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Abstract
Protein aggregates that accumulate in neurodegenerative diseases are important targets of
radiotracer discovery efforts. Although multiple scaffold classes have been reported to bind cross-
beta sheet structure, their mechanism of binding and their ability to interact selectively with
aggregates of varying protein composition are not well understood. Here we take a ligand-based
quantitative structure activity relationship approach to identify descriptors of binding affinity and
selectivity for a series of fifty closely related benzothiazole derivatives reported to displace
Thioflavin T fluorescent probe from synthetic aggregates composed of beta-amyloid peptide and
insulin. Using a two-step workflow involving both partial least squares and multiple linear
regression methods, compound polarizability and hydrophobicity were identified as tunable
mediators of binding selectivity. The correlations also revealed how polarizability could be
modulated in neutral compounds having push-pull character. These data suggest that the relative
affinity of small molecules for binding sites exposed on aggregate surfaces can be modulated by
simple chemical design considerations that are compatible with multiple scaffolds.
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1. Introduction
Whole-brain imaging is a powerful approach for premortem diagnosis of Alzheimer's
disease (AD) and potentially other neurodegenerative disorders associated with protein
misfolding.1 Although radiotracers capable of binding AD lesions composed of Aβ
aggregates are in advanced clinical trials, neither their mechanism of binding nor their target
binding specificity is well defined. This is because the protein aggregates that appear in
neurodegenerative disorders share cross-ß sheet conformation, characterized by parallel, in
register β sheets oriented perpendicular to fibril axes.2 Unlike three-dimensional pockets
that appear on traditional globular protein targets, fibril surfaces present only shallow
grooves and channels that are shaped primarily by amino acid residue side chains.3, 4 The
resulting common structural organization would appear to limit opportunities for selective
molecular interactions. Nonetheless, recent studies have reported binding selectivity for
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small molecules among aggregates at the level of binding affinity, suggesting the feasibility
of tuning binding interactions.5, 6 If the problem of binding selectivity were overcome, the
utility of whole-brain imaging for differential diagnosis and staging of individual
neurodegenerative disorders could be greatly improved.

Few experimentally-derived structural models of small molecule binding sites on amyloid
fibrils have been disclosed to date,4 and structure-activity relationship studies, which aim to
rationalize compound affinity for biological targets, have not been interpreted in the context
of target selectivity.7–10 Our investigation of binding selectivity has focused on protein
aggregate targets associated with Alzheimer's and Lewy body diseases such as Aβ, tau, and
α-synuclein.6 Using a competition assay with Thioflavin T (ThT), a fluorescent probe of
cross-β sheet structure, we identified cationic polymethine dyes as especially potent
displacers of ThT from AD lesions composed of tau protein.11 These compounds share a
planar, fairly rigid structure combined with highly delocalized aromatic π-electrons.
Because of these properties, the most potent compounds investigated were highly
polarizable, and therefore capable of supporting strong van der Waals interactions with flat
surfaces exposed on fibrils. These data suggested compound polarizability as a descriptor for
the tau-fibril binding affinity of dyes.11 Nonetheless, it was not clear from the correlations
whether polarizability could be leveraged to generate selective binding among protein
aggregates, or how this parameter could be maintained in neutral analogs capable of
crossing the blood brain barrier.

To address these questions and to identify additional descriptors of aggregate binding
affinity, we have turned to quantitative structure activity relationship (QSAR) analysis. The
experimental input data for this computational study was compiled from the literature, and
consisted of closely related neutral and cationic benzothiazole derivatives tested for their
ability to displace ThT from synthetic aggregates prepared from Aβ40 and insulin.12 The
datasets, which included 50 compound structures and their associated AC50 values (Table
1), were chosen for QSAR analysis because they probed two aggregate targets of distinct
composition while spanning three orders of magnitude in affinity for each. Second, the
benzothiazole scaffold is under extensive investigation for whole-brain imaging purposes,
with demonstrated affinity for aggregates composed of tau or Aβ.13, 14 Importantly, the
potency of certain compounds in the series extend to radiotracer concentrations (low
nanomolar). Finally, certain members of the series have been extensively characterized with
respect to optical and electrical properties.15–19 The results confirm polarizability as a major
descriptor of relative binding affinity of the series for cross-β sheet aggregates, and show
how this parameter can be maximized in neutral analogs.

2. Results
2.1. Experimental data, descriptor sets, and workflow

To identify potential drivers of binding affinity and selectivity for Aβ40 and insulin
aggregates, a three-step workflow was adopted (Fig. 1). First, the > 1600 descriptors
available in E-DRAGON were calculated for all Series A and B molecules (shown in Table
1). Because these compounds were flat and dye-like, the starting E-DRAGON descriptor set
was pruned on the basis of reported dye adsorption QSAR studies20, 21 to yield a focused
molecular property set comprising 278 descriptors representing five logical blocks: 48
constitutional descriptors, 33 connectivity indices, 154 functional group counts, 14 charge
descriptors, and 29 molecular properties. The pruned descriptor set was then augmented
with separately calculated clogP and topological polar surface area values to improve
estimation accuracy,22 and polarizability (α) and dipole moment (μ) values to explicitly
capture the contribution of these quantum parameters to biological activity. In the second
step, a partial least squares regression (PLR) QSAR approach was taken to screen for
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candidate descriptors for displacement activity. Finally, the top descriptors identified by
PLR were used to build and validate multiple linear regression (MLR) models for both
Aβ40 and insulin targets. This was done to generate unambiguous predictive models that
could be interpreted in mechanistic terms with maximum simplicity, transparency, and
portability.

2.2. Descriptors for relative ThT displacement affinity
To identify the best combination of the descriptors described above for predicting ThT
displacement AC50, the datasets were subjected to QSAR analysis using a genetic
algorithm-PLR method. The optimal Aβ40 model consisted of 28 molecular descriptors (x
variables) collapsed into 11 linear combinations (latent t variables), whereas the insulin
model consisted of 22 x variables collapsed into four latent t variables (Table 2). The
resulting Y-correlations were adequately strong (as judged by the correlation coefficient, R2)
and stable (on the basis of bootstrap cross validation; Q2

boot) for both target models (Table
2).23

The four highest-weighted and therefore top-ranked descriptors for the Aβ40 model
represented four different logical blocks, and included average high-order valence
connectivity 5χv, α, clogP, and rotatable bond fraction (RBF) (Table 3). Valence
connectivities 4χv and 5χv describe the summed contributions of contiguous four- and five-
bond fragments to activity, and are particularly sensitive to the presence of high-valence
heteroatoms and double bonds.24, 25 Although lacking a straightforward chemical
interpretation in the current context, the negative coefficient for average 5χv indicates that
increasing higher order average valence connectivity correlates with decreasing ThT
displacement activity. The polarizability term α describes how easily electron density can
shift about the molecule when exposed to an external electric field, such as an adjacent
dipole or ion.26 The positive coefficient indicates that increasing polarizability correlates
with increasing potency. ClogP is the log of the calculated octanol/water partition
coefficient.27 Although logP^2 descriptors were part of the molecular descriptor set
screened with PLR, a linear dependence on hydrophobicity yielded the best correlation of
the dataset. The negative sign of clogP indicates that hydrophobicity decreases displacement
potency in the context of Series A and B molecules. RBF is the fraction of rotatable bonds
(i.e., the ratio of rotatable to total number of bonds).27 The positive sign of RBF indicates
that increasing torsional freedom of atoms outside the rigid aromatic core allows these
compounds to achieve maximal displacement potency.

The model for insulin aggregate displacement activity identified molecular descriptors
complementary to the Aβ40 model including hydrophilic factor, topological electronic
factor, charge polarization factor, and average 4χv (Table 3). The hydrophilic factor is an
empirically determined index based on the number of hydrophilic groups in molecules.27

The positive coefficient for this parameter indicates that hydrophilic groups increased
displacement activity against insulin aggregates. The topological electronic factor calculates
the differences in partial atomic charges with respect to interatomic distance.27 It correlated
weakly with polarizability in Series A and B molecules (R2 = 0.63). The positive sign
indicates that displacement affinity increased in parallel with this parameter. Finally, charge
polarization, which incorporates the effect of large heteroatoms in electrotopology,27 also
correlated with polarizability in the datasets (R2 = 0.75). The positive coefficient indicates
that displacement potency against insulin aggregates increased in parallel with this
descriptor.

Overall, these results are consistent with both molecular targets sharing a common cross-β
sheet structure presenting similar yet distinct binding sites along their surfaces.
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2.3. Construction and validation of predictive MLR models
To generate predictive QSAR models, the top-ranked chemical, quantum, and constitutional
descriptors identified by PLR screening (α, clogP and RBF) were analyzed using an MLR
approach. Dipole moment magnitude (μ) was used in place of topological descriptors so that
each of the four final descriptors had simple chemical interpretations. Although dipole
moment magnitude was not identified as a candidate descriptor in the PLR screen, it has
been proposed to contribute to the aggregate binding affinity of small molecules,28 and so
was included in the MLR analysis for this reason. The final four individual descriptors
intercorrelated only weakly when compared pairwise in a correlation matrix (Table 4), and
were appropriate in number for the size of training sets used in the analysis (i.e., the ratio of
training compounds:descriptors was > 8:1).29 In addition, variance inflation values were low
for all parameters (Table 4), indicating that the variance associated with each descriptor was
independent of the others. These data indicated that the final descriptor set was appropriate
for modeling the affinity and selectivity characteristics of Aβ40 and insulin aggregates.

To prepare MLR models, the Aβ40 and insulin datasets were split into training and test sets
of 44 and six molecules, respectively, with initial MLR calibration performed on the former.
However, subsequent modeling identified compounds 3A, 14A and 48B as outliers (i.e., the
calculated pAC50 deviated from the observed pAC50 by more than 1 log unit for both
targets), and so these were excluded from further analysis. The final training sets consisted
of 41 compounds, composed of 38 actives/3 inactives for Aβ40, and 40 actives/1 inactive
for insulin. Final MLR calibration yielded two equations for the prediction of AC50:

(1)

(2)

These models were adequately correlated (as judged by R2 = 0.73 and 0.74 for Aβ40 and
insulin training sets, respectively; Fig. 2), consistent (on the basis of residual standard error;
s = 0.38 and 0.44 for Aβ40 and insulin, respectively) and stable (on the basis of bootstrap
cross validation; Q2

boot = 0.63 and 0.60 for Aβ40 and insulin, respectively). To test
statistical robustness, the models were subjected to Y-randomization tests. When the
response data for each calibration compound was randomly shuffled 250 times and
correlated with unchanged descriptor values, observed Q2

boot values ranged from 0 – 0.453
for Aβ40 and 0 – 0.507 for insulin, with only two models generating Q2

boot > 0.4. The poor
correlations indicated that the probability of eqs 1 and 2 occurring by chance was low. When
the randomized response data were correlated with different subsets of four descriptors (out
of the original set of 84 descriptors identified through PLR screening), observed Q2

boot
values for Aβ40 and insulin ranged from 0 – 0.470 and 0 – 0.391, respectively, with only
one model generating Q2

boot > 0.4. These poor correlations indicate that the chance of eqs 1
and 2 occurring through biased selection of descriptors (x variables) was low.

The predictive capability of the MLR models was validated using an external test set (i.e.,
six compounds not used in the calibration) and the statistical criteria proposed by Golbraikh
and Tropsha.30 The resulting correlations show that the models met target slope and
goodness of fit criteria for predictive utility (Table 5; Fig. 2). Together, the internal and
external validation experiments indicated that an acceptable characterization of compound
bioactivity against both targets over the low nanomolar-low micromolar concentration range
was achieved.
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2.4. Descriptors for relative ThT displacement selectivity
Although eqs 1 and 2 show that the descriptors of displacement activity against insulin and
Aβ40 aggregates paralleled each other, selectivity was observed for many library members
(Table 1). To test whether selectivity correlated with any of the four descriptors quantified
by MLR QSAR, the magnitude of their coefficients in the Aβ40 and insulin MLR models
was compared directly with each other. First, the t-statistic for each descriptor coefficient
(defined as the ratio of the coefficient to its standard error) was calculated. All values were ≥
2.7, corresponding to rejection of the null hypothesis at p ≤ 0.01, and confirming that the
coefficients were determined with precision. Second, coefficient magnitudes from the Aβ
and insulin models were directly compared by z-test (Fig. 3). Results showed that compound
hydrophobicity and polarizability were the major drivers of displacement selectivity in these
datasets. As the clogP coefficient increased, pAC50 increased for both molecular targets, but
~1.4-fold more strongly for insulin than for Aβ40. The differences were significant at p <
0.05. These data indicate that insulin aggregates were more sensitive to compound
hydrophobicity than were Aβ40 aggregates. Similarly, as α increased, pAC50 decreased for
both molecular targets, but ~1.6-fold more strongly for Aβ40 than for insulin. The
difference only trended toward statistical significance (p = 0.064), but suggested that
binding to Aβ40 aggregates was incrementally favored relative to insulin aggregates by
highly polarizable compounds. In contrast, RBF and μ coefficient magnitudes differed by
only ~20%, with poor statistical significance (p > 0.3; Fig. 3), suggesting that these
parameters did not contribute to differences in displacement potency between Aβ40 and
insulin aggregates. Together these data show that selective binding to insulin and Aβ40
aggregates of up to ~2 log AC50 units is feasible within the benzothiazole series
investigated, and that compound hydrophobicity and polarizability are two candidate drivers
of this selectivity.

3. Discussion
This QSAR study indicates that Aβ and insulin aggregates yield populations of binding sites
that are dominated by differing modes of interaction. It further suggests strategies for
maximizing the affinity and selectivity of ligands for cross-β sheet aggregates of defined
composition. In the context of the benzothiazole series investigated here, affinity for Aβ
relative to insulin aggregates was modulated by compound hydrophobicity and
polarizability. For example, starting compounds 1A – 3A displaced ThT from Aβ only
weakly. Like other members of Series A and B, these compounds shared a donor-π-acceptor
architecture, where a dimethylamine electron donor was connected to the benzothiazole
electron acceptor through a π-electron rich bridge containing a vinyl linker (Fig. 4). The
push-pull character of this architecture leads to the delocalization of π-electrons that drives
compound polarizability.31 Displacement potency for Aβ was increased by combining donor
and acceptor groups so as to maximize polarizability while modulating the strength and
orientation of the dipole moment.18 The inverse correlation between dipole moment
magnitude and displacement potency suggests that affinity is driven by an ability to form
induced dipoles in conjunction with binding surfaces rather than by the existence of a
ground-state permanent dipole. However, the results also may reflect oversimplification of
the dipole descriptor, which captured dipole moments as scalar magnitudes instead of
vectors with magnitude and directionality. Induced dipoles, which are directly correlated to
polarizability, were not represented at all. These considerations may rationalize why
polarizability but not dipole magnitude correlated with displacement potency.

The most efficacious affinity-driving modification was to quarternize N3 in the
benzothiazole heterocycle so as to create a stronger electron acceptor. Although many
different substituents on N3 served this function in Series A, a simple methyl substituent
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was adequate to drive affinity (5A – 11A). In fact, large hydrophobic N-substituents tended
to slightly weaken potency (perhaps through steric effects), leading to the inverse correlation
of clogP with affinity in this series. However, higher potency could be fostered without
introducing a quaternary nitrogen by replacing the vinyl linker with an azo linker (12A –
14A). On the basis of ab initio calculations, the azo linker has been reported to increase
compound polarizability by acting as an auxiliary electron acceptor to the benzothiazole
ring.32 Alternatively, displacement affinity could be raised by increasing the surface area of
the π-bridge (48B and 49B). Both of these π-bridge modifications promote polarizability in
the context of neutral molecules. Overall, to generate electronic properties that favor Aβ
relative to insulin aggregate ThT displacement potency, a neutral Series A or B compound
should contain a strong electron donor flanking a π-bridge that maximizes push-pull
electronic structure while retaining compound planarity. The nonspecific cross-β sheet
binding agent [1-(6-{[2-fluoroethyl](methyl)aminaphthalen-2-yl)ethylidene]propanedinitrile
(FDDNP) shares a similar structural organization,28 suggesting these affinity driving
concepts can be extended to other scaffolds besides benzothiazoles.

Because Series A and B potency was quantified in displacement format, our QSAR
approach interrogated only those sites occupied by ThT probe. On the basis of molecular
dynamics simulations, both ThT and its neutral analog Pittsburgh Compound B (PIB) bind
up to six distinct sites on Aβ protofilaments.33, 34 Total binding energy decomposition
analysis identified van der Waals forces and non-electrostatic solvation energy (i.e., the
hydrophobic effect) as the dominant descriptors of binding energy at these sites. In contrast,
electrostatic interactions were found to antagonize binding. The two sites predicted to yield
the highest binding energy for ThT and PIB are reproduced in Fig. 5. In one calculated mode
(Site A), the ligands preferentially bound shallow, hydrophobic clefts formed by the side
chains of aromatic residues, resulting in favorable van der Waals interactions between their
benzothiazole and benzaminic ring systems and the planar surface created by in-register
aromatic sidechains of Phe20 (Fig. 5A). Interestingly, a neighboring negatively charged
residue (Glu22) did not interact with the ThT tertiary amine despite it being accessible in
this binding mode. In the second hypothetical binding mode (Site B, Fig. 5B), ThT and PIB
ligands entered extra wide hydrophobic channels formed by Gly residues exposed on the
aggregate surface. Deep insertion of ligand into these channels would allow direct
interaction with the hydrogen-bonded β-sheet core through dispersion and induced-dipole
effects.11, 35, 36 QSAR analysis predicts that highly polarizable Series A and B compounds
should be especially well suited for competing with this mode of ThT interaction. Consistent
with this hypothesis, PIB binding energy was predicted to be strongest at this site.34 In
addition, this binding mode is consistent with the computational modeling of Rodriguez-
Rodriguez et al., where a quantum-refined docked pose of ThT was predicted to
preferentially occupy the wide channels formed by Gly residues of the Aβ42 protofibril.36

These modeling studies highlight the importance of planar aromatic moieties of ligands for
ThT-like binding interactions, as well as the need for adequate rotatability of neighboring
groups so that surface contact at the binding sites is maximized. They also highlight the
heterogeneity of binding sites that results from varying side chain composition despite
commonality in main chain secondary structure.

Overall, the proposed interaction of Series A and B compounds with cross-β sheet
aggregates is reminiscent of the interaction between cellulose-based textiles and acidic dyes,
both of which present flat surfaces that support adsorption. Interaction is reportedly
mediated by van der Waals interactions, with the enthalpic portion of binding energy
reflecting the flatness of the dyes and how close their planes can contact the cellulosic
surface.37 Both Series A and B ligands that displace ThT from Aβ aggregates with
submicromolar affinity resemble acid dyes in being highly polarizable and flat, and by
having their binding affinity influenced by compound surface area. Although these structural
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features also support compound self association,38, 39 benzothiazoles were assayed at
concentrations where interference with probe displacement was minimal.40

Radiotracer utility depends on binding site density (Bmax) as well as on binding affinity.41

Large differences in Bmax have been reported for Aβ-aggregate binding ligands, although
the structural basis for these observations is not clear.42 In the context of tau cross-β sheet
structure, we identified polarizability as a potential descriptor for Bmax as well as for Kd.11 It
is conceivable that differences between active and inactive Series A compounds reflect the
contribution of polarizability to Bmax in addition to Kd.

In summary, this QSAR study reveals that aggregates composed of Aβ and insulin present
binding sites that interact differentially with small molecules, and that binding selectivity at
the level of affinity can be tuned by leveraging the molecular properties indentified by the
MLR model, including compound polarizability and hydrophobicity. These concepts are
likely to be applicable to a range of scaffolds not limited to benzothiazoles.

4. Experimental Procedures
4.1. Bioactivity data

AC50 data for displacement of ThT probe from aggregates composed of Aβ (4.6 μM
protomer) and insulin (1.4 μM protomer) were taken from the literature.12 Test compound
concentrations ranged from 0.001 – 30 μM. The assays were performed at the apparent
probe Kd for each protein substrate to facilitate direct comparison (0.5 and 20 μM for insulin
and Aβ, respectively). Within this in vitro format, it was assumed that displacement efficacy
was complete for all compounds, and that total compound concentration approximated free
concentration at equilibrium.

4.2 Chemical structures and calculation of molecular descriptors
Compound structures (Table 1) were built (Chem3D Pro 12 software) and minimized
(Allinger's molecular mechanics MM2 force field43) using default convergence criteria of
0.100 for the minimum RMS gradient and 10,000 iterations. Molecular descriptors and
properties were then generated using various semi-empirical and ab initio methods. First,
semi-empirical descriptors were generated with E-DRAGON 1.0, an online implementation
of the DRAGON 5.4 molecular descriptor generator44 that computes >1,600 descriptors
categorized into 20 logical blocks.27

Second, because of the variable accuracy of molecular lipophylicity predictions among
various semi-empirical methods (owing to inadequate training sets and method
parameterization22), the E-DRAGON descriptor set was augmented with clogP and
topological polar surface area estimations calculated using the highly parameterized and
robustly trained fragment-based algorithm of the Molinspiration Property Calculation
Service (www.molinspiration.com).

Finally, compound dipole moment and polarizability were calculated at the quantum level
using density functional theory methods implemented in Gaussian 09 (G09)45 software
package available on Ohio Supercomputing Center clusters. Each compound structure was
evaluated using the three-step approach of Perpete, et al.46, 47 consisting of: i) a ground-state
geometry optimization with 3×10−4 a.u. residual mean square convergence criteria (default
OPT threshold); ii) confirmation of ground-state geometry with vibrational spectrum
determination (structure minima verified by real vibrational frequencies); iii) calculation of
α in a static (ω = 0) external electric field (default 1 a.u. in principal axes), at the optimized
ground-state geometry. All calculations were performed using hybrid density functional
B3LYP and the 6–311++G(d,p) basis set. Bulk solvent effects were implicitly modeled with
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the polarizable continuum model (G09 keywords SCRF=(Solvent=Methanol)).48

Polarizabilities are reported as the mean, <α>, or the average of the three polarizability
tensor quantities that correspond to x, y, and z components of parallel external field
principal axes:26

(3)

given in units of polarizability volume (Å3). All calculated descriptors were merged prior to
model generation.

4.3. Model generation
Genetic algorithm-PLR analysis was performed using the Virtual Computational Chemistry
Laboratory (VCCL), an online portal for computational chemistry tools available at
www.vcclab.org (last accessed 1 November 2011).49 Calibration analyses (i.e., training set
models) for Aβ and insulin molecular targets were performed using default parameters
(minimum residual variance of factors = 0.0010; number of latent t-variables ≤ 12).
Descriptors were identified as redundant (i.e., constant or flat) and deleted if ≥90% of the
subject compounds shared identical values, yielding 84 descriptors for the final genetic
algorithm fitting. PLR models were optimized on the basis of leave-one-out cross validation
(Q2

loo) as implemented in the VCCL.

MLR was performed using the open source statistical software R version 2.13.0, available at
www.r-project.org (last accessed 1 November 2011).50 Training set fits were generated
using the linear model lm function, and cross validated using the crossval function in the
bootstrap package. The descriptor correlation matrix was generated using the cor function in
the bootstrap package.

4.4. Model validation
Internal validation of MLR models was performed in R version 2.13.0.50 Correlations were
cross validated using bootstrap resampling51 as implemented in the crossval function of the
R bootstrap package, whereas variance inflation factors were calculated using the vif
function. Y-randomization52 was performed in R in two steps. First, new MLR models were
developed by randomly shuffling (250 shuffles) the 41 dependent variables (i.e., AC50
values for the training set) while keeping the independent variables (i.e., α, μ, clogP, and
RBF descriptor values) constant. Dependent variables were shuffled using the sample
function, whereas refitting to independent variables was performed using the lm function. In
the second step, which assessed potential bias in selection of independent variable sets,
randomly shuffled dependent variables were correlated with stepwise selected subsets of
four out of the original 84 descriptors identified through PLR screening. This was performed
using a custom-written R script that incorporated the sample function to shuffle dependent
variables and the regsubsets function (exhaustive search algorithm) in the leaps package to
fit each set of independent variables to the shuffled dependent variables. Both steps of y-
randomization were run for 250 iterations, with the original dependent variables being
independently shuffled with each iteration. The linear model resulting from each shuffle was
cross validated (Q2

boot) using the crossval function.

External validation was performed as described previously, where R0
2, R'02, k, and k'

correspond to the correlation coefficients and slopes of linear regressions constrained
through the origin.30
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4.5. Statistical methods
Differences between regression MLR coefficients were assessed by z-test:

(4)

where x1 ± Sx1 and x2 ± Sx2 are the pair of estimates ± standard error being compared, and z
is the 1-α point of the standard normal distribution.
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Fig. 1.
QSAR modeling workflow, in which chemical structure and affinity data (circles) were
integrated with calculated molecular descriptors (pentagons) and screened using PLR
methods (diamond). Top descriptors were then subjected to MLR to create the final QSAR
models (rectangle).
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Fig. 2.
Correlation plots for MLR models of ThT displacement from Aβ40 and insulinaggregates.
Each point represents observed vs. predicted log AC50 values for training and test sets of 41
and six compounds, respectively, whereas the lines represent linear regression of the data
points (solid lines, training set; dashed lines, test set). The quality of regressions is indicated
by R2 values.
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Fig. 3.
Comparison of Aβ and insulin MLR equation coefficients. The bars represent the absolute
value of coefficient magnitude ± standard error for Aβ40 and insulin molecular targets,
whereas the p value corresponds to z-test of null hypothesis between these two targets.
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Fig. 4.
Structural features influencing ThT displacement activity. The donor-Π-acceptor
organization generates a delocalized electron distribution and a permanent ground state
dipole oriented parallel to the long molecular axis.
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Fig. 5.
Reported binding modes for Pittsburgh Compound B (PIB, a neutral benzothiazole
derivative) on synthetic Aβ40 protofibrils53 as deduced by molecular dynamics
simulation.33 Aβ40 atoms are colored grey (carbon), blue (nitrogen), and red (oxygen),
whereas PIB atoms are colored orange (carbon), blue (nitrogen), and yellow (sulfur), and
overlaid with a transparent molecular surface area. Black arrows mark the points of contact
between ligand and protein. (A) Site A consists of a shallow channel flanked by Phe20 and
Val18 side chains whereas (B) Site B consists of a wide channel created by Gly33 flanked
by Ile31 and Met35. Site B supports deeper insertion of ligand so that it can interact with the
hydrogen-bond network of the cross-β sheet backbone through dispersion and induced-
dipole effects. These models show how side chain composition can influence depth and
width of channels dispersed along the surface of cross-β sheet aggregates. Images were
created using UCSF Chimera Alpha Version 1.5 (build 31329) software.
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Table 2

PLR models and statistics for Aβ and insulin.

PLR statistic Aβ model insulin model

t variables 10 4

x variables 28 22

Y correlation 0.96 0.89

X correlation 0.99 0.96

RMSEloo 0.48 0.51

Q 2 loo 0.77 0.74
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Table 3

Top-ranked PLR descriptors for Aβ40 and insulin pAC50 (+, direct correlation; −, inverse correlation)

Rank Aβ40 descriptors Logical block Insulin descriptors Logical block

1 (−) average 5χv Topological (+) hydrophilic factor (Hy) Chemical

2 (+) polarizability (α) Quantum (+) topological electronic factor (TE1) Topological

3 (–) clogP Chemical (+) average 4χv Topological

4 (+) RBF Constitutional (+) charge polarization factor (Qmean) Topological
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