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The quality of sensing and response to external stimuli constitutes
a basic element in the selective performance of living organisms.
Here we consider the response of Escherichia coli to chemical stim-
uli. For moderate amplitudes, the bacterial response to generic
profiles of sensed chemicals is reconstructed from its response
function to an impulse, which then controls the efficiency of bac-
terial motility. We introduce a method for measuring the impulse
response function based on coupling microfluidic experiments and
inference methods: The response function is inferred using Bayes-
ian methods from the observed trajectories of bacteria swimming
in microfluidically controlled chemical fields. The notable advan-
tages are that the method is based on the bacterial swimming
response, it is noninvasive, without any genetic and/or mechanical
preparation, and assays the behavior of the whole flagella bundle.
We exploit the inference method to measure responses to aspar-
tate and α-methylaspartate—measured previously by other meth-
ods—as well as glucose, leucine, and serine. The response to the
attractant glucose is shown to be biphasic and perfectly adapted,
as for aspartate. The response to the attractant serine is shown to
be biphasic yet imperfectly adapted, that is, the response function
has a nonzero (positive) integral. The adaptation of the response
to the repellent leucine is also imperfect, with the sign of the two
phases inverted with respect to serine. The diversity in the bacte-
rial population of the response function and its dependency upon
the background concentration are quantified.
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Bacterial chemotaxis constitutes a paradigmatic example of
a molecular signaling pathway, transducing information from

the external environment to the interior of the cell. The model
organism Escherichia coli senses the environmental concentra-
tion of chemicals to regulate the rotation of flagellar motors and
orient its motion (1). Counterclockwise (CCW) rotation of the
flagella corresponds to runs in the trajectories, whereas bacteria
tumble when the flagellar bundle is destabilized by one or several
flagella rotating clockwise (CW). The second messenger in the
chemotaxis pathway is the protein CheY: Its phosphorylated
form, CheYp, binds the flagellar motors and increases the
switching rate CCW→CW. Information on the chemical con-
centration sensed by the receptors is relayed via the kinase
CheA, whose activity is reduced by receptors’ binding. Other
components of the pathway include the scaffold protein CheW,
the phosphatase CheZ, the methyltransferase CheR, and the
methylesterase CheB, responsible for the feedback on the
receptors and adaptation (see ref. 2 for a recent review). Addi-
tional features of the pathway are the clustering of receptors at
the membrane (3), well-described by allosteric models (4–7), and
the mutual interaction among receptors known as “assistance
neighborhood” (8, 9).
An approach in the spirit of physiology, aimed at capturing the

net effect of the molecular mechanisms just recalled, hinges on
the input–output relationship (10). The idea is to assay the effect
of controlled stimuli on bacterial behavior. In particular, the
response to a short chemical impulse defines the so-called

chemotaxis response function (or impulse response). The clas-
sical experimental method to implement this idea is the tethering
assay (11): E. coli is pretreated chemically, genetically, or
mechanically to be attached by a single flagellum to a glass slide,
and the counterrotation of the bacterial body is visualized under
the microscope. An alternative is the attachment of a bead to
a flagellum to visualize its sense of rotation. The experimentally
measured quantity is the fraction of time spent by the flagellum
rotating CCW or CW (averaged over the population). Applica-
tions of the tethering assay include the classical measure of the
chemotaxis response to aspartate (10, 12) and more recent work
in refs. 13–15. An important result is that for a relatively wide
range of perturbations, linear response theory applies (12). In
other words, the response to complex stimuli is reconstructed
by convolution of the stimulus with the response to an impulse
and quasiequilibrium ideas are relevant (14). It is noteworthy
that the response function shape is invariant for different levels
of background concentrations (16–18). Previous points account
for the importance of the response function, which motivated
recent theoretical work on functional reasons for its observed
shape (19–21).
Although the tethering assay was instrumental in achieving

our present understanding of bacterial chemotaxis, it has limi-
tations. First, preparation of the bacteria is a relatively long and
stressful procedure, whose effect upon the response function is
not quite under control. Second, as shown in ref. 22, the dy-
namics of the flagellar bundle does not simply reflect the be-
havior of individual flagella. Third, mechanical load affects the
behavior of the bacterial flagellar switching (23). The previous
points are exemplified by the observation that the fraction of
CCW-to-CW rotation of a single flagellum (figure 1 in ref. 12)
deviates substantially from the ratios of running and tumbling
times in swimming bacteria (24). Finally, the strong noise in
tethering assays usually requires averages over tens of bacteria.
This raises the issue of single-bacterium behavior and the effect
of averaging, especially in view of the diversity of running times
(13, 25). It is of particular interest to identify those properties of
the response function that feature strong diversity and those
that do not.
The purpose of the present work is to introduce an alternative

experimental method to measure the chemotaxis response
function. The bottom line is the application of inference methods
to extract from the observed trajectories of swimming bacteria
the most likely response function. The notable advantage of the
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technique is its noninvasive nature: Bacteria are observed under
the microscope while swimming, no pretreatment is required,
and the bacterial behavior with the whole flagellar bundle is
assayed. Furthermore, averaging over different individuals is less
demanding than in tethering, and even single-bacterium responses
are shown to be accessible. Finally, the simplicity and flexibility of
the present approach make it an excellent tool to sample the
responses of other bacteria and/or to other stimuli.
Here we use the technique to measure the wild-type response

function to various chemoattractants (aspartate, α-methylas-
partate, glucose, and serine) and to the chemorepellent leucine.
As for aspartate and α-methylaspartate, the response function is
confirmed to be perfectly adapted, that is, the areas of the pos-
itive and the negative parts of the response are equal. Similar
properties are found here for glucose. Conversely, we found that
the response to serine does have positive and negative parts, yet
it is imperfectly adapted, the integral of the response function
being positive. For leucine, the signs in the response function are
reversed with respect to serine, and the response is not perfectly
adapted either. The substantial diversity in the decay time
(memory) of the response function is found to be comparable to
that of running times (25). Fluctuations of the integral of the
response function are much weaker, being almost absent in the
adapted cases and limited in the imperfectly adapted cases. We
also measured the dependency of the amplitude and the memory
of the response function on the background concentration.

Results
Bayesian Methods Allow Inferring the Bacterial Chemotaxis
Response. Controlled chemical gradients were generated by the
microfluidic setup shown in Fig. 1A. Hundreds of trajectories of
bacteria swimming in those fields were tracked and segmented,
as detailed in Materials and Methods, in running and tumbling
intervals (Fig. 1 B–D). The result is a series of experimental
points, recording, for each time interval on a given bacterial
trajectory, the state of the bacterium (tumbling/running) and the
corresponding concentration field. In a linear gradient, the latter
is proportional to the coordinate along the gradient direction.
The likelihood of the observed trajectories is calculated under
the assumption of moderate variations of the chemicals (which is
indeed the case here). Because the likelihood depends on the
impulse response function, inference methods (26) can be used
to extract it. In the experimental conditions we considered, three
parameters {λ, α0, α1} were sufficient to describe the impulse
response K(t) = e−λt (α0 − λα1t) (Materials and Methods). The
independence of the results with respect to the parameterization
is discussed below.
We first present the results for aspartate and α-methyl-

aspartate, where tethering results are available (12). We
extracted the response for individual trajectories whenever this
was possible and grouped different trajectories when individual
trajectories did not provide enough information for a reliable
inference. The response functions for an ensemble of individual
trajectories are shown in Fig. 2A. Responses are normalized to

Fig. 1. Bacterial tracks. (A) The chemotaxis setup was designed so as to obtain a stable concentration gradient of chemoattractant. The gradient is
established through diffusion between two large reservoirs to obtain a stable equilibrium. The setup is obtained by superposing a glass slide, a thin (200-μm
height) inox steel piece that separates the reservoirs by a channel 1-mm wide and 3-mm long, and a Plexiglas slide with filling holes. A photo of the resulting
setup is shown. (B) Results of a 100-s data acquisition. Fifty-one different tracks, marked by different colors, are displayed. The attractant gradient is directed
rightward. (C) From individual trajectories, the absolute instantaneous speed (red line, in μm/s) and the angular variation (green curve, in degrees per frame,
vertically shifted by −80°/s for viewing purposes) are extracted. From this information, tumble phases are detected by threshold on both speed and turning
angles, as described in Materials and Methods (blue line, arbitrary units, positive for tumbles, negative for runs). (D) Twenty seconds of a recorded trajectory
are shown. Tumble phases are marked by filled red circles.
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appreciate the diversity of the memory time 1/λ over the indi-
viduals in the bacterial population. Fig. 2B presents some of the
same responses without normalization, to highlight the diversity
of the response amplitude. Fig. 2C shows another set of nor-
malized responses where groups of trajectories had to be pooled.
Note that, even though the inference procedure is nonlinear
upon addition of trajectories, the resulting curves have proper-
ties similar to those of typical response functions inferred from
single trajectories. Fig. 2D shows the agreement between the
result of tethering assays (12) and the curve computed (Materials
and Methods) using a typical response function obtained by our
inference procedure.
Values of the memory center around λ= 1.6 s−1, which, due to

the linear term in the polynomial parameterization for K(t),
correspond to the negative lobe decaying to zero around 4 s.
Whereas the statistical error on the inference of λ for each re-
sponse is small, the SD of λ over different individuals in the
population is substantial, ∼1 s−1, and comparable to that ob-
served for running times (25). Conversely, diversity in the ratio of
the coefficients α0 and α1 is tiny (Fig. 3A). The consequence is
that the integral of the response function is close to zero, that is,
adaptation is a property of individual bacteria and not solely
induced by population averaging.
The scaling with respect to the background concentration of

the adaptation, amplitude, and memory of the response is shown
in Fig. 3 B–D. By increasing the concentration in one reservoir of
the microfluidic setup while keeping the other one empty, we
generated a gradient proportional to the background level in the
channel. The gradient of the logarithm is thus kept constant
while the background concentration is varied. The observed
scaling of the amplitude is compatible with α0 ∝ 1/L, where L is

the chemoattractant background concentration, while the
memory time is constant. These behaviors agree with Weber’s
law and fold-change detection (16–18) confirming that the re-
sponse function’s shape is independent of L. An alternative
presentation of those properties in terms of sensitivity and ad-
aptation precision is found in Figs. S1 and S2. Note that the
observed scaling agrees with the prediction of molecular mod-
els in the range Koff � L � Kon, where Koff and Kon are the
dissociation constants of the Tar receptor in its two possible
states (SI).
We present now the responses to other chemicals. In Fig. 4A,

we show the response to glucose of the strain MG1655. Glucose
binds the methyl-accepting Trg chemoreceptor, but chemotaxis
to glucose is also coupled to the phosphotransferase system
(PTS), whose substrates are sensed during their uptake, with
concomitant phosphorylation by phosphotransferase cellular
components (27–29). Results in Fig. 4A demonstrate that the
response again has a biphasic shape. Timescales are slightly
longer but comparable to aspartate, and perfect adaptation is
observed. Note that whereas adaptation of the Trg chemore-
ceptor can be explained via assistance neighborhood, we could
not find in the literature specific information on the adaptation
mechanisms of the PTS-mediated component. Fig. 4B shows that
perfect adaptation is lost in the mutant where CheR and CheB
are deleted.
Fig. 4C shows the response to leucine of the strain HCB1 at

concentrations on the order of 10–100 μM, when E. coli is re-
pelled by the amino acid (e.g., 30). The response function is
again biphasic, but phases have opposite signs compared with
aspartate. As for serine (see below), the response is imperfectly
adapted. Leucine has a toxic effect at these concentrations, and
inferences were thus performed on a restricted subset of the
initial population.

Fig. 2. Inferring the chemotactic response. (A) The (normalized) chemo-
tactic response functions to α-methylaspartate for an ensemble of E. coli
individual trajectories as obtained by the inference method described here.
Estimated parameters are the maximum likelihood of the posterior distri-
bution (Materials and Methods). The colors encode the frequency of oc-
currence over the population of the corresponding decay time (low/high
frequencies are in blue/red). (B) Some of the curves shown in A, now without
normalization, are shown to highlight the diversity in the population of the
response amplitude α0. The average chemoattractant concentration for the
curves shown here is 754 μM. Same color coding as in A. (C) Response
functions for groups of trajectories that had to be pooled to obtain a reliable
estimate of the response. Notice that, despite the strong nonlinearity of the
inference procedure with respect to the number of trajectories, the results
are consistent with those shown in A for individual trajectories. (D) The in-
ference results are consistent with the tethering bias response measured in
ref. 12, as shown by direct comparison of the latter with a typical inferred
bias response (Materials and Methods).

Fig. 3. Individual variability of response and uniformity of adaptation to
α-methylaspartate (MeAsp). (A) Scatter plot of the coefficient α1 of the linear
term in the response function versus the coefficient α0 of the constant term. The
green line is the curveα1 = α0, that is, a perfectly adapted response. Blackdots (in
this and the following panels) correspond to groups of trajectories pooled to-
gether for the inference, whereas red dots refer to individual trajectories. (B)
The nondimensional integral of the response function 1− α1/α0 versus themean
attractant concentration. Error bars were obtained as described in Materials
and Methods. The green line corresponds to perfect adaptation. (C) The am-
plitude of the response to MeAsp versus its concentration. The green curve is
the scaling α0 ∝ 1/L that holds in the range of logarithmic (Weber–Fechner)
response. (D) The dependence of thememory rate λ of the response function on
ligand concentration. The constant green curve is the average value. The ab-
sence of any systematic trend corresponds to the shape invariance of the re-
sponse with respect to the background ligand concentration.
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The response to serine, which binds the chemoreceptor Tsr, is
shown in Fig. 4D. The response is biphasic, yet the negative and
positive areas are different, that is, the response is imperfectly
adapted. This agrees with ref. 24, where the running time versus
the background concentration was measured for serine and as-
partate: Whereas it was roughly constant for the latter, it varied
substantially for the former. At the molecular level, loss of ad-
aptation is due to the full methylation of receptors (see ref. 9 and
the model in SI), but its functional cause remains an open
problem. It should be stressed that bacteria effectively climb
serine gradients in the microfluidic setup, despite their lack of
adaptation. Previous examples of lack of perfect adaptation were
obtained by tethering assays with chemotactic mutants, with
some of the adaptation components missing (12) (Fig. 4B).
Conversely, the response in Fig. 4D is wild-type, and demon-
strates that a biphasic response is not necessarily perfectly
adapted and that gradient climbing is not impaired by lack of

adaptation. An overview of the diversity in the bacterial pop-
ulation of the adaptation is provided in Fig. 5.

Likelihood, Estimation of Errors, and Effects of Parameterization. The
posterior distributions for the parameters of the response func-
tions contain all of the information on the inference. When the
prior distribution is flat, as assumed here, the posterior is simply
proportional to the likelihood of the parameters, and maximum
a posteriori and maximum likelihood (ML) estimators coincide.
A large number of posterior distributions are well-concentrated
around the maximum in all directions, as shown (Fig. S3). These
display a nearly Gaussian shape. Therefore, the value of the ML
complemented by the Hessian around the ML gives a complete
description of both the inferred response and the error in its
estimation (26). In some other cases, the likelihood still has
a well-defined maximum, yet there is a “soft direction” where the
curve is decreasing more slowly (Fig. S3). Intuition for such
a direction is as follows. For an adapted response, the constant
background is filtered out of the quantity [the convolution Q(t) in
Materials and Methods] modulating the running time. It is easy to
calculate that, for a perfectly straight trajectory in a concentra-
tion gradient, the convolution is proportional to the gradient and
to the ratio α0/λ2. Trajectories are, of course, not quite straight,
as a result of the curvature induced by rotational diffusivity and
to the changes of direction after tumbles. However, these con-
tributions are weak and/or require long trajectories to emerge,
and the direction α0 ∝ λ2 is the most demanding to converge in
the space of parameters. Possible improvements on this point are
discussed in the final section. Even for those situations where the
likelihood has a soft direction, we verified that (i) it becomes
well-concentrated when more statistics are gathered, for exam-
ple, by grouping a sufficient number of such trajectories, and (ii)
numerical simulations (SI) indicate that the ML inference of
parameters provides a reliable estimate of their real values
within the SDs estimated by the Gaussian approximation around
the ML. This is our rationale for using, in all situations, the ML
Gaussian model for the inferences.
As discussed in Materials and Methods, molecular models of

the chemotaxis pathway parameterize the impulse response as
a sum of exponentials. However, that form is problematic for
inference (e.g., 31), and orthogonal expansions (such as the
Laguerre expansion we used) are handier. Here we briefly dis-
cuss this point. First, the response functions obtained by in-
ference with the Laguerre expansion are well-reproduced when
reexpressed as two exponentials, Aye− λyt þ Ame− λmt (this is done
by finding parameters for the sum of exponentials that minimize
its distance to the inferred response function). Second, direct
inference for the four parameters of the exponential parame-
terization shows that convergence is generally harder for expo-
nential than for Laguerre parameterization, as was expected.
The difficulty is somewhat tamed with respect to the general
cases (31) because the decay rates are comparable but not too
close (see below), yet exponentials are indeed more demanding.
The advantage of the sum of exponentials is that molecular
parameters are directly readable (SI). Namely, the dephosphory-
lation and methylation rates λy, λm for aspartate are λy = 1.83 ±
1.15 s−1 and λm = 1.34 ± 0.87 s−1 (average and SD over the
bacterial population), remaining comparable throughout the
range of concentrations sampled. In summary, results obtained
by the two parameterizations agree, and conclusions drawn here,
namely the presence/absence of adaptation and the amount of
diversity, are independent of the specific form used.

Discussion
We have introduced and exploited an inference method to
measure the chemotactic response of bacteria using just their
trajectories observed under the microscope. The advantage of
the technique is its noninvasive character that allows not

Fig. 4. Responses to glucose, leucine, and serine. The response functions
to various chemicals are shown in black, whereas the curves corresponding
to the SD error in the inference of the memory parameter λ are plotted in
red. (A) The response functions for chemotaxis toward glucose of two
different bacteria, chosen with rather different memory times to highlight
their diversity. Adaptation is nearly perfect. (B) The response to glucose for
the CheRCheB double mutant. Adaptation is lost. (C ) An example of a re-
sponse function to the repellent leucine. Note the inversion with respect
to the attractant response. (D) One instance of response function for the
chemotaxis toward serine. The response is imperfectly adapted as the
value of its integral (represented by the green line) significantly differs
from zero.

Fig. 5. Adaptation properties of the responses. The nondimensionalized
value 1 − α1/α0 of the response integral is shown for various attractants and
for the repellent leucine. In black, data for α-methylaspartate; in red, data
for serine; in green, data for leucine; in cyan, data for glucose; and in blue,
data for the response to glucose of the CheRCheB double mutant. Error bars
were obtained as described in Materials and Methods. The constant black
curve corresponds to perfect adaptation.
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dismantling the flagellar bundle. Classical tethering (12) and the
responses obtained here for aspartate are in agreement (Fig.
2D). The property of perfect adaptation to aspartate, that is, the
negative and positive parts of the response having equal areas, is
confirmed. Furthermore, we have shown here that the diversity
in the population of the integral of the response function is
small, and perfect adaptation is observed even at the individual
level. The decay times of the response (its memory) have sub-
stantial diversity, yet their typical values are compatible with that
of tethering assays (12). The resulting estimation of the phos-
phorylation time is in close agreement with models and FRET
measurements (32). Conversely, the methylation time is shorter
than the value obtained from FRET measurements (33) by
roughly a 10-fold factor, as already noted (34). The reason for
this difference between FRET data and the combination of
tethering and inference results is unknown. It is worth stressing
that the agreement between the responses obtained by tethering
and our inferences was not a priori granted. The effects of
tethering preparation and the assay of a single flagellum are
indeed not simple. In fact, as we show in SI, the bundle does have
a strong effect on the sensitivity and amplitude of the response,
yet the shape of the response function manifestly turns out to
be similar.
We have obtained the response to serine and shown that it

features both a positive and a negative part, yet their areas are
different. This implies the absence of perfect adaptation,
a property that was already observed in ref. 25 by measuring the
running times in various constant levels of serine. We also ob-
served that the absence of perfect adaptation does not prevent E.
coli from climbing the concentration span over the channel. This
is a counterexample to dynamic-range arguments advocating the
necessity of perfect adaptation to avoid saturation of the ultra-
sensitive flagellar motor (35). An alternative explanation for
adaptation based on the role of fluctuations in the chemical
fields sensed by E. coli was recently proposed (21). Adaptation
(Fig. S4) is there proposed to emerge as a result of the pre-
dictability of the environment. Quantitative experiments are
needed to understand the functional reasons for the observed
adaptation to aspartate and its absence to serine by gauging the
environmental and dynamic-range contributions. The inference
method proposed here appears to be a highly relevant tool for
those studies because it can be applied to freely swimming bac-
teria without any major perturbation.
We conclude with possible future improvements of the ex-

perimental method described here. The constant-gradient
microfluidic system we presented has the advantage that a
constant gradient is easy to generate and keep stable and its
profile in large enough setups is independent of chemo-
attractant diffusivity, which permits gauging the concentration.
The downside is that, as discussed in the section on likelihoods,
a profile more variable in space and time would possibly allow
acquiring information on the response more rapidly. This would
thus reduce the statistics needed for convergence and permit
a reliable inference for an even larger number of individual
trajectories. Another potential advantage of properly engi-
neered variable gradients is that the total excursion in the
amplitude of chemicals could be kept more limited across the
field of observation. Indeed, because the background concen-
tration affects the amplitude of the response (Fig. 3), the un-
certainty in its estimation is increased. Keeping the total
concentration excursion more tamed is therefore potentially
beneficial. Variable-gradient profiles are clearly more delicate
to control, yet recent progress in microfluidics makes them
achievable, and this possibility then constitutes a significant
experimental direction for future exploration.

Materials and Methods
Bacterial Strains and Preparation. We used E. coli strain HCB1 for all of the
experiments involving aspartate, α-methylaspartate, leucine, and serine,
whereas E. coli strain MG1655 was used for glucose experiments. Experi-
ments were realized using the protocols described in SI Materials and
Methods. Mutants ΔCheZ, ΔCheR, and ΔCheRCheB of the MG1655 strain
were produced using standard phage P1 transduction protocols.

Microfluidic Setup. The setup (Fig. 1A and Fig. S5) was designed to obtain
a stable chemical concentration gradient without any flow. The gradient is
established through diffusion between two large reservoirs to reach equi-
librium. The setup is built by superposing a glass slide, a thin (200-μm height)
inox steel piece (STEEC) separating the reservoirs by a channel 1-mm wide
and 3-mm long, and a Plexiglas slide with filling holes. The three pieces are
insulated with vacuum grease. After sequential filling of the chambers,
a stable gradient is established in about 2 h, consistently with diffusivities on
the order of 100 μm2/s. The injection of a small volume (1 μL) of suspension
slightly alters the gradient, which recovers in a few minutes, though, and
then remains stable for about 4 h. Experimenting with attractants/repel-
lents, bacteria were introduced into the low/high-concentration chamber
and let swim up/down-gradient.

Determination of Chemical Concentration. The concentration inside the
channel was determined by measuring the stable profile of fluorescein
(Sigma-Aldrich) added to the solution (Fig. S6). The large volume of the
reservoirs ensures that the linear profile established at equilibrium is in-
dependent of the diffusivity. All images were acquired through a 10× ob-
jective (Plan-Neofluar 10×/0.3 Ph 1; Zeiss) on an inverted microscope
(Observer D1; Zeiss) with a fast CCD camera (CoolSNAP HQ2; Roper Scien-
tific). The field of view is 897 × 672 μm2. Images of swimming bacteria are
collected in phase-contrast microscopy at a frequency of 10 Hz. A mercury-
vapor lamp and a fluorescence cube (GFP-3035-B-000; Semrock) were used to
excite the fluorescence, whose intensity was measured with an exposure
time of 400 ms. A neutral density filter was placed on the optical path to
limit fluorescein photobleaching.

Tracking Bacterial Trajectories. Image analysis was performed with a plugin
working with ImageJ software (National Institutes of Health). After sub-
tracting the background, images were smoothed and a boundary detection
algorithmwas applied. Individual trajectories were obtainedwith aminimum
distance association between consecutive frames. We deliberately kept low
the density of bacteria to reduce distortions of the chemical profile and to
prevent mismatched association in the tracking. Up to 100 bacteria were
present in the field of view for acquisition times from 20 to 200 s, and the
bacteria could disappear up to 10 frames and still be tracked. Tumbles were
defined on the basis of joint changes in the speed and direction of motion, as
detailed in SI Materials and Methods and shown in Fig. S7.

Definition of the Chemotaxis Response and Its Properties. For moderate var-
iations of the sensed chemical, the transition probability from the running
to the tumbling state in a time interval dt reads dpr→t ¼ 1−QðtÞ

τr
dt; where

the convolution QðtÞ ¼ R t
−∞ Kðt − sÞcðXðsÞ; sÞds modulates the probability

according to the chemical concentration c(X(s),s) sensed by the bacterium
at time s and location X(s) along its past trajectory. The kernel of the con-
volution is the so-called response function K (t − s), which describes the
effect at time t > s of an impulse at time s.

Relationship of the Bias Response in Tethering Experiments. In tethering
assays, the observable is the fraction of bacteria whose tethered flagellum
turns CCW, and the bias response indicates how the fraction is affected by an
impulse stimulus (10, 12). The relationship between bias and the response
K(t) defined above is obtained as follows (see details in SI Materials and
Methods). The fractions pr(t) and pt(t) of bacteria in the running/tumbling
state obey the equation dpr ðtÞ

dt ¼ pt ðtÞ
τ′t − pr ðtÞ

τ′r ð1−QðtÞÞ; with the normalization
pr + pt = 1. The running/tumbling times τ′r and τ′t are primed, as they refer to
a single flagellum. For an impulse at the origin of moderate intensity I, it
follows from the previous equation for pr(t) that the bias variation
ΔprðtÞ ¼ I

τ′s

R t
0 KðsÞexp½− ðt − sÞ=τ′h�ds; with τ′s ≡ τ′r þ τ′t and the harmonic

average 1=τ′h ≡ 1=τ′r þ 1=τ′t : Note that, because τ′h is short, the bias varia-
tion Δpr(t) and the response K(t) behave similarly, except at the origin,
where the bias vanishes even if K does not. In particular, the decay time of
the two functions is comparable. It is also checked that the integralsR∞
0 KðtÞdt and

R∞
0 ΔprðtÞdt are proportional so that they both vanish or do

not, that is, perfect adaptation can be determined by either one of them.
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Bayesian Formulation of the Inference Problem. Trajectories are sampled with
a small time interval Δt, and the state of the bacterium (run or tumble) is
assigned to each interval as detailed in SI Materials and Methods. The bac-
terial history of its states and of the chemical concentration sensed along the
trajectory is thus represented by two vectors s and c having M = T/Δt com-
ponents, T being the length of the trajectory. Using Bayes theorem, the pos-
terior probability of the response K(t) reads PðKðtÞjs; cÞ ¼ Pðs;cjKðtÞÞP0ðKðtÞÞ

PM ðs;cÞ ,
where P(s, c | K(t)) is the likelihood, P0 is the prior distribution (assumed flat
here), and PM is the normalizing constant. The likelihood reads Pðs; cjKðtÞÞ ¼
∏
M

j¼1
Wj with the weights Wj ¼ 1− 1−Qðtj Þ

τr
Δt and Wj ¼ ð1−QðtjÞÞΔt=τr for run-

ning/tumbling intervals if preceded by a running interval, whereas Wj = 1/τt
Δt and Wj = 1 − 1/τt Δt if preceded by a tumbling interval.

A standard Bayesian estimator is the maximum a posteriori, that is, the
maximum value of the posterior distribution (26), which coincides with
maximum likelihood for our case of flat prior. Our inference problem re-
quires the search of the maximum in a multidimensional space. Optimi-
zation was performed using variable metric methods and a simplex al-
gorithm combined with a conjugate gradient method. Results obtained
by the two methods were consistent. Errors in the parameters were esti-
mated by measuring the eigenvalues of the log-likelihood Hessian (Fig. S8).

The whole inference procedure was successfully tested on synthetic tra-
jectories generated according to molecular models of the chemotactic
pathway (Fig. S9) with the parameters in Table S1.

Parameterization of the Response Function. Models of the chemotaxis path-
way (SI) give for K(t) a sum of exponentials KðtÞ ¼ Aye−λy t þ Ame−λmt ; where
λy and λm are the phosphorylation and methylation rates. However, fitting
multiple exponentials can lead to ill-defined problems (e.g., 31), whereas
coefficients of orthogonal functions tend to interact less during the opti-
mization procedure and yield more reliable results. Therefore, we used the

parameterization KðtÞ ¼ e−λt
�P

i
αiLiðtÞ

�
; in terms of Laguerre orthogonal

polynomials, that is, the basis orthogonal over the positive axis with an
exponential weight.
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