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Glandular tissues form ducts (tubes) and acini (spheres) in multicel-
lular organisms. This process is best demonstrated in the organiza-
tion of the ductal tree of the mammary gland and in 3D models of
morphogenesis in culture. Here, we asked a fundamental question:
How do single adult epithelial cells generate polarized acini when
placed in a surrogate basement membrane 3D gel? Using human
breast epithelial cells from either reduction mammoplasty or non-
malignant breast cell lines, we observed a unique cellular move-
ment where single cells undergo multiple rotations and then
maintain it cohesively as they divide to assemble into acini. This
coherent angular motion (CAMo) was observed in both primary
cells and breast cell lines. If CAMo was disrupted, the final geome-
try was not a sphere. The malignant counterparts of the human
breast cell lines in 3D were randomly motile, did not display CAMo,
and did not form spheres. Upon “phenotypic reversion” of malig-
nant cells, both CAMo and spherical architecturewere restored.We
show that cell-cell adhesion and tissue polarity are essential for the
formation of acini and link the functional relevance of CAMo to the
establishment of spherical architecture rather than to multicellular
aggregation or growth. We propose that CAMo is an integral step
in the formation of the tissue architecture and that its disruption is
involved in malignant transformation.
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Epithelial organs form elaborate architectures consisting of
ducts and acini in kidney, lung, salivary- and mammary- glands

in vertebrates and invertebrates alike (1, 2). In tissues, loss of
polarity markers is one of the earliest changes detected during
malignant transformation (3, 4). The terminal unit of the arboreal
tree, the acinus, was robustly recapitulated in 3D cultures of the
mammary epithelial in laminin-rich gels (lrECM), where cells di-
vide and organize into growth-arrested polarized spheres with
basolateral and apical membrane domains surrounding a central
lumen (5, 6). These models have shown the differential response
of preinvasive and malignant epithelial cells to lrECM, where cells
no longer form acini but aggregate into nonpolarized geometries
similar to neoplastic lesions and tumors in vivo (6–11). To un-
derstand how tissue polarity and architecture are lost during
transformation, one needs to first understand how the normal cells
are able to form acini. However, the processes by which a single
epithelial cell is able to recapitulate polarized structures that re-
semble structural units of function in 3D gels and in vivo are not
known. We hypothesized that adult cells undergo a specific mor-
phogenetic program to form and maintain quiescent acini, and
that this program is corrupted in malignant transformation.
Using real-time imaging and lrECM gels, we uncovered a

unique cellular movement where single breast epithelial cells
completed multiple rotations that were maintained as they di-
vided to assemble into acini. This movement is reminiscent of
cellular behavior governing organ formation in early developmen-
tal stages of Xenopus and Helisoma embryos (12, 13), described
more than two decades ago. That this embryonic process could
be maintained in adult human cells in 3D gels is both surprising
and exciting, and may provide a possible explanation for how the

adult mammary gland after each pregnancy and involution can
reorganize the epithelial tree (14).
On the other hand, malignant cells were randomly motile in

lrECM gels on their way to form disorganized structures. Upon
“phenotypic reversion” (11), however, they reentered the mor-
phogenetic program to regain basally polarized structures. This
switch suggested that there is a differential activation of motility
signaling programs when malignant cells are phenotypically
“normalized.”
In this article, we functionally link the coherent angular motion

(CAMo) to the establishment of multicellular polarized spheres.
We describe the relationship between tissue polarity, cell-cell
adhesion, and cell movement, and determine the role of acto-
myosin structures and myosin light-chain–regulated forces on the
establishment of the acinar structures. We also show the disin-
tegration of these pathways in the malignant behavior of breast
cancer cells, thus reinforcing the notion that coherent cellular
movement within an ECM cocoon guides formation of structural
units of tissues important for quiescence and homeostasis.

Results
To address the question of how single mammary cells can rees-
tablish polarized acini in 3D lrECM, we used human mammary
epithelial cells (HMECs) from both reduction mammoplasties
and nonmalignant breast cell lines (S1-HMT3522 and MCF10A),
as previously described (6, 7, 15). Single HMECs were imaged
with confocal fluorescence microscopy continuously for 4 d; they
underwent multiple rotations (∼0.5–1 revolution per hour), and
then continued to rotate cohesively as they and their progenies
divided (Fig. 1A and Movies S1, S2, and S3). The observed
chirality was random, suggesting that there were no directional
preference for spherical formation under culture conditions used
here. Individual nuclei (Fig. 1B), as well as the entire cluster,
rotated with the angular velocity increasing as a function of cell
size up to the four-cell stage (Fig. 1C). We named this global
movement where cells coupled with the nearest neighbors ro-
tated as a cohesive unit CAMo.
To determine whether CAMo was a driver of acinar morpho-

genesis or was simply a consequence of 3D multicellular aggrega-
tion, we compared the cellular movements of acini vs. aggregates.
Acini grown from freshly excised single primary HMEC cells co-
herently rotated (Fig. 1E, Left, Fig. S1, and Movie S4), whereas
cells preaggregated into clusters of∼20 cells before culturing in 3D
were randomly motile (Fig. 1E, Right, and Movie S5) (16). Our
finding that CAMo was observed only when acini evolved from
a single cell suggests that self-generated centripetal forces are in-
tegral to the establishment of spherical geometry in lrECM gels.
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If indeed CAMo were central to formation of acini, it would
follow that this morphogenetic program would be compromised in
malignant cells because these cells do not form polarized acini (6,
11). Following the logic through, when malignant cells are phe-
notypically reverted to form acini-like structures (11; reviewed in
17), CAMo would have to be restored to allow formation of acini.
To test the above hypothesis, we used an isogenic model of breast
cancer progression, the HMT3522 series, where cells from re-
duction mammoplasty, were grown in defined medium and were
spontaneously immortalized but remained nonmalignant (S1);
upon removal of the sole growth factor, EGF, a malignant
population (T4-2) emerged after injection into mice without
addition of exogenous oncogenes (9, 18). We showed previously

that these cells can be phenotypically reverted in 3D lrECM,
where spherical structure is regained, even though these cells are
“genotypically malignant” (9, 11). When seeded in lrECM, both
single nonmalignant and malignant cells rotated, but malignant
cells displayed higher centripetal velocities (Fig. 2Ai). The dif-
ferential motility we observed between nonmalignant and ma-
lignant cells suggests that individual cell dynamics could be
predictive of neoplastic transformation, even when cells are re-
moved from the tissue.
The temporal window wherein phenotypic reversion of the

malignant cells is obtained is restricted to the first 36–48 h in
3D cultures independently of the pharmacological agents used
for reversion. This motivated the present studies whereby the
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Fig. 1. (A) Nonmalignant cell lines undergo multiple rotations during mammary acinar morphogenesis. (i) Timed micrographs of S1 cells show the ordered
development of multicellular aggregates as revealed by nuclear position and F-actin. Cells undergo multiple rotations before mitosis. (ii) Same micrographs as
in i but showing only nuclei where one is false-colored purple. Blue arrows indicate the direction of rotation. (iii) Timed micrographs of MCF10A cells show
comparable evolution of the structure. (iv) Same micrographs as in iii, but showing only nuclei, as described for ii. (Scale bars, 10 μm.) (B) Timed micrographs
from conclusion of acinar morphogenesis (day 5) of S1 cells where the final structure (10 cells) form a lumen. Color coded for time: blue (0 h) to red (40 min).
(Inset) Schematic. (Right) Cross section at different planes. (Scale bar, 30 μm.) * indicates lumen. (C) Angular rotation of the parent cell and its progeny by
tracking the individual nuclei during acinar morphogenesis. (D) Average angular velocity as a function of increasing number of cells comprising multicellular
structure. Using Mann–Whitney U test where P < 0.0001. (E, i) Schematic of experimental design. (ii) Micrographs showing acinus (8 d) (Left). (Right) The
aggregates (6 h). Red represents the endoplasmic reticulum. (Scale bars, 50 μm.) (iii) Graphs comparing acinus vs. aggregates for a period of 24 h.
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cellular reprogramming commitment required for reversion to
acini-like structures has to be activated within this window. S1
and reverted-T4-2 (T4-2 Rev) cells exhibited staggered divisions
with a delay between the second and third mitoses (Fig. 2Aii, Left
and Right, and Table S1).On the other hand, T4-2 cells displayed
no such delay (Fig. 2Aii, Center, Table S1, and Movie S6). This
temporal difference suggested that the nonmalignant cells might
use this delay to assemble adhesions required for the scaffold
that allows them to form polarized acini.
We observed a shift in cell adhesion as measured by both sphe-

ricity and cellular movements after the first cell division during this
“reversion window” (Fig. 2B). The S1 cells continued to exhibit
CAMo as they formed spheres (Movie S7), whereas the T4-2 cells
were loosely tethered, lacked CAMo, and became randomly motile
(Fig. 2B and Movie S8), supporting the notion that the observed
delays in timing of division may be important in establishment of
functional cell-cell adhesions in S1 and T4-2 Rev cells (Movie S9).
Both S1 and T4-2 Rev cells continued CAMo past this critical
window, and T4-2 cells continued to be randomly motile (Fig. S2,
and Movies S10, S11, S12, and S13). Thus, the type of cellular
motion that cells undergo during early morphogenesis drives the
final structure of the tissue.Using theMCF10a series, we confirmed
that both cell adhesion and CAMo were maintained also for the
nonmalignant MCF10a after the first cell division, but that these
features were lost as a function of progression to malignancy (Fig.
S3, Table S2, and Movies S14 and S15). Thus, the correlation be-
tween CAMo and normal morphogenesis and its loss as cells be-
come malignant are conserved from primary normal cells to
HMT3522 and MCF10a breast cancer series.
Tissue polarity is established via a temporally modulated

multistage process regulated by the mammary microenvironment

(17). There is evidence to indicate that growth and tissue polarity
are separable in formation of polarized acini in 3D (19–21).
Specifically, we showed that Akt and Rac1 act as downstream
effectors of PI3K and function as separate pathways for cellular
proliferation and tissue polarity, respectively (20). Partitioning
deficient 3 homolog (PAR3), a key component of tight junctions
(22, 23), is expressed differentially at both gene (PARD3) and
protein (PAR3) levels in S1 and T4-2 cells (Fig. 3A and Fig. S4).
To determine the relationship between loss of CAMo and dis-
ruption of acinar polarity, we silenced PARD3 using shRNA in
nonmalignant cells. Both CAMo and acinar structures were
compromised where cells formed nonpolarized, grape-like struc-
tures, supporting the notion that angular motility and tissue
polarity are reciprocally connected (Fig. 3 B and C, and Movie
S16). Similarly, interrogation of the role of E-Cadherin via
a function-blocking antibody (24) compromised CAMo and,
hence, acinar structure, emphasizing again the importance of
cell-cell adhesion for maintenance of CAMo (Fig. 3 A iv and v, B,
and C).
The dynamic properties of actomyosin networks and micro-

tubules have been shown to regulate cell motility and balance
cellular forces (25). Pharmacological destabilization of micro-
tubules did not inhibit single-cell centripetal motion (Fig. S5);
thus, the switch from CAMo to random motility would predict
differential spatiotemporal regulation of actomyosin. We first
visualized actin dynamics using HMT3522 series transduced with
mCherry LifeAct lentivirus (26). As early as 4 h postseeding in
lrECM, a crescent-shaped cortical actin was established as if
directing the angular motion (Fig. 4A and Movie S17). After the
first cell division, the polarized cortical actin was retained in the
S1 and T4-2 Rev cells (Fig. 4B, i and iii), but became randomly
distributed around the membranes in T4-2 cells (Fig. 4Bii),
supporting a predictable connection between actin and CAMo.
To further identify the molecular components of the actomy-

osin network that contribute to CAMo, we targeted the net-
works’ effectors, Myosin II, myosin light-chain kinase (MLCK),
and Rho-associated kinase (ROCK) using pharmacological
inhibitors (27–30). Because Rho-regulated contractile forces
influence cell proliferation (31), we determined the appropriate
titer of the inhibitor where cell proliferation was not—or mini-
mally—affected. This determination allowed us to modulate the
activity of myosin light chain without affecting growth. It is
known that phosphorylation of myosin light chain-2 (MLC2) at
threonine 18 and serine 19 (16) is involved in the motility of
several cancer cell lines (32). We reasoned that by modulating
MLC2 in nonmalignant S1 cells, we might be able to mimic
motility of malignant T4-2 cells. Treatment with vehicle control
confirmed that CAMo was unaffected (Fig. 4C Top, and Movie
S18), whereas all three inhibitors disrupted CAMo. Addition of
Blebbistatin, an inhibitor of Myosin II (33), led to random mo-
tility and resulted in formation of stellate structures (Fig. 4C, 2nd
Panel, and Movies S19 and S20). The MLCK inhibitor, ML-7,
also caused random motility, but cells formed aggregates rather
than stellates (Fig. 4C, 3rd Panel, and Movies S21 and S22).
ROCK inhibition, using Y-27632 (34), strongly reduced motility
leading to formation of flattened discs (Fig. 4C, Bottom, and
Movies S23 and S24). These data suggested that all three path-
ways are involved in regulation of CAMo. However, inhibition of
each component led to formation of different structures and ac-
tivity levels of MLC2 (Fig. 4D, ii and iii), further linking final
structure to the type of motility determined by which components
of the actomyosin program are active in cells forming the organs.

Discussion
Using 4D live imaging, we report a unique cellular movement,
CAMo, by which acinar morphogenesis is made possible in 3D
lrECM. Single adult human breast epithelial cells undergo mul-
tiple rotations, and then continue to divide cohesively to achieve

Fig. 2. Early acinar morphogenesis: motility, actin dynamics, and mitosis for
single cells, and the first division for HMT3522 series. (A, i) Graph quanti-
fying the average angular motion for single cells. ***P < 0.0001 and *P <
0.01. (ii) Micrographs showing cell division for S1, T4-2, and T4-2 rev. (Scale
bars 10 μm.) (B, i) Comparison of cell adhesion measured by sphericity of the
cell aggregates, ***P < 0.0001. (ii) Graph depicting different types of mo-
tility for HMT3222 series using Student t test, *P < 0.01 and ***P < 0.0001.
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assembly into acini. Malignant cells do not exhibit CAMo and
form disorganized structures in 3D. A unique and possibly related
morphogenetic movement and program recently described by
Haigo and Bilder (35) was shown to facilitate the transition of the
geometry of the Drosophila follicle from that of a sphere to an
ellipse. The description of the embryonic movement reinforces the
notion that under appropriate contexts, adult cells may engage the
embryonic morphogenetic programs to reestablish their tissue
structure with the mammary gland as a prime example.

Fig. 3. The role of cell-cell adhesion and polarity proteins in CAMo. (A, i and ii)
Immunofluorescence of actin, Par3, and DNA for S1 scramble and S1PAR3
shRNA. (Solid scale bar, 10 μm.) (iii) Immunoblots comparing protein levels. (iv
and v) E-Cadherin immunofluorescence for S1 IgG and S1s cells anti–E-Cadherin.
(Dashed scale bar, 20μm.) (B)Micrographs showS1Scramble (i), S1 PARD3 (ii), S1
IgG (iii), and S1 anti-E-Cadherin (iv), color coded for time: blue (0 h) to red (12 h);
at the two-cell level, red is the endoplasmic reticulum. (C, Upper) Graph shows
comparison of sphericity of the cell aggregates. ***P < 0.0001. (Lower) Graph
depictingdifferent types ofmotility for S1 scramble and S1IgG,which still rotate
although S1 PAR3 shRNA and S1 anti–E-Cadherin undergo a combination of
linear velocity as well as random motion. Student t test, where ***P < 0.0001.
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Fig. 4. Initial cellular motion dictates final structure where only cells that
undergo and maintain CAMo eventually form an acinus. (A) Micrographs of
peripheral actin front, denoted by the white asterisk. (Scale bars, 10 μm.)
(B, i) Micrographs show peripheral actin at the two-cell stage. (Scale bars,
20 μm.) (ii) Schematic of the method of quantification of the spatial distri-
bution of actin. (iii ) Average spatial actin distribution at the two-cell stage.
Solid line, Gaussian approximation. (C) Pharmacological treatment of S1
shown with time stamped micrographs. (i) Cell tracking, color-coded (blue
to red denotes increasing time). Red, endoplasmic reticulum. (Scale bars,
10 μm.) Trajectories in i show final architecture in ii. (iii) Median cross-sec-
tion for actin (red), pMLC (green), and DAPI (blue). (D, i) Graph comparing
sphericity, ***P < 0.0001. (ii) Comparison of motilities: ****P < 0.00001,
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In our assay, nonmalignant and reverted malignant cells di-
vided with a significant delay between the second and third mi-
toses, whereas loosely tethered malignant cells showed no such
delay, suggesting that the timing delay may be needed to facili-
tate formation of cell-cell adhesions and the scaffold on which
the tissue structure would be built. That “timing” has important
functional consequences was described by Wong et al., who
showed that if the duration of mitosis during human blastocyst
formation was altered in any direction, the resultant embryo
would be abnormal (36).
Not surprisingly, blocking E-Cadherin function disrupted cell-

cell and to a lesser extent, cell-ECM adhesion, in turn impairing
CAMo (Fig. 3). E-Cadherin plays a role in establishing and
maintaining epithelia during development, from early embryo-
genesis through the later stages of organogenesis, as shown in
Drosophila and E-Cadherin knockout mouse models (37–39).
CAMo was also blocked by down-regulating PAR3, required in
establishing polarity of epithelial tissues (22, 23). These data,
coupled with the observation that malignant cells are randomly
motile during formation of disorganized structures but perform
CAMo upon phenotypic reversion, suggest that CAMo drives, or
at least contributes, to tissue polarity.
Real-time visualization of actin dynamics revealed that cres-

cent-shaped cortical actin may direct centripetal motion. Such
localization differs from anterior-posterior asymmetry of actin
polarization studied on other surfaces (40). However, all un-
derlie the importance of the actomyosin structures in generating
motion. We observed here that single epithelial cells are able to
rotate with little translocation in lrECM, thus extending the
known repertoire of cell motilities. Tumor cells can switch be-
tween mesenchymal (16, 41) and amoeboid (16, 42) movements,
regulated by ROCK and Rac, respectively, and proteolytic ac-
tivity for single-cell invasion in collagen gels (42). In our system,
additional experiments are required to determine if there is lo-
calized ECM degradation or rapid turnover of cell-ECM adhe-
sions to facilitate rotation within lrECM.
Cells can modulate their force generation as a response to

local extracellular stiffness, where the malignant transformation
is regulated in vitro and in vivo by stiffening the ECM (43, 44).
Using sustained pharmacological inhibition of Myosin II, ROCK,
and MLCK, we modulated activity of MLC2 in nonmalignant
cells. This process disrupted the generation of centripetal forces,
resulting in establishment of nonpolar structures, reinforcing the
bidirectional relationship between physical and biochemical
control of malignancy. Thus, myosin-regulated centripetal force
can be added to the repertoire of known mechanisms by which
cells can navigate their 3D microenvironment.
Previous studies in adult cell lines have shown rotating nuclei

within static cells in 2D (45–47). A mathematical method was
used to distinguish between random and centripetal motility
during real-time visualization of lumen initiation in Madin-
Darby canine kidney cell aggregates on the order of minutes
(48), and inducible activation of ERK1/2 of nonmalignant epi-
thelial cells within mature acini was shown to promote cell mo-
tility for several hours, disrupting epithelial architecture (49).
These exciting findings reveal the potency of direct visualization
to unravel and decipher novel cellular dynamics. Moreover, our
visualization of the full acinar morphogenesis revealed the
functional link between type of motility and realized structure.
Continued visualization of the evolution of other tissues and
forms may reveal an evolutionarily conserved mechanism by
which cellular architecture is established and governed.

Materials and Methods
HMT3522 and MCF10A series (6–8), primary HMEC, kindly provided by Wil-
liam Curt Hines (Lawrence Berkeley National Laboratory, Berkeley, CA) and
obtained from the University of California at San Francisco Cancer Center
and the Cooperative Human Tissue Network, were cultured as previously
described, and 3D samples gelled on glass chambers (Nalge Nunc) (7, 8, 15).
Stable cell lines expressing mCherry LifeAct and H2B-GFP, and PAR3 KD cells
were created (SI Materials and Methods). ER-tracker-mCherry (Invitrogen)
was added to the medium (1:1,000) for 30 min and replaced before imaging.

Before imaging, 5 μM Y-27632 (Calbiochem), 25 μΜ Blebbistatin, 0.5 μM
ML-7 (Sigma), 200 μg/mL mouse anti–E-Cadherin, or anti-IgG Human (Invi-
trogen), respectively, were supplemented 5% lrECM/media (vol/vol) for 2 h.
Media mixture was refreshed at day 3. At day 5, samples were fixed and
stained as previously described (8) (SI Materials and Methods).

Images were acquired at one frame per second with an upright Zeiss LSM
710. Images were of 134.9 × 134.9 μm2 lateral dimensions, axial displacement
of 75 μm (step size 0.5 μm) imaged with a 1.4 NA 63× oil-immersion objec-
tive, sequentially using 405 nm and 488 nm (respectively) lines from an ar-
gon ion laser and 546 nm from a solid-state laser. Emission BP filters were set
for 450–465 nm, 505–525 nm, and 560–575 nm at a gain of 400. Four-di-
mensional images of dimensions 701 × 701 μm2 lateral dimensions, axial
displacement of 150 μm (axial step size, 2 μm), were imaged with a 0.8 NA
20× air objective at ∼one frame per second. A time interval of 20 min was
programmed after one z stack for 4 d. Samples were maintained at 37 °C
and 5% CO2.

Image Processing. Images were exported using Zen 2009 software and ImageJ
for display. Three-dimensional volume rendering and cell tracking were
performed using object tracking and surface rendering algorithms in Bitplane
Imaris software. For multicellular structures, individual cell traces excluding
mitosis were used to calculate the angular velocity and mean square dis-
placement (MSD). The sphericity, Ψ (50),

Ψ ¼ π
1
3ð6VpÞ

2
3

Ap
[1]

where Vp is volume of the particle and Ap is the surface area of the particle.
Single cell/centroid trajectories were analyzed as previously described (51).
MSD (τ) was calculated for (τ) of one-quarter of total data points:

MSDðτÞ ¼ Æ
�
xðtÞ− xðt þ τÞÞ2 þ ðyðtÞ− yðt þ τÞÞ2 þ ðzðtÞ− zðt þ τÞÞ2æ: [2]

following fitting parameters to the trajectories (51).

MSDðτÞ ¼ 6Dτ [3]

MSDðτÞ ¼ 6Dτ þ ðvτÞ2; [4]

D is the diffusion coefficient and v is velocity.

Statistical Analysis. Bar graphs are shown as mean with SEs for trajectory
analysis and a Student t test (unpaired, two-tailed, 95% confidence interval)
was used to determine statistical significance. For sphericity analysis, dis-
tributions were not Gaussian (as confirmed by the Bartlett’s test); using
nonparametric methods, we employed a two-sided Mann–Whitney test.
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