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Abstract
RTKs, the second largest family of membrane receptors, exert control over cell proliferation,
differentiation and migration. In recent years, our understanding of RTK structure and activation
in health and disease has skyrocketed. Here we describe experimental approaches used to
interrogate RTKs, and we review the quantitative biophysical frameworks and structural
considerations that shape our understanding of RTK function. We discuss current knowledge
about RTK interactions, focusing on the role of different domains in RTK homodimerization, and
on the importance and challenges in RTK heterodimerization studies. We also review our
understanding of pathogenic RTK mutations, and the underlying physical-chemical causes for the
pathologies.

Introduction
RTKs, the second largest family of membrane receptors, transduce biochemical signals upon
lateral dimerization in the membrane plane (1–3). RTKs are single-pass membrane proteins,
shown schematically in Figure 1. The N-terminal extracellular (EC) domains, usually
several hundred amino acids long, vary between families and contain characteristic arrays of
structural motifs. The single transmembrane TM domain is followed by a 40 to 80 amino
acid juxtamembrane (JM) region and a ~250 amino acid kinase domain, homologous to
soluble tyrosine kinases (1;4;5).

RTK dimerization controls and ensures the close contact of the two kinase domains in the
dimer. Upon dimerization each kinase domain catalyzes the phosphorylation of critical
tyrosine residues in the activation loop of the neighboring kinase (6). This is followed by the
phosphorylation of additional tyrosine residues in the juxtamembrane and catalytic domains,
which serve as binding sites for docking proteins. Upon recruitment and/or phosphorylation,
these docking proteins initiate intracellular signaling cascades that control vital cellular
processes (7–9).

RTKs, with a single exception (ErbB2), are ligand-binding proteins. The ligands play
intricate roles in the activation process (10), but are not always essential for RTK
dimerization and activation. Their contribution to RTK activation is believed to be both
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thermodynamic (stabilizing RTK dimers) and structural (inducing RTK structural changes
which enhance RTK activity).

There are two requirements for successful activation of an RTK. The first requirement is the
close approach of the two kinase domains in the dimer. This is accomplished via
dimerization. The dimerization efficiency, and therefore the time the kinase domains spend
in close proximity of each other, is controlled by the dimerization constant. Dimerization is
modulated by ligand binding, and thus the proximity of the kinase domains is also regulated
by the ligand concentration and the ligand binding constant. The second requirement for
successful activation of an RTK is that the structure of the kinase domain dimer is suited for
the transfer of a PO4 group from a bound ATP molecule to a particular tyrosine (9;11). The
phosphorylation-competent dimer structure is established via specific receptor-receptor and
receptor-ligand interactions. Structural constraints in the extracellular and TM domains,
imposed upon dimerization and ligand binding, propagate into the kinase domain and
control RTK phosphorylation and activity.

Physical - chemical models of RTK activation
We and others have proposed that RTK activation can be described with physical-chemical
models which account for dimerization, ligand binding and phosphorylation (12–16). Such
models have been shown to give an adequate description of RTK phosphorylation data,
despite their simplicity. Usually the models do not take explicitly into account all
interactions that regulate RTK activation in cellular membranes. Rather, all these events
contribute to apparent constants describing different steps in RTK activation. Here we
provide a brief overview of such models.

A. Dimerization
Ligand-independent lateral dimerization, i. e., the lateral association of two RTK monomers
into an unliganded dimer, is the first critical step in RTK activation. It is controlled by the
dimerization constant K1 and is given by the following reaction scheme:

(1)

The dimerization constant K1 is defined as K1 = [d]/[M]2, with [M] and [d] being the
monomer and dimer concentrations, respectively. The total receptor concentration is [T] =
2[d] + [M]. The free energy of dimerization is calculated as ΔG = −RT ln K1.

Unliganded RTK dimers can be phosphorylated or not. If the unliganded dimers are
phosphorylated, equation (1) accounts for the so-called “basal or constitutive activation”. If
the unliganded RTK dimers are not phosphorylated (inactive), equation (1) accounts for the
so-called “pre-dimerization”. These two terms are vaguely defined in biology, but they have
the same physical-chemical basis, i.e. equation (1).

B. Ligand binding
The next step in RTK activation is ligand binding, which is believed to stabilize RTK dimers
and likely alter their structure (discussed below). The processes of dimerization and ligand
binding are coupled, and can be described by the following reaction scheme:
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(2)

where D denotes the liganded dimer (see also Figure 2).

For the sake of simplicity, sometimes it is assumed that the ligand binds preferentially to the
unliganded dimers, rather than the monomers (14). In this case, scheme (2) is reduced to the
following two coupled reactions:

(3)

In scheme (3), the dimerization and the ligand binding constants are defined as K1=[d]/[M]2

and KD=[D]/[d][L]2, respectively. The dimerization reaction is driven, in part, by ligand
binding: Ligand binding depletes the unliganded dimers by converting them to liganded
dimers, thus promoting the dimerization of the monomers.

All three schemes, (1) through (3), as well as more complex models accounting for negative
cooperativity in ligand binding, have been used in the literature to rationalize experimental
data and to gain insights into how dimerization and ligand binding regulate RTK activation
(12–16). While these models are simple and do not capture the full complexity of RTK
signaling, they are very useful in comparative studies, such as studies of the effects of
sequence variations and pathogenic mutations on different steps in RTK activation, as
discussed below.

C. Phosphorylation
In the dimer, the two receptors autophosphorylate each other, with each kinase domain
acting as an enzyme which facilitates the transfer of a phosphate group to the neighboring
kinase. One way to account for the efficiency of phosphorylation is to define receptor
phosphorylation probabilities, Φd and ΦD, within the unliganded and liganded dimers,
respectively (17). The concentration of phosphorylated receptors is then calculated
according to:

(4)

Note that Φd = 0 corresponds to inactive unliganded dimers and describes predimerization,
while Φd ≠ 0 describes active unliganded dimers and accounts for basal or constitutive
activation.

Experimental characterization of RTKs
A. Measurements of RTK dimerization

To characterize RTK dimerization in the context of equation (1), one needs to measure
directly two of the following three parameters over a range of RTK concentrations: (i)
concentrations of RTK dimers, (ii) concentrations of RTK monomers, and (iii) total RTK
concentrations. Quantitative measurements of these concentrations, and thus calculations of
dimerization constants for full-length RTKs is a challenge. However, some widely used
biochemical methods allow us to estimate and compare dimerization propensities.
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One such method is chemical cross-linking (18–21). In this method the cells are incubated
with a cross-linker, lysed, and analyzed using Western blotting. Since only RTKs in very
close proximity can be cross-linked, the presence of cross-linked bands on Western blots
suggests that dimers exist on the cell surface. Furthermore, higher cross-linking correlates
with higher dimerization. While the method is useful and well established, it should be kept
in mind that the cross-linker is non-specific, such that it cross-links all proteins in close
proximity. As a result, gels of cross-linked proteins are usually smeared, and very difficult to
accurately quantify. Furthermore, a limitation of this experimental approach is that the
cross-linking propensities depend not only on close proximity, but also on structure. Thus, a
structural change can alter the probability for RTK cross-linking, despite the fact that RTK
dimerization is not affected.

Another method used in the literature for assessment of RTK dimerization is
immunoprecipitation, followed by SDS-PAGE (22). Disulfide-linked RTK dimers have been
observed using this technique under oxidizing conditions without cross-linking. In this case,
however, the assay reports on interactions occurring within the immunoprecipitates. These
might be different from interactions in the native plasma membrane, which imposes
structural constraints on RTK dimers. In particular, the presence of unpaired cysteines in the
receptors may lead to the formation of non-native disulfide bonds in the immunoprecipitate
and give a false positive for dimer formation.

A powerful method used to study dimerization is Förster resonance energy transfer (FRET)
(23–27). FRET involves the non-radiative transfer from a fluorescent donor to a fluorescent
acceptor (28–32), and is manifested in a decrease in donor fluorescence and an increase in
acceptor fluorescence (30–32) upon dimerization. The efficiency of energy transfer E is
inversely proportional to the sixth power of the distance, r, between the donor and acceptor.
The transfer efficiency E is a function of r and Ro, the characteristic Förster radius for the
donor and acceptor pair:

(5)

Typical donor/acceptor pairs, such as the widely used fluorescent proteins, have Ro of 50–60
Å. Thus, if the two fluorophores are closer than 50 Å in a dimer, FRET will occur.

FRET can be measured in the native cellular environment. In these experiments the genes
encoding the RTKs are modified by attaching sequences encoding fluorescent proteins,
usually at RTK’s C-termini. While most in-cell FRET experiments measure the sensitized
acceptor emission, sophisticated FRET techniques have been developed to assess donor
quenching (33–38). When measuring interactions in membranes using FRET, however,
special care needs to be exercised since FRET occurs even if there are no specific
interactions, due to random co-localization of donors and acceptors (39–42). Furthermore,
challenges in data interpretation arise because the cellular environment is highly
heterogeneous, and supramolecular organizations in clusters/domains introduce additional
heterogeneities affecting the measured FRET efficiency and complicating data analysis.

To overcome the above challenges, we have established plasma membrane-derived vesicles
(43–48) as a model system for studies of RTK interactions in mammalian membranes via
FRET (Figure 3). Plasma membrane-derived vesicles are produced using either a
mechanical method, by breaking the plasma membrane, or using chemical methods, by
disrupting the cytoskeleton in a direct or indirect (apoptotic) way (49–52). Plasma
membrane-derived vesicles are a simplified model of the cell membrane because there is no
cytoskeleton and no TM potential (43). Yet, plasma membrane-derived vesicles possess
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complex features that are characteristic of native cellular membranes (43–48). Their lipid
composition is similar to the one in the native membrane (43), and they maintain the plasma
membrane asymmetry (44–46). The membranes of the vesicles contain various membrane
proteins and mimic the natural crowded membrane environment.

We have demonstrated that quantitative measurements of RTK dimerization in single
vesicles are feasible with the QI-FRET method (53). The QI-FRET method, discussed in
(53–55), yields the unknown donor and acceptor concentrations, and the FRET efficiency
(i.e. the three parameters that are sufficient to calculate free energies of dimerization) (38).
Because the experiments utilize transient transfection, expression levels vary from cell to
cell, and vesicles with a wide range of receptor concentrations (i.e., number of receptors per
unit membrane area) can be produced in a single transfection experiment. Thus, a wide
protein concentration range is sampled, and the dimerization energetics are measured for
different receptor concentrations, to obtain dimerization curves.

Using this methodology, we have measured the energetics of FGFR3 TM domain
dimerization in the plasma membrane of CHO cells, as well as the dimerization energetics of
a construct containing both FGFR3 EC and TM domains (55). The two dimerization free
energies were determined as ΔG(TM) = −RTlnKD(TM) = −4.2 ± 0.2 kcal/mole and ΔG(EC
+TM) = −3.3 ± 0.1 kcal/mole, respectively.

B. Characterization of ligand binding
The binding of ligands to full-length receptors on the surface of living cells is usually
measured by quantifying bound radiolabeled or fluorescently-labeled ligands. Binding of
ligands to isolated RTK extracellular domains can be characterized using isothermal titration
calorimetry, ultracentrifugation, and surface plasmon resonance (SPR), as described below.

The most popular method to probe interactions between ligands and cell surface receptors
involves quantification of bound radiolabeled ligands. In these experiments, cells are
incubated with radiolabled ligands either on ice or at ambient temperature (to minimize
receptor cell uptake). The free ligands are removed, a process which usually requires
extensive washing with concentrated salt solutions. Then the cells are lysed and the
radioactivity of the receptor-bound ligands is measured. Binding curves can be generated by
performing the measurements at different concentrations of ligands. This method has been
used to investigate EGF binding affinity to EGFR (56;57), and the interactions between
FGF1 and FGF receptors (58;59). Furthermore, the bound ligands can be crosslinked to the
receptors, such that the ligand-receptor complexes remain intact when the cell lysates are
run on SDS-PAGE gels (59).

Fluorescence-based methods are an alternative to the traditional radiolabeling approach
since the fluorescence intensity of the bound ligand is easily measured in a standard
spectrofluorometer (60). The receptor–ligand interactions on the cell surface can be further
investigated using single molecule fluorescence techniques. These techniques have allowed
the visualization of single bound EGF molecules, and have provided insight into the binding
kinetics (61;62). Fluorescence correlation spectroscopy (FCS) with single-molecule
sensitivity is also used to quantitatively analyze ligand-receptor interaction on surface of
living cell. This technique has yielded the dissociation constant for EGF-EGFR interactions,
via the analysis of fluorescence intensity fluctuations in a small confocal volume (63).

Ligand binding to the isolated RTK extracellular domains has also been characterized. For
instance, isothermal titration calorimetry, ultracentrifugation and molecular modeling (64)
has been used to characterize the energetics and kinetics of the interactions between FGF1,
FGFR1 extracellular domain, and heparan sulfate in solution. Alternatively, the ligands or
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the extracellular domains can be attached to a surface, and the interactions can be analyzed
using SPR. Such studies have provided valuable insights about the specificity in FGF-FGFR
interactions (65–67).

C. RTK phosphorylation measurements
Methods to measure RTK phosphorylation are well established. Phosphorylation levels are
monitored by either (1) in-vitro kinase assays, (2) quantification of bound antibodies that
specifically recognize phosphorylated tyrosines, or (3) mass spectrometry identifying
attached phosphate groups.

In vitro kinase assays often utilize radioactive phosphorous. In these assays cell lysates
containing RTKs of interest are incubated with kinase buffer with ATP containing
radiolabeled phosphates. The radioactivity of the receptors is quantified upon the transfer of
the radioactive phosphate groups to the kinase domains (68). Alternatively, RTK
phosphorylation can be quantified without the use of radioactivity by coupling it with the
oxidation of NADH, and then following NADH oxidation using spectrophotometric assays
(69).

RTK phosphorylation can be measured with the use of antibodies that recognize
phosphorylated tyrosines. The amounts of such bound antibodies can be determined using
traditional Western blots, ELISA, or in-cell Western blot techniques. These experiments
usually involve secondary antibodies which interact with the primary ones, and are
conjugated to reporter moieties, detectable using either chemiluminescence or fluorescence.
Two different types of primary antibodies can be used: (1) antibodies recognizing all
phospho-tyrosines, such as the 4G10 anti-phosphotyrosine antibody, capable of detecting
over 30 tyrosine kinases, including ErbB2 (70), PDGFR (71), and FGFR3 (72), and (2)
antibodies generated against specific phosphorylated sites, recognizing a particular
phosphotyrosine together with the sequence around it (14;15). The latter are useful because
RTK kinase domains normally contain more than one tyrosine residue, and the
phosphorylation of the different tyrosines occurs sequentially (73;74).

In recent years, mass-spectrometry has become popular in studies of RTK phosphorylation
(75–77), and we foresee that its usage will continue to increase. In this method, the
phosphorylated RTKs are purified via immunoprecipitation and are digested with trypsin.
The products of digestion (peptides) are analyzed by either Matrix-associated laser
desorption ionisation time-of-flight Mass Spectrometry (MALDI-TOF MS) or Electrospray
Ionization Mass Spectrometry (ESI-MS) (78). By comparing the masses of the peptides with
a “theoretical digest”, the presence of phosphate groups can be detected. This method has
been used to identify the phosphorylation sites of PDGFR (79) and EGFR (80).

Structural requirements for RTK activation
As discussed above, RTK activation requires precise orientation and positioning of the
catalytic domains with respect to each other, such that the phosphate group can be
successfully transferred from ATP to the neighboring receptor. For EGFR, this entails the
formation of an asymmetric kinase dimer in which the C-lobe of one kinase contacts the N-
lobe of the second kinase and positions the activation loop of the second kinase to catalyze
phosphate group transfer (9). The existence of asymmetric dimers have been proposed for
FGF receptors, too (81). It is not yet clear, however, whether such asymmetric dimers form
for all RTKs, and whether the two kinases alternate over time and act both as catalysts and
substrates.

He and Hristova Page 6

Biochim Biophys Acta. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The order of the phosphorylation of the different tyrosines is also controlled by the structure
of the kinase domain. For instance, the order of tyrosine phosphorylation in FGFR1 kinase
domain is strict, and kinetically controlled. It is limited by the rate of transfer of the
phosphate group from ATP to the tyrosines (73), and strongly influenced by the kinase
tertiary structure (73;74).

The structure and orientation of the kinase domains, on the other hand, are controlled by
specific interactions between the TM domains, as well as interactions between the EC
domains and the ligands, as discussed below.

Structural constraints imposed by the TM domain dimers
The TM domain structure has been shown to control the orientation of the kinase domains in
the dimer, such that successful phosphorylation can occur (11). In particular, rotation of the
dimer interface has been shown to induce periodic oscillations in kinase activity (11).
Therefore, the structure of the TM domain dimer is an important determinant in RTK signal
transduction. About 20 years ago, a five-residue sequence motif (the so-called P0–P4 motif)
was proposed to mediate dimerization of RTK TM domains (82). The characteristics of the
P0-P4 motif are: P0 exhibits a small side chain, such as Gly, Ala, Ser, Thr, or Pro; P3
requires an aliphatic side chain, i.e. Ala, Val, Leu, or Ile; and P4 must be a Gly or Ala
residue. The P0-P4 motif is similar to the GxxxG motif (83;84), shown to be important for
Glycophorin A (GpA) dimerization. Later, the TM sequences of ErbB1, ErbB2, and ErbB4
were noticed to have at least two such GxxxG-like motifs (85), and the different GxxxG-like
motifs were proposed to mediate either homo or hetero-dimerization (90;91). Alternatively,
based on calculations of dimerization free energies of alternate ErbB2 TM domain
structures, it was proposed that some RTK TM domains may form two alternative
homodimer structures utilizing different GxxxG-like motifs, a phosphorylation-competent
structure and an inactive structure (17;86;87).

The solved crystal structure of the ErbB2 TM dimer provided demonstration that
dimerization occurs via the N terminal GxxxG dimerization motif, while the C terminal
motif does not participate in the dimer interface (88). A similar GxxxG-like motif is
involved in the dimerization of a different RTK, EphA1 (89). Yet, the GxxxG motif is not
required for the dimerization of all RTKs. For instance, the dimer interfaces of ErbB3,
EphA2, PDGFR and FGFR3 TM domains do not involve GxxxG-like motifs, despite the
fact that their sequences contain several such motifs (92–96).

Structures of ligand-bound extracellular domain dimers
The solved crystal structures of isolated RTK extracellular domains reveal tight contacts
between the two EC domains, and between the EC domains and ligands. The contacts
between EGFR EC domains are mediated via a “dimerization arm”, exposed only upon
ligand binding (97–99). A recent crystal structure of an EGFR drosophila variant reveals
very strong interactions between the two EC domains when only one ligand is bound to
dimer (100).

In the FGF2 structure found to FGFR1, there are many contacts between each ligand and the
two receptors, as well as direct receptor-receptor interactions (101–103). The structure
further reveals a positively-charged lysine-rich “canyon” where heparin oligosaccharides
bind, interacting with both the extracellular domains and the ligands, further stabilizing the
dimer. Growth factors for families other than EGFRs and FGFRs, (such as KIT and
VEGFR), are covalently linked homodimers that bring the extracellular domains together,
which promotes additional interactions between the extracellular domains (104;105).

He and Hristova Page 7

Biochim Biophys Acta. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Structural changes mediated by ligands
The ligands of some receptors are believed to not only introduce a structural change in the
extracellular domain, but also affect the conformation of the kinase domain, thus increasing
RTK activation. For instance, the EGFR unliganded dimer is believed to be inactive because
the asymmetric kinase dimer, required for activity (9), cannot form in the absence of ligand.
Ligand binding likely induces a rotation in the EGFR dimer and ensures correct positioning
of the two kinase domains for phosphorylation (106). The dimeric ligand of KIT, believed to
stabilize the dimer by cross-linking the two monomers (104), also induces a structural
change which enables receptor-receptor interactions. These interactions are weak as
compared to ligand-mediated dimer stabilization and thus they do not drive dimerization by
themselves. However, these interactions define the relative orientations of the two receptors,
which likely helps to position the kinase domains in the correct orientation for productive
phosphorylation.

RTK involvement in human disease
A. Pathogenic mutations in RTKs

Since RTKs play a key role in the regulation of cellular processes that are critical for cell
growth, differentiation, and motility, defects in their activation lead to human pathologies.
There are many pathogenic single amino acid mutations in RTKs that are usually (but not
always) gain-of-function mutations. Because RTK activity is determined by RTK
phosphorylation, studies of pathogenic mutations invariably involve experiments which
assess the effect of these mutations on phosphorylation. The simplest way to address this
question is to compare wild-type and mutant expression and phosphorylation, side-by-side
on Western blots. If the expression of the wild-type and the mutant are the same, then the
phosphorylation levels can be directly compared. Such direct comparisons have shed light
on the molecular basis behind many pathologies (68;107–109).

Direct comparisons of phosphorylation on Western blots have also shed light on how
different mutations in a particular RTK can give rise to different phenotypes. One such study
compared the phosphorylation of two FGFR3 mutants, linked to achondroplasia (ACH) and
thanatophoric dysplasia (TD) (109). ACH, the most common form of human
dwarfism(110;111), is a relatively mild phenotype characterized by short stature (112).

On the other hand, TD is much more severe and always lethal in the neonatal period,
characterized by severe shortening of the limbs, macrocephaly, and a narrow thorax with
small ribs (112). The phosphorylation of the R248C and K650E mutants, associated with
TD, has been shown to be higher than the phosphorylation of the G380R mutant linked to
ACH (109). Thus, there is a link between higher phosphorylation and more severe
phenotypes.

The effect of pathogenic mutations may be diverse, and may include processing defects,
such as impeded trafficking and defective downregulation (111;113;114). In many cases, the
expression of the mutant is different from the expression of the wild-type in cell lines that
are widely used in biomedical research. If the expressions are different, side-by-side
comparison of phosphorylation on Western blots is not very informative. To be able to carry
out such a comparison, we need to obtain an absolute measure of the phosphorylation at a
particular expression level. We have shown that measurements of “phosphorylated
fractions” as a function of expression levels can serve this purpose (15;16). In these
experiments we treat RTKs with their ligands and we measure phosphorylation over a very
wide range of ligand concentrations, including very high ligand concentrations (14): At high
ligand concentration all receptors that are exposed to ligand and capable of binding ligand
are driven to their liganded dimeric state. At these levels, phosphorylation is saturated and is
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not further increased when more ligand is added, providing a measure of the maximum
possible phosphorylation (14;16). Phosphorylated fractions are then determined as the ratio
of measured phosphorylation at a particular ligand concentration over the maximum possible
phosphorylation (14;16), and are independent of the specific conditions used in the Western
blot experiments. Using this technique, we have compared the phosphorylation of wild-type
FGFR3 and the pathogenic A391E mutant linked to Crouzon syndrome in the absence of
ligand, demonstrating an increase in FGFR3 phosphorylation due to the A391E mutation,
despite the fact that the expression of the wild-type and the mutant were different (15).

B. Physical-chemical causes for RTK-linked pathologies
Altered dimerization—Some pathogenic mutations stabilize RTK dimers, by promoting
more intimate contacts between the two mutant receptors in the dimer (see Table 1 for
examples). As a result, the dimerization propensity (i.e. K1 in schemes (1) through (3))
increases. The distribution between inactive monomers and active dimers shifts towards the
active dimeric state, increasing the over-all RTK activity.

To test for enhanced dimerization due to pathogenic mutations, one needs to use a direct
dimerization assay such as the one shown in Figure 3. In our lab we have used this assay to
investigate the effect of two pathogenic FGFR3 mutations, A391E and G380R. While the
A391E mutation linked to Crouzon syndrome increases FGFR3 dimerization, the G380R
mutation linked to ACH does not (paper in preparation). This behavior correlates with the
mutation-induced stabilization of the isolated FGFR3 TM domain dimers in lipid bilayers
(95;115).

Receptor overactivation due to increased dimerization may occur even for wild-type
receptors if the receptor is overexpressed. This mechanism can be understood using equation
(1). As the total concentration of receptors increases, the equilibrium is shifted towards the
active dimeric state.

Altered ligand binding—There are pathogenic RTK mutations that increase ligand
binding (KM or KD in schemes (2) and (3)). Increased ligand binding leads to dimer
overstabilization and enhanced phosphorylation. Techniques that assess ligand binding
strengths are well established (and reviewed above), and can be used to compare the binding
of ligands to wild-type and mutant receptors. Such direct binding measurements, for
example, have demonstrated aberrant ligand binding to FGFR mutants implicated in human
growth disorders (Table 1).

Structural changes in the kinase domains—Some pathogenic mutations induce
structural changes in RTK dimers (Table 1), which affect the receptor phosphorylation
probabilities, Φd and ΦD in equation (4). In this case the number of dimers is not increased,
but the mutant dimers are more active than the wild-type dimers, leading to an over-all
increase in activity. Presumably, this occurs because it is easier to phosphorylate critical
tyrosines in the mutant dimers, as compared to the wild-type dimers (116). Such structural
changes may originate outside the kinase domain and propagate throughout the whole
structure (106).

High resolution structures of full-length RTKs are not available yet, due to experimental
challenges in the expression of full-length RTKs in large quantities (117). Since the
determination of full-length RTK dimer structures is challenging, studies of the effect of
pathogenic mutations on dimerization, ligand binding, and phosphorylation may help us
deduce possible structural changes in mutant RTK dimers. For example, the G380R
mutation increases FGFR3 phosphorylation, but does not increase FGFR3 cross-linking or
ligand binding (14). We have interpreted these findings as an indication for a structural
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change. In support of this view, a molecular model of the FGFR3 TM dimer structure
suggests that the mutation induces a rotation in the TM dimer interface (14). On the other
hand, the changes in the phosphorylation and dimerization propensities due to the A391E
mutation linked to Crouzon syndrome are very similar, suggesting that the mutation likely
affects FGFR3 dimerization propensity, but does not induce a significant structural change
(15;95).

Multiple effects—Some mutations may affect multiple steps in the RTK activation
process. An approach to understand the effect of pathogenic mutations on dimerization,
ligand binding, or receptor phosphorylation probabilities is to model RTK activation using
physical-chemical models such as the ones given by equations (1) through (4). By fitting the
models to experimental data, we can determine if a mutation affects dimerization (i.e K1 or
K2), ligand binding, (KL or KM) or phosphorylation (Φd or ΦD). In one example, Pike and
colleagues measured EGF binding to EGFR while varying both the receptor and ligand
concentrations (12;13). By fitting a model similar to the one given by equation (2) to their
data, they were able to determine that an engineered mutation in the extracellular domain of
EGFR, Y246D, decreases ligand binding, while an L680N mutation in the kinase domain of
EGFR affects both EGFR dimerization and ligand binding. While quantitative
measurements of RTK phosphorylation, dimerization, and ligand binding may be very
tedious, their pay-off could be significant: The understanding of how a mutation affects
RTK activity is the first step towards the development of new therapeutic strategies with
high efficiencies and low toxicities.

Thermodynamics of RTK dimerization
In this last section, we overview recent findings that pertain to the thermodynamics of RTK
dimerization as a regulator of RTK activity.

A. Contributions of RTK domains to RTK dimerization thermodynamics
Transmembrane (TM) domains—Biophysical studies of the isolated RTK TM domains
have provided a direct assessment of the contribution of RTK TM domains to RTK
dimerization energetics. All isolated RTK TM domains have been shown to dimerize in
bacterial membranes, with the dimerization strength varying between families and within the
families (118). Quantitative studies of dimerization in lipid vesicles have shown that the
contribution of FGFR3, ErbB1 and EphA TM domains to dimerization is about −3 kcal/
mole (119–123). FGFR3 TM domains has been further shown to drive ligand-independent
dimerization in plasma membrane-derived vesicles in the absence of ligand in the presence
of the EC domain (54). As a result, sequence changes in RTK TM domains affect RTK
dimerization at zero ligand and at low ligand concentrations (124;125). At high ligand
concentrations, however, the contribution of the TM domains to dimerization is
overshadowed by the large contributions of the EC domains and ligands. Thus, TM domain
sequence alterations do not affect RTK dimerization and activation significantly at high
ligand concentrations (124;126).

Extracellular domains and ligands—Based on the solved dimeric structures of isolated
extracellular domains bound to ligand, it can be expected that ligand binding stabilizes RTK
dimers. Indeed, in all such structures, despite a great deal of structural diversity, we see tight
contacts between the two EC domains in the dimer and between the EC domains and ligands
(discussed above). However, this view was questioned recently for EGFR in a study of
EGFR diffusion, as ligand binding per se did not appear to stabilize EGFR dimers (127).

The crystal structure of the EC domain dimer of a drosophila EGFR variant shows very
intimate contacts between the two EC domains when only one ligand is bound (100). The
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comparison of this structure to the symmetric human EGFR structure in the presence of two
bound ligands (97;128) suggests that the binding of the first ligand is strongly stabilizing,
while the second ligand binding event decreases dimer stability. This new finding suggests
that the mechanism of ligand-induced RTK dimer stabilization is unexpectedly complex.

In the absence of ligand, the EC domains have been shown to inhibit dimerization. The
contribution of FGFR3 extracellular domain to dimerization has been demonstrated to be
inhibitory in plasma membrane derived vesicles, and its magnitude has been measured as
ΔΔG = 0.9 ± 0.2 kcal/mole (55). Thus, the EC domains play a dual thermodynamic role in
RTK dimerization, inhibiting dimerization in the absence of ligand and stabilizing the
dimers in the presence of ligand.

Catalytic domains—The cross-phosphorylation of the kinase domains implies the
occurrence of contacts between them (7–9). These contacts are likely be stabilizing. Yet, the
contribution of the kinase domains to RTK dimerization energetics has not been measured
experimentally thus far. It is possible that this contribution depends on the phosphorylation
state. The JM domain, a 40 to 80 amino acid-long sequence between the TM domain and the
catalytic domain may be further contributing to the interactions, by stabilizing the active
conformation of the kinase domain, and mediating direct receptor-receptor contacts
(129;130).

B. RTK heterodimerization
Heterodimerization between RTKs is a means of signal amplification, as well as
diversification (131). RTK heterodimers have been shown to enhance receptor activation
and downsteam signaling, as compared to homodimers (131–133). For instance, the ErbB2/
ErbB3 heterodimer is believed to be the most biologically active and the most pro-
tumorigenic of all ErbB homo and heterodimers (134;135). Multiple studies, focusing
primarily on the ErbB family of receptors, have demonstrated the importance of
heterodimerization in normal function and in disease (136–140). For example, ErbB1/
ErbB2, ErbB1/ErbB4, and ErbB2/ErbB4 heterodimers have been shown to play a role in cell
transformation. Furthermore, ErbB3 is overexpressed in many tumors that overexpress
ErbB2, including breast, bladder, and melanomas (131;140). Tumors that overexpress
ErbB2 also exhibit elevated ErbB3 phosphorylation levels (134). Yet, our understanding of
RTK heterodimerization is only rudimentary, in part due to a paucity of methods that
provide quantitative information about RTK heterodimerization. Thus far,
heterodimerization between the isolated ErbB TM domains has been studied in detergents
using FRET (141) and in bacterial membranes using the genetic assay GALLEX (91). These
studies have suggested that ErbB TM domains form both homodimers and heterodimers
with various stabilities.

Germ-line mutations in FGFR receptors cause heterozygous disorders of bone development
(112;142;143), as the homozygous conditions are lethal. Thus both wild-type and mutant
receptors are co-expressed in cells, and questions arise if wild-type/mutant heterodimers
form and what their activity is. The interpretation of heterodimerization studies, however, is
very challenging because three different dimeric species usually exist: (1) wild-type
homodimers, (2) mutant homodimers, and (3) wild-type/mutant heterodimers. These dimers
are indistinguishable in many biochemical experiments, as wild-type and mutants are
reactive to the same antibodies. One way to characterize heterodimerization is to use FRET,
with the wild-type labeled with a donor and the mutant with an acceptor (or vice versa). In
this case, the FRET efficiency can be measured easily. However, the heterodimerization
propensities are challenging to quantify because RTKs also form homodimers. Figure 4A
illustrates the challenge in such measurements, arising due to coupling between the homo
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and heterodimerization equilibria. The association constant of heterodimerization, Kxy,
depends on the monomer concentrations of the two receptors, [X] and [Y]. The same
monomer concentrations, however, appear in the equations describing the homodimerization
constants Kx and Ky. Thus, homodimer stabilities need to be determined first, and then these
are used to determine heterodimer stabilities (141;144).

We have demonstrated the feasibility of this approach by determining the propensity for
heterodimer formation between the wild-type FGFR3 TM domain and its A391E mutant
(144), linked to Crouzon syndrome. The free energy of heterodimerization was determined
as −3.37 ± 0.25 kcal/mol (144). Comparison of this value to the homodimerization free
energies for the wild-type, −2.8 ± 0.2 kcal/mol, and the mutant, −4.1 ± 0.2 kcal/mol,
demonstrates that the heterodimer stability is the average of the two homodimer stabilities
(144).

Another approach to investigate the formation of RTK heterodimers is to design an RTK
construct that lacks the kinase domain, and then monitor the formation of heterodimers
between this construct and full length RTKs (Figure 4B). The full-length/truncated
heterodimers are inactive. They deplete the pool of full-length receptors capable of forming
homodimers and ultimately reduce the concentration of active homodimers. Thus, the
presence of the truncated receptors leads to a decrease in the phosphorylation of the full-
length receptors if the full-length and the truncated receptors dimerize. This decrease in
phosphorylation can be measured experimentally. Because the contributions of the kinase
and the juxtamembrane domains to RTK dimerization may be non-negligible and different
for different RTKs, this approach can only be used to assess the effect of pathogenic
mutations in the extracellular and TM domains on heterodimerization (124). This is because
the contributions of the intracellular domains are expected to be the same for the wild-type
and mutant homodimers and heterodimers, but not for heterodimers of different RTKs. This
approach has revealed that heterodimers of wild-type FGFR3 and the G380R mutant linked
to ACH form with lower probability than wild-type FGFR3 homodimers in cellular
membranes (124).

Final remark
As discussed in this review, quantitative biophysical frameworks, as well as sophisticated
biochemical and biophysical experimental methods are now being used to unravel the
physical-chemical principles behind RTK activation and their involvement in disease. The
recent progress in the field has been impressive, and we look forward to future studies that
will further deepen our understanding of RTK structure and function and pave the way for
the development of novel targeted therapies for RTK-linked pathologies.

Highlights

Physical-chemical models provide an adequate description of RTK activation.

Quantitative experimental methods shed new light on RTK function.

Methods are available to characterize RTK homo and heterodimerization.
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Figure 1.
A schematic of RTK architecture, showing the extracellular (EC) domain, the
transmembrane (TM) domain and the tyrosine kinase domain. The kinase domain is linked
to the TM domain via a 40–80 amino acid juxtamembrane (JM) domain. RTKs transduce
biochemical signals via lateral dimerization in the membrane. While the monomers (left) are
inactive, the dimers (right) are phosphorylated and active.
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Figure 2.
A schematic representation of the activation model given by equation (2). Two monomers
interact laterally to form dimers, both in the absence and presence of bound ligand
(dimerization constants K1 and K2, respectively). The ligand binds to both monomers
(association constant KM) and dimers (association constant KD). The receptors in the
unliganded and liganded dimeric states are phosphorylated, but the probabilities for
phosphorylation may be different (Φd for the unliganded state and ΦD for the liganded
state).
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Figure 3.
Overview of RTK dimerization measurements in plasma membrane-derived vesicles. Cells
are transfected with genes encoding RTKs fused to fluorescent proteins, and then
vesiculated using established protocols. The vesicles are imaged in a confocal microscope,
acquiring donor, acceptor and FRET images for each vesicle. The QI-FRET method,
described in (53–55), is used to determine the donor and acceptor concentration, and the
FRET efficiency in each vesicle. This information is then used to determine the
concentrations of monomers and dimers in each vesicle, the dimerization constant K1 and
the free energy of dimerization.
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Figure 4.
Characterization of RTK heterodimerization.
(A). FRET measurements of heterodimerization propensities between RTKs. One RTK is
labeled with a donor, and the second RTK is labeled with the acceptor, such that the FRET
efficiency can be measured. However, the calculation of the heterodimerization free energy
is not trivial because the homo and heterodimerization equilibria are coupled. A detailed
protocol for characterization of heterodimerization energetics using FRET is given in (144).
(B). An overview of an assay for RTK heterodimerization that does not require modification
with fluorescent proteins. A stable cell line expressing full-length RTKs (green) is
transiently transfected with a truncated version of a second RTK (blue) lacking the
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intracellular domain. The inactive full-length/truncated heterodimers deplete the pool of full-
length receptors capable of forming homodimers and reduce their phosphorylation. The
decrease in the phosphorylation of the full-length receptors is measured experimentally. This
decrease is a reporter of heterodimerization strength between the RTKs that are stably and
transiently expressed. Detailed description of the assay is given in (124).
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Table 1

A list of characterized pathogenic RTK mutations, and the underlying physical-chemical cause for the
pathologies. All RTKs are human, unless stated otherwise.

RTK Mutations Location Phenotype Cause for pathology

FGFR1 P252R Extracellular domain Pfeiffer syndrome Increased ligand binding (145).

FGFR1 Y372C Extracellular domain Osteoglophonic dysplasia Increased dimerization (103).

FGFR2 S252W, P253R Extracellular domain Apert syndrome Increased ligand binding (146).

FGFR2 D321A Extracellular domain Pfeiffer syndrome Increased ligand binding (146).

FGFR2 C278F, C342Y, Extracellular domain Crouzon syndrome and
Pfeiffer Syndrome

Increased dimerization (22).

FGFR2 W290G, S354C, Y340H
C342Y

Extracellular domain Crouzon syndrome Increased dimerization (22;147).

FGFR2 T341P Extracellular domain Pfeiffer syndrome Increased dimerization (22).

FGFR3 R248C, S249C Extracellular domain Thanatophoric dysplasia type I Increased dimerization (148).

FGFR3 P250R Extracellular domain Muenke syndrome Increased ligand binding (145).

FGFR3 G370C, S371C, Y373C Transmembrane domain Thanatophoric dysplasia type I Increased dimerization(148;149).

FGFR3 G375C Transmembrane domain Achondroplasia Increased dimerization (149).

FGFR3 G380R Transmembrane domain Achondroplasia Structural change (14).

FGFR3 A391E Transmembrane domain Crouzon syndrome with
acanthosis nigricans

Increased dimerization (15).

FGFR3 K650E Kinase domain Thanatophoric dysplasia type 2 Structural change in the kinase
domain (150).

FGFR4 Y367C Extracellular domain Breast cancer Increased dimerization (151).

EGFR EGFRvIII. 6-273 deletion Extracellular domain Glioblastoma Structural change (152).

EGFR T263P, A289V, P596L,
G598V

Extracellular domain Glioblastoma Increased dimerization (153).

EGFR G719S Kinase domain Non-small-cell lung carcinoma Structural change in the kinase
domain (154).

EGFR L858R Kinase domain Non-small-cell lung carcinoma Structural change in the kinase
domain and increased ligand
binding (9;155).

EGFR 752–759 deletion and
L861Q

Kinase domain Non-small-cell lung carcinoma Structural change in the kinase
domain (155).

EGFR 959–1030 deletion C-terminal tail Glioblastoma Structural change in the kinase
domain (156).

ErbB2 (Rat) V664E Transmembrane domain Oncogenic in rat Increased dimerization (16).

KIT 417–419 deletion and
T417I

Extracellular domain Acute myeloid leukemia
(AML)

Increased dimerization (157).

KIT V559D Juxtamembrane domain Gastrointestinal stromal tumor Structural change in the
juxtamembrane domain (158)
(159).

KIT V560G Juxtamembrane domain Mastocytosis Increased dimerization (158;160).

KIT (Murine) KΔ27.547–555 deletion
and D560K

Juxtamembrane domain Mastocytoma Increased dimerization (161).

KIT D816V Kinase domain Mastocytosis Structural change and increased
dimerization (under debate)
(162–164).
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RTK Mutations Location Phenotype Cause for pathology

PDGFRA V561D Juxtamembrane domain Gastrointestinal stromal tumors Increased dimerization (165).

PDGFRA D842V Kinase domain Gastrointestinal stromal tumors Increased dimerization (165).
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