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Abstract
Background and purpose—Reports describing functional neuroimaging techniques, such as
positron emission tomography (PET) and single photon emission computed tomography (SPECT),
in sporadic Creutzfeldt-Jakob disease (sCJD) have consistently suggested that these tools are
sensitive for the identification of areas of hypoperfusion or hypometabolism, even in the early
stages of sCJD. However, there are few reports on the use of [18F]fluoro-2-deoxy-D-glucose
(FDG) PETin sCJD and most of them are single case reports. Only two small cohort studies based
on visual inspection or a region of interest method have been published to date. Using a statistical
parametric mapping (SPM) analysis of 18F-FDG PET, we investigated whether there are brain
regions preferentially affected in sCJD.

Methods—After controlling for age and gender, using SPM 2 we compared the glucose
metabolism between i) 11 patients with sCJD and 35 controls and ii) the subset of 5 patients with
the Heidenhain variant of sCJD and 35 controls.

Results—The patients with sCJD showed decreased glucose metabolism in bilateral parietal,
frontal, and occipital cortices. The Heidenhain variant of sCJD showed glucose hypometabolism
mainly in bilateral occipital areas.

Conclusions—Glucose hypometabolism in sCJD was detected in extensive cortical regions;
however, it was not found in the basal ganglia or thalamus, which are frequently reported to be
affected on diffusion-weighted images. The medial temporal area, which is possibly resistant to
the prion deposits, was also less involved in sCJD.
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Introduction
Creutzfeldt-Jakob disease (CJD) is characterized by rapidly progressive dementia with a
variety of neurological symptoms and a fatal outcome. Structural neuroimaging, such as
MRI, is an important diagnostic tool for sporadic CJD (sCJD). High signal changes in the
cerebral cortex, basal ganglia, or thalamus on fluid-attenuated inversion recovery (FLAIR)
and diffusion-weighted images (DWIs), in particular, have high sensitivity and specificity
for sCJD even in the early stage of the disease [1–5]. However, although there are a few
publications on the use of functional neuroimaging in sCJD, most [18F]fluoro-2-deoxy-D-
glucose (FDG) positron emission tomography (PET) publications are single case reports and
few small cohort studies of 18F-FDG-PET in sCJD relied on visual inspection or a region of
interest (ROI) method [6–17]. Although the ROI technique is a useful method, it can only
analyze selected areas, and therefore remaining brain regions may be left unexplored. To
date, we are not aware of any study that has used statistical parametric mapping (SPM)
analysis to compare the glucose metabolism of patients with sCJD to that of normal controls.
Thus, the aims of this study were to use SPM analysis of FDG-PET in sCJD patients to
examine (i) which brain regions are preferentially affected in sCJD and (ii) if there are any
different hypometabolic patterns associated with Heidenhain variant of sCJD.

Methods
Subjects

Among 28 consecutive patients with sCJD seen from March 1, 1998 to December 31, 2005
at the Department of Neurology, Samsung Medical Center, 13 who had received 18F-FDG-
PET scans were initially selected. After excluding 2 patients whose 18F- FDG PETs were
imaged with a different scanner, 11 (5 male, 6 female; mean age 61.6 ± 10.0 years; range
36–75 years) were enrolled in this study. Using the World Health Organization (WHO) 1998
diagnostic criteria for sCJD, one patient was a definite, seven were probable, and three were
possible cases [18]; all cases met UCSF 2007 probable sCJD criteria based on their
symptoms and positive DWI brain MRI (Table 1) [19]. All 11 patients underwent brain MRI
1.7 ± 2.3 days before undergoing PET scans, and the average time interval from symptom
onset to PET or MRI was 2.9 ± 2.3 months. Except one patient who could not be traced,
total disease duration of 10 out 11 patients was an average of 10.6 ± 11.6 months. Five
patients with visual disturbance as the first symptom (2 male, 3 female; mean age 58.0 ±
13.5 years; range 36–69 years) were classified as the Heidenhain variant of CJD [20]. The
clinical features of the patients and the regions with high signal intensities on DWIs are
summarized in Table 1. All five patients who underwent genotyping of the prion protein
gene (PRNP) (2 male, 3 female; mean age 59.0 ± 14.0 years; range 36–75 years)
demonstrated methionine homozygosity (MM) at codon 129. None of patients in this study
had a family history of CJD.

The control group consisted of 35 healthy volunteers (18 male, 17 female; mean age
62.5±8.2 years; range 49–74 years) who had neither a history of neurological and psychiatric
illness nor abnormalities on neurological examinations. The Samsung Medical Center
Institutional Review Board and an ethical standards committee approved this study.
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PET imaging and image analysis
PET scans of 30 min were acquired starting 40 min after intravenous injection of 4.8 MBq/
kg FDG using a GE Advance PET scanner. In-plane and axial resolution of the scanner was
4.9 and 3.9 mm full-width at half maximum, respectively. Subjects fasted for at least 4 h
before PET scanning. PET images were reconstructed using a Hanning filter (cut-off
frequency = 4.5 mm) and displayed in 128 × 128 matrix (pixel size = 1.95 × 1.95 mm with a
slice thickness of 4.25 mm). Attenuation correction was performed with a uniform
attenuation coefficient (μ = 0.096 cm−1).

PET images were analyzed using SPM 2 (Wellcome Department of Cognitive Neurology,
Institute of Neurology, London, UK). Prior to statistical analysis, all the images were
spatially normalized into the MNI standard template (Montreal Neurological Institute,
McGill University, Montreal, Canada) to remove inter-subject anatomical variability.
Spatially normalized images were smoothed by convolution, using an isotropic Gaussian
kernel with 12-mm FWHM. The count of each voxel was normalized by proportional
scaling to the average whole brain activity and fit to a linear statistical model by the method
of least squares. Statistical comparisons between groups were performed on a voxel-by-
voxel basis using t statistics, generating SPM (t) maps. We investigated hypometabolic brain
areas at a height threshold of P = 0.05 (corrected) and an extent threshold of 100 voxels. For
visualization of the t-score statistics (SPM{t, #1} map), the significant voxels were projected
onto the 3D rendered brain or a standard high-resolution MRI template thus allowing
anatomic identification. We made the following comparisons using age and gender as
covariates: (1) Total sCJD versus controls and (2) the Heidenhain variant of sCJD versus
controls.

Results
Compared to controls, patients with sCJD showed decreased glucose metabolism in bilateral
parietal, frontal, and occipital cortices and middle and superior temporal gyri with a right-
sided predominance (p < 0.05, corrected for multiple comparisons, k = 100, Fig. A). Patients
with the Heidenhain variant of sCJD showed glucose hypometabolism mainly in bilateral
occipital and parietal areas with a right-sided predominance (p < 0.05, corrected for multiple
comparisons, k = 100, Fig. B). The right middle frontal and superior temporal gyri were also
detected as hypometabolic regions.

Discussion
In our study, patients with sCJD showed glucose hypometabolism in extensive cortical
regions, including bilateral frontal, parietal, and occipital areas, compared with normal
controls. This finding is consistent with DWI studies in sCJD [1–5]. One of the most
interesting finding was that the basal ganglia as well as the thalamus, two areas commonly
involved in sCJD (particularly the basal ganglia) in MRI studies [1, 2, 4, 5], were unaffected
in the context of metabolism. This result is compatible with a previous 18F-FDG PET group
study based on a ROIs method that found the putamen and thalamus were less affected in 9
patients [16] and with most case reports, which did not show involvement of deep gray
matter [6–9, 11–14]. Another PET study showed that only 1 out of total 8 patients with
sCJD demonstrated involvement of the cerebellum, which is also be compatible with our
results [15].

All the patients underwent brain MRIs and 18F-FDG PET scans on almost the same day, and
9 out of 11 patients with sCJD demonstrated increased signal intensities of the basal ganglia
on DWI sequences. Even though the cause of high signal changes on DWI in sCJD remains
unclear, several studies have reported that these MR changes correlate with certain
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neuropathological findings, particularly vacuolation and prion (PrPSc) accumulation,
regardless of cortical and subcortical lesions [21–24]. Therefore, the reason why the basal
ganglia, which was detected as having high signal intensities on DWI that were similar to
other cortical regions, did not demonstrate hypometabolism on 18F-FDG PET remains
unclear. One possibility is that vacuolation and/or prion deposition do not always correlate
with neuronal dysfunction and hypometabolism. Furthermore, as MRI abnormalities in most
sCJD cases appear first cortically and then move subcortically over time, this suggests that
the cortex is affected earlier and thus longer than subcortical structures. The deep nuclei in
this cohort thus might be less affected physiologically at the times of the FDG-PET scans. It
is possible that if patients were followed longitudinally to later stages of disease that
subcortical involvement would be evident on FDG-PET imaging.

Another interesting finding of our study was that patients with sCJD did not show
hypometabolism in the medial temporal area e.g. hippocampus and amygdala, which is also
consistent with a previous PET study showing the temporal area was relatively less affected
in sCJD [16] and with a pathological study suggesting possible resistance of hippocampus to
the prion deposits in CJD [25, 26].

In our study, the glucose hypometabolism of patients with the Heidenhain variant was found
mainly in the parietooccipital areas, which agreed with the results of the previous studies [7,
10–13]. This finding may explain the clinical symptoms of patients with the variant.

To our knowledge, there have been few published studies on PET findings according to the
molecular subtypes of sCJD [27]. Although we did not have prion typing data, all five
patients tested for codon 129 polymorphism were MM and we suspect that most were MM
given its prevalence in the Korean sCJD population [28]. A recent MRI study of a large
number of patients with sCJD described that the basal ganglia, frontal lobes, parietal lobes,
and cingulate gyri were frequently affected in the MM1 subtype, while the thalamus,
cerebellum, and temporal lobes were frequently involved in the MM2 subtype [29].
Regarding the asymmetric involvement with right-sided predominance in our study (Fig. A),
there have been several reports regarding asymmetric cortical involvement in sCJD, but the
results were inconsistent [30–34]. One recent DWI MRI study of 49 sCJD subjects suggests
the possibility of left-sided involvement to be more common [1].

Although MR DWI is the most sensitive imaging tool for the clinical diagnosis of CJD,
functional imaging remains a useful technique that supports DWI findings [11, 15, 16, 35].
It is interesting to see if 18F-FDG PET has diagnostic utility in CJD, however, rare group
studies using 18F-FDG PET in CJD have been reported.

Our study has limitations including a small sample size and lack of pathological
confirmation of most diagnoses. Also, because the patients in this study had had an average
disease duration of 10.6 ± 11.6 months with FDG-PET scans performed at an average of 2.9
± 2.3 months after onset of clinical symptoms and no patients had follow-up FDG-PET
scans, we could not exclude the possibility if the subjects had longer duration of symptoms
prior to FDG-PET scans, they might have had demonstrated further neuronal damage extend
to basal ganglia or thalamus on FDG-PET. Despite of these limitations, we think that our
findings provide useful information regarding the functional neuroimaging findings of sCJD
and that these findings will be confirmed in future studies with larger, pathology-confirmed
series. The lack of deep nuclei hypometabolism on 18F-FDG PET despite DWI involvement
needs to be explored further. Although this study did not assess whether FDG-PET is helpful
for diagnosis, in some cases even might reveal abnormalities earlier than MRI [36] and at a
minimum might improve our understanding of the physiological processes underlying sCJD.
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Figure 1.
Areas with significant glucose hypometabolism in sCJD (A) and the Heidenhain variant of
sCJD (B) compared with controls are superimposed on surface rendered and transaxial
images, respectively, at the threshold of p < 0.05, corrected for multiple comparison, k =
100. The numbers in the axial images indicate the distance (mm) from the anterior-posterior
commissure plane. NC = normal controls, R = right, L = left.
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