DNAmethylation. Methylation levels at the CpG loci in

the promoters of DNMT3A (MIM 602769) and DNMT3B

(MIM 602900) as well as DNMT3L (MIM 606588), which

lacks the catalytic domain but binds to DNMT3A and

DNMT3B variants and facilitates their chromatin targeting,

are significantly and inversely correlated with the expres-

sion of these genes (r values from �0.66 to �0.46, p values

from 5.8 3 10�15 to 3.8 3 10�7). Consistent with their

essential role in the establishment of early DNA methyla-

tion patterns, expression levels of DNMT3A, DNMT3B,

and DNMT3L variants are high during the fetal period

and drop by an approximately 2- to 4-fold decrease by

birth, whereas methylation follows the opposite trajectory
The America
(Figure S7). Our data suggest that genes controlling de

novo DNA methylation are themselves subjected to epige-

netic regulation and that this process continues well into

childhood years.

Methylation Quantitative Trait Loci (mQTL) Analysis

To identify population clusters and potential population

outliers, we used IBS analysis across all genotypes and

subjects and found that the two races (individuals of Euro-

pean descent and African Americans) formed clearly

distinct clusters (Figure S8). We identified one outlier

among individuals of European descent, who was deleted

from mQTL analysis. We conducted genome-wide associa-

tion analysis of SNPs with DNA methylation and found

a large number of significant mQTLs. Because mQTL anal-

ysis was performed with residuals frommultiple regression

with sex, age, stage, age-by-stage interaction, and race,
n Journal of Human Genetics 90, 260–272, February 10, 2012 267



Figure 6. Depiction of Correlations between DNA Methylation
and Gene Expression
(A) Histogram of correlation coefficients for Pearson’s correlations
between DNAmethylation and gene expression. Green line shows
correlations of expression with methylation at the loci located in
CpGIs, red line, with loci outside CpGIs.
(B) An example of opposite patterns of DNA methylation (left)
and expression (right) changes with age (x axis) for NNAT
(neuronatin).
these effects would not be expected to affect the SNP

association results. Quantile-quantile (Q-Q) plots clearly

demonstrate the abundance of extreme association effects
Table 2. Top Ten Most Significant cis mQTLs

CpG Locus CpG Gene Symbol SNP Symbol S

cg17749961 LCLAT1 rs1662955 L

cg17749961 LCLAT1 rs1723167 L

cg19766460 C21orf128 rs1571737 U

cg17749961 LCLAT1 rs1612616 L

cg01889448 HLA-DQB1 rs1063355 H

cg12339802 C1orf109 rs11264091 E

cg06665322 GPA33 rs2281962 G

cg14129786 MGMT rs7076950 M

cg06509940 CD80 rs4330287 A

cg08679985 KLF17 rs663818 K
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over that expected by chance in all subjects as well as sepa-

rately in each race cohort (Figures S9A and S9B). In the

cis-analysis (cis defined as within 1 Mb of the CpG site),

2,836 SNP genotype-CpG pairs were significantly corre-

lated (FDR < 0.05; Table S6; for top associations see

Table 2). HLA-DQB1 (MIM 604305), with mQTL p value

10�29 (Figure 7A), is a highly polymorphic gene coding

a major histocompatibility complex class II protein, which

has been implicated in a host of autoimmune diseases,

including insulin-dependent diabetes mellitus (MIM

222100), gliomas, multiple sclerosis (MIM 126200), schizo-

phrenia, and other disorders.34,35

Plotting p values against the distance of SNPs from the

CpG sites showed that the strongest associations were

with the SNPs located relatively close to CpG sites, but

the association signal extended at least up to 300 kb and

in some cases as far as 1 Mb from the gene (Figure 7B).

The average distance between significantly associated

cis-SNPs and CpG sites was 86.2 kb. One hundred and

sixty-five SNPs were associated with two or more different

CpG sites. We found 401 trans-mQTLs (FDR < 0.05; Table

S7). Table 3 lists the top ten trans-SNP-CpG association

pairs with the most significant p values. To address the

possibility that the highly significant association data

were driven by population stratification, the association

analysis was also performed in samples from African Amer-

ican and individuals of European descent separately. The

top 200 African American cis-associations and 91.5% of

the top 200 individuals of European descent cis-associa-

tions were also found to be significant in the analysis of

all subjects (FDR < 0.05; Tables S8A and S8B). Finally, it

should be noted again that the reported significant associ-

ations are, by design, not age (or stage) dependent because

age and developmental stage were used to generate resid-

uals for mQTLs. This is further illustrated in the examples

of the genotypic groups at highly associated SNPs,

showing consistently different methylation across the life-

span (Figure S10). Overall, our results revealed that DNA

methylation is associated with genetic variance in

numerous CpG sites, and cis-SNP associations are more
NP Gene Symbol Chromosome p Value (�log)

CLAT1 2 39.9

CLAT1 2 36.4

MODL1 21 36.1

CLAT1 2 35.8

LA-DQB1 6 29.4

PHA10 1 28.7

PA33 1 28.3

GMT 10 27.0

DPRH 3 26.9

LF17 1 26.8
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Figure 7. Depiction of Associations between the Genotype and
DNA Methylation
(A) Depiction of the mQTL for the CpG site cg01889448 and
rs1063355 in HLA-DQB1 (p ¼ 10�29). Three genotypes of
rs1063355 are 1/1 in red (n ¼ 21), 1/2 in green (n ¼ 57), and 2/2
in blue (n ¼ 30). The lines in the bar graph indicate the median,
and the bars (whiskers) represent the minimum and maximum
of the data after the removal of the outliers.
(B) The relationship between the strength of association and the
distance of the SNP from the CpG site. Only significant cis-SNPs
associations are plotted (FDR < 0.05). The distance of SNPs from
the CpG sites in base pairs is on the x axis and the �log10 p values
of SNP association with DNA methylation. Plotting p values
against the distance of SNPs from each CpG site showed that the
highest associations were with the SNPs located close to CpG site.

Table 3. Top Ten Most Significant trans mQTLs

CpG Locus
CpG Gene
Symbol

SNP
Symbol

SNP Gene
Symbol

p Value
(�log)

cg18984499 RPL26 rs11847580 C14orf72 24.1

cg17704839 UBL5 rs733675 RHOT1 23.5

cg18634211 LIN28 rs2288322 FKBP7 21.5

cg18634211 LIN28 rs10207436 PRKRA 21.4

cg25299176 YWHAE rs4281963 LOC647002 19.7

cg03923277 TDG rs326387 TMEM132B 19.5

cg25299176 YWHAE rs6716175 LOC440917 18.8

cg18984499 RPL26 rs4906142 PPP2R5C 18.5

cg13514129 MACF1 rs12130070 SMYD3 18.4

cg13514129 MACF1 rs2878079 SMYD3 18.4
frequent and more pronounced than trans-SNP associa-

tions. Further exploration of methylation profiles for

individual genes across the lifespan and the genetic associ-

ations of those genes is made possible by an easily acces-

sible stand-alone application, BrainCloudMethyl. This

will enable additional discovery that might have profound

consequences for our understanding of molecular mecha-

nisms by which risk-associated SNPs exert their patholog-

ical effects in brain disorders.
Discussion

We report a genome-wide study of age-related DNA meth-

ylation, focused on 50 promoter regions of genes, in the

developing human DLPFC, including the prenatal period.
The America
The fastest changes in methylation occurred during the

prenatal period, and the transition from fetal life to early

childhood was associated with a reversal of direction of

DNA methylation, typically from demethylation to in-

creased methylation. As demonstrated before, variations

in methylation during aging exist even between monozy-

gotic twins, that is independently of the genetic

sequence,36,37 and are associated with phenotypic discor-

dances between the twins, including disease traits.38–40

Although the causes of age-related methylation changes

remain to be determined, increases in methylation with

age are thought to reflect the accumulation of stochastic

methylation events over time (epigenetic drift), whereas

decreases might be related to altered fidelity of DNA meth-

yltransferases.41 This suggests that epigenetic factors might

play an important role in the pathogenesis of diseases and

implies that examining epigenetic mechanisms associated

with aging and contributing to the accumulation of

methylation errors might be essential to understand

pathogenesis of age-related brain disorders.

Consistent with the findings in tissue differentiation

and cancer,13 we found that age-related DNA methylation

changes were more likely to occur outside the so-called

CpGIs than in CpGIs. This trend could be explained by

specific protection mechanisms of CpGIs from de novo

methylation.42,43 Moreover, those CpG sites in CpGIs

that showed age-dependent changes were more likely to

gain rather than loose DNA methylation with aging in

accordance with Christensen et al.10 and Hernandez

et al.12 who interrogated cancer-related autosomal loci in

human tissues and in adult human brains, respectively.

Our results of differential age-related patterns between

CpGIs and non-CpGIs across more than 27,000 loci

primarily in 50 promoter regions suggest that global meth-

ylation changes within these regions can be affected by

promoter CpG density during development. A recent

paper reporting that most tissue-specific DNAmethylation

occurs not in CpGIs but in CpGI shores, which are located

within 2 kb of islands,13 might support this notion.
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Neurodevelopmental behavioral disorders, such as

autism and schizophrenia, are thought to have their

origins in utero or around birth, although the main symp-

toms emerge later in life, typically around adolescence/

young adulthood in the case of schizophrenia.44 Our

results showing remarkable DNA methylation changes,

especially in early life stages, suggest that altered methyla-

tion during these periods might be critical for the patho-

genesis of developmental brain disorders. Consistently,

we found dynamic age-related methylation changes across

the life span, and particularly in the transition from fetal to

postnatal life stage, for genes, such asDLG4 (MIM 602887),

DRD2 (MIM 126450), NOS1 (MIM 163731), NRXN1 (MIM

600565), and SOX10 (MIM 602229), that have been

implicated in schizophrenia and autism (Figure S11).

DNMT1 (MIM 126375), a maintenance DNA methyltrans-

ferase, is overexpressed in the cerebral cortex of patients

with schizophrenia and bipolar disorder (MIM 125480).45

It is possible that aberrant DNA methylation in schizo-

phrenia might be a consequence of altered normal devel-

opmental trajectories triggered either by dysregulation of

methyltransferase activity and/or the involvement of

environmental genetic factors affecting DNA methylation

status. DNA methyltransferases participating in de novo

methylation also might be involved (e.g., DNMT3A,

DNMT3B, and DNMT3L). DNMT3A, shown to form com-

plexes and work in concert with DNMT3B and DNMT3L,

can specifically regulate expression of neurogenic genes

and affect synaptic plasticity, learning, and memory in

forebrain excitatory neurons.46–48 Consistent with this

notion, the subset of our transcriptome data, which corre-

late inversely with DNAmethylation levels, show dramatic

age-related changes in the DLPFC across the lifespan,

particularly during the transition from the fetal to the

postnatal period, suggesting dynamic regulation of ex-

pression of these genes by DNA methylation during

development.

This genome-wide study also identifies sex-biased auto-

somal genes in DNAmethylation in normal humanDLPFC

and thus might be useful to evaluate sex differences in

various brain disorders. Interestingly, five of the ten most

significant associations with sex among autosomal genes

(C6orf68/NUS1 [MIM 610463], DPPA3 [MIM 608408],

FLJ20852, TLE1, and GLUD1 [MIM 138130], which

encodes an enzyme central to glutamate metabolism and

implicated in schizophrenia and cognition49,50) were also

identified in a previous study that used saliva,14 suggesting

that at least some epigenetic differences between sexes are

not tissue specific.

Our data also revealed, consistent with previous

reports11,23 that DNA methylation at numerous CpG sites

is associated with genetic variance. Not surprisingly, we

found that cis-SNP associations are more frequent and

more pronounced than trans-SNP associations. Six of our

ten most significant cis-SNP-CpG association pairs and

eight of our tenmost significant trans-SNP-CpG association

pairs were reported by Gibbs et al.11 Our findings of SNP
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associations with DNA methylation are consistent with

the possibility that some SNPs associated with increased

risk for neuropsychiatric diseases might affect gene expres-

sion through DNA methylation, in addition to their direct

effects on mRNA expression.51 Finally, despite similarities

in the global patterns of transcription and DNA methyla-

tion in the DLPFC over the human lifespan, we found a

relatively limited number of intercorrelated CpG site-

expression probe pairs. This confirms earlier evidence that

transcription is only partially regulated by promoter DNA

methylation at the CpG sites examined in the study and/or

that the limited coverage of transcripts (especially of alter-

native splice variants that might be differentially regulated

by methylation) and of CpG sites (in particular those

outside the CpGIs) precludes fully capturing these relation-

ships. Another limitation is our inability to distinguish

between methylation and 5-hydroxymethylation of cyto-

sine (5hmC) that appears to be abundant in brain and has

recently been discovered to play a critical role in dynamic

regulation of genes silenced by methylation.52 Finally, it is

also possible that recent advances in the knowledge about

gene structure will require re-evaluation of the putative

promoter regions. Further studies will be needed to reveal

how genetic and epigenetic variation, together and inde-

pendently of each other, are involved in the pathophysi-

ology of neuropsychiatric diseases.
Supplemental Data

Supplemental Data include 11 figures and eight tables and can be

found with this article online at http://www.cell.com/AJHG/.
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tar, M.L., Heine-Suñer, D., Cigudosa, J.C., Urioste, M., Benitez,

J., et al. (2005). Epigenetic differences arise during the lifetime

of monozygotic twins. Proc. Natl. Acad. Sci. USA 102, 10604–

10609.

37. Kaminsky, Z.A., Tang, T., Wang, S.C., Ptak, C., Oh, G.H.,

Wong, A.H., Feldcamp, L.A., Virtanen, C., Halfvarson, J.,

Tysk, C., et al. (2009). DNA methylation profiles in monozy-

gotic and dizygotic twins. Nat. Genet. 41, 240–245.

38. Javierre, B.M., Fernandez, A.F., Richter, J., Al-Shahrour, F.,

Martin-Subero, J.I., Rodriguez-Ubreva, J., Berdasco, M., Fraga,

M.F., O’Hanlon, T.P., Rider, L.G., et al. (2010). Changes in the

pattern of DNA methylation associate with twin discordance

in systemic lupus erythematosus. Genome Res. 20, 170–179.

39. Kuratomi, G., Iwamoto, K., Bundo, M., Kusumi, I., Kato, N.,

Iwata, N., Ozaki, N., and Kato, T. (2008). Aberrant DNAmeth-

ylation associated with bipolar disorder identified from discor-

dant monozygotic twins. Mol. Psychiatry 13, 429–441.

40. Mastroeni, D., McKee, A., Grover, A., Rogers, J., and Coleman,

P.D. (2009). Epigenetic differences in cortical neurons from

a pair of monozygotic twins discordant for Alzheimer’s

disease. PLoS ONE 4, e6617.

41. Wu, S.C., and Zhang, Y. (2010). Active DNA demethylation:

Many roads lead toRome.Nat. Rev.Mol.Cell Biol.11, 607–620.
272 The American Journal of Human Genetics 90, 260–272, February
42. Brandeis, M., Frank, D., Keshet, I., Siegfried, Z., Mendelsohn,

M., Nemes, A., Temper, V., Razin, A., and Cedar, H. (1994).

Sp1 elements protect a CpG island from de novomethylation.

Nature 371, 435–438.

43. Ushijima, T., Watanabe, N., Okochi, E., Kaneda, A., Sugimura,

T., and Miyamoto, K. (2003). Fidelity of the methylation

pattern and its variation in the genome. Genome Res. 13,

868–874.

44. Weinberger, D.R., and Levitt, P. (2010). The neurodevelop-

mental origins of schizophrenia. Schizophrenia, Third Edition

(Oxford: Wiley).

45. Veldic, M., Guidotti, A., Maloku, E., Davis, J.M., and Costa, E.

(2005). In psychosis, cortical interneurons overexpress DNA-

methyltransferase 1. Proc. Natl. Acad. Sci. USA 102, 2152–

2157.

46. Wu, H., Coskun, V., Tao, J., Xie, W., Ge, W., Yoshikawa, K., Li,

E., Zhang, Y., and Sun, Y.E. (2010). Dnmt3a-dependent non-

promoter DNA methylation facilitates transcription of neuro-

genic genes. Science 329, 444–448.

47. Feng, J., Zhou, Y., Campbell, S.L., Le, T., Li, E., Sweatt, J.D.,

Silva, A.J., and Fan, G. (2010). Dnmt1 and Dnmt3a maintain

DNA methylation and regulate synaptic function in adult

forebrain neurons. Nat. Neurosci. 13, 423–430.

48. LaPlant, Q., Vialou, V., Covington, H.E., 3rd, Dumitriu, D.,

Feng, J., Warren, B.L., Maze, I., Dietz, D.M., Watts, E.L.,
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