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Slow relaxation occurs in many physical and biological systems.
"Creep” is an example from everyday life. When stretching a rub-
ber band, for example, the recovery to its equilibrium length is not,
as one might think, exponential: The relaxation is slow, in many
cases logarithmic, and can still be observed after many hours.
The form of the relaxation also depends on the duration of the
stretching, the “waiting time.” This ubiquitous phenomenon is
called aging, and is abundant both in natural and technological
applications. Here, we suggest a general mechanism for slow re-
laxations and aging, which predicts logarithmic relaxations, and
a particular aging dependence on the waiting time. We demon-
strate the generality of the approach by comparing our predictions
to experimental data on a diverse range of physical phenomena,
from conductance in granular metals to disordered insulators and
dirty semiconductors, to the low temperature dielectric properties
of glasses.

nonequilibrium | slow dynamics | memory effects | 1/f noise

hysicists often take for granted that systems relax exponen-

tially. Indeed, when a capacitor discharges, it will discharge
exponentially, with a rate independent of the time it has been
charged for. However, the relaxation of many systems in nature
is far from exponential, as was noticed already in the 19th century
by Weber (1). In many cases, the relaxation is logarithmic: Such
relaxations have been experimentally observed in the decay of
current in superconductors (2), current relaxation in metal-oxide-
semiconductor field-effect transistor devices (3), mechanical re-
laxation of plant roots (4), volume relaxation of crumpling paper
(5), and frictional strength (6), to name but a few. Fig. 1 shows
experimental data for electron glasses and for crumpling a thin
sheet, which are governed by extremely different physical pro-
cesses, yet they display identical relaxation behavior, which is
logarithmic over a strikingly broad time window.

In these systems, in contrast to the capacitor example, the re-
laxation does depend on the time the system has been perturbed
for—in the scientific jargon, this is referred to as “aging.” In fact,
slow relaxations and aging are amongst the most distinct features
of glasses, whose understanding presents an important problem
in contemporary condensed matter physics. Much experimental
and theoretical attention has been devoted to aging in the past
decades, in a variety of fields, such as spin-glass (7-13), colloids
(14, 15), vortices in superconductors (16, 17), and many others
(18-23).

Here, we study a generic model for aging and discuss several
mechanisms yielding a broad distribution of relaxation rates. We
demonstrate the generality of the model on four different experi-
mental systems, measuring the dependence of the relaxation both
on time ¢ and on the “waiting time” ¢,,, during which an external
perturbation has been applied. We show how the following form
of relaxations transpires:

S(t4,) o log(1 + 1, /1) = {log(tw/t) fort < t,, 1]

t,/t fort>t,,

where S is the physical observable. This means that the initial re-
laxation, at times short compared with ¢,,, is logarithmic, whereas
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at long times compared to ¢,, it falls off as the inverse of the time
—a power-law decay, much slower than exponential or stretched
exponential decay; this is reminiscent of, but not equivalent to,
the result of ref. 24.

Fig. 2 shows the excellent agreement between this prediction
and experimental results for four different systems, measuring
various physical observables: conductance relaxation in the elec-
tron glasses indium oxide and granular aluminum (25-34), relaxa-
tion of the dielectric constant in the plastic mylar (35-37), and
conductance relaxation in room temperature porous silicon
(38, 39). The experiments also markedly differ in the involved
timescales. Details of the experiments are given in Table 1.

In the following, we describe the aging protocol used in the
experiments, and introduce a model that predicts Eq. 1. We ex-
plain how one can understand the slow relaxations in terms of an
underlying distribution of relaxation rates of a particular form:

P() ~1/4, 2]

which we shall show can emerge due to various, physically dis-
tinct, mechanisms: thermal activation, quantum mechanical tun-
neling, or through a third mechanism relying on a multiplicative
process. We then proceed to describe the connection to the ubi-
quitous 1/f noise encountered in many systems, as well as the
possible role of the distribution described in Eq. 2 in other intri-
guing phenomena such as Benford’s law (40).

The Experimental Protocol

The aging protocol is illustrated in Fig. 3. Its first step consists of
letting the system attempt to equilibrate for a relatively long time
(typically of the order of hours or days). Next, one perturbs the
system, in a way that depends on the experimental system: For
indium oxide and aluminum, this is done by changing the voltage
of a capacitively coupled gate; for the mylar sample, it is done by
putting the system in a perpendicular electric field; whereas for
porous silicon, a large bias voltage is applied. The perturbation is
now maintained for a time ¢,,. After it is switched off, the physical
observable is continuously monitored, as it relaxes. The longer ¢,
is, the slower the resulting relaxation.

The Model

Having laid out a concrete experimental protocol, we are now
well positioned to describe a generic model that will yield the
form of aging described by Eq. 1. The model will involve two in-
gredients: First, the understanding that a broad distribution of
relaxation rates A occurs whose logarithm is approximately uni-
formly distributed over some broad range, as described by Eq. 2.
The second ingredient involves understanding what this relaxa-
tion rate distribution implies on the relaxations, within the aging
protocol.
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Fig. 1. Experimental results showing a logarithmic relaxation in the electron
glass indium oxide, where conductance is measured, and in a system of crum-
pling mylar, where the height is measured, after a sudden change in the ex-
perimental conditions. As seen in the graph, the logarithmic change in the
physical observable can be measured from times of order of seconds or less
to several days (5, 26). Similar logarithmic relaxations, observed over many
decades in time, occur in numerous physical systems, ranging from currents
in superconductors to frictional systems. Data courtesy of Z. Ovadyahu and S.
Nagel.

The model assumes that the measured physical observable
(conductance, dielectric constant, etc.) is affected by an ensemble
of modes, which are independent and contribute to the observa-
ble in a definite way (for example, a relaxation of any of the
modes will cause the conduction to decrease). For each particular
system under study, understanding the microscopic source of
these modes is a quite different sort of question one may ask, and
is outside the scope discussed here (see ref. 34 for a discussion on
these assumptions regarding the modes in the context of electron
glasses). In general, these assumptions would make sense for a
physical observable that depends on the configuration of the
whole system (e.g., conductance, volume) and not some local
probe (e.g., current measured in a scanning tunneling microscope
tip). Also, we would always be assuming that a large number of
these modes contribute, so that we can take the continuous limit,
and discuss probability distributions. Presumably, the model
would fail for a sufficiently small sample [although, in the case
of electron glasses, the logarithmic relaxations were experimen-
tally observed even for micron sized samples (41)]. Each of the
modes would relax exponentially to its equilibrium, but with a
different relaxation rate. To support these assumptions, one
may think of the system as being formally characterized by a state
vector v, containing all the relevant information determining the
physical observable. Perturbing the system weakly near its equili-
brium, one can always linearize the equations of motion, and ob-
tain an equation ©¥ = 45V, with 6v'= V() - Vequilibrium» and A a
matrix, independent of time. The real part of the eigenvalues
of A must be negative, in order for the equilibrium to be stable,
and they have the physical meaning of relaxation rates: As is seen
by solving the linear equation, each eigenmode relaxes exponen-
tially to zero, independently of the other eigenmodes. In certain
cases (29), the form of 4 can be worked out explicitly.

We shall now explain three different mechanisms that lead to
an abundance of slowly relaxing modes of the system, described
mathematically by Eq. 2. Using our assumption that the modes
contribute positively and uniformly to the measured physical ob-
servable, the superposition of these modes will yield (in a certain
time window, the conditions of which we will discuss) the loga-
rithmic relaxations described earlier.
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Fig. 2. (A) Results of aging experiments for four different systems measur-
ing different physical observables. Experimental parameters can be found in
Table 1. The x axis denotes the time (on logarithmic scale, spanning five dec-
ades in time, from seconds to days), and the y axis denotes the signal (with
different units for each dataset). (B) The x coordinate of each dataset is scaled
according to the known waiting time t,,, and the y coordinate is scaled such
that the signal at t = t,, is log(2) (for convenience). The data collapses onto a
single curve, which is compared to the theoretical prediction of Eq. 1. The
Inset shows the same data has indeed linear dependence when the x axis
is defined according to Eq. 1.

Thermal Activation. A diversity of physical processes are governed
by thermal activation, which is perhaps the simplest physical me-
chanism that can give rise to Eq. 2, as has been known for a long
time (19, 42, 43). We should have in mind a rugged energy land-
scape characterizing the system, with many local minima. At a
given time, we can denote by p the vector of probabilities for
the system to reside in each of the minima. Clearly, for a system
governed by stochastic dynamics, the probability vector would
obey the same linear equation mentioned earlier; namely,
‘fi—”t = Ap (i.e., we have defined a Markov process). The relaxation
modes in this case approximately correspond to crossing one of
the energetic barriers connecting two of the local minima. Here,
the rate 4 of a given process is given by the Arrhenius formula;
namely, it is exponential in the energetic barrier U; namely,
A« e"U/KT which the system has to cross in order to reduce its
energy. We will associate each mode with one such transition
(across an energetic barrier U) and assume that the size of these
barriers is distributed smoothly over a certain range of energies.
We can now readily calculate the resulting relaxation rate distri-
bution:

_ P
~di/du| "

where we have taken P(U) as approximately constant. For iso-
thermal processes, the temperature dependence entering the pro-

P(2) T/, [3]
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Table 1. Details of experiments

System Measured variable Units tw, S Source

Aluminum conductance (o) 0.0266/5  1,200,960; 360 Grenet et al., ref. 32 (2007)

Mylar dielectric constant (¢)  10=%5¢/e 18,000 Ludwig et al., ref. 35 (2003)
Indium oxide conductance (o) 0.0166/6  20; 180; 1,620 Ovadyahu, ref. 28 (2006)

Porous silicon conductance (o) 0.0266 /0 110 S. Borini, personal communication (2010)

portionality constant does not play a role in the aging behavior.
From this formula, we can also deduce the smallest and largest
rates the system supports (corresponding to thg fastest and slow-
est times): These are Ay, « e # and Ay, < e # -, related to the
extremal barrier heights. Note that, due to the exponential de-
pendance on U, even a small range of energy barriers can result
in a broad range of relaxation rates. The above mechanism is es-
sentially the same leading to 1/f noise (44, 45) and is reminiscent
of Bouchaud’s trap model (19).

It should be emphasized that we have assumed here that the
energy barriers vary sufficiently slowly, and therefore their varia-
tion within the energy interval [U ;,,U .« ] can be neglected. This
simple picture turns out to be extremely successful when applied
to recent experiments on porous silicon performed around room
temperature. At such a high temperature, thermal effects are ex-
pected to be dominant over quantum effects, and indeed the max-
imal timescale 1,,,,, was found experimentally to be very sensitive
to temperature, as expected from the above formula (39).

However, it is experimentally found that in various systems the
relaxations are insensitive to temperature (32), which necessitates
a different mechanism. Quantum tunneling is the second me-
chanism that yields Eq. 2.

Quantum Mechanical Tunneling. Let us keep in mind the picture de-
scribed earlier for the rugged energy landscape, but now assume
that we are at low enough temperatures such that thermal activa-
tion across the barriers is prohibited. The system will be able to
quantum mechanically tunnel through the barriers, paying a pen-
alty that is typically exponentially suppressed with the distance.
Thus, for this process as well, the rate 1 depends exponentially
on a smoothly distributed variable, which in this instance is
the distance: A ~ e=>/¢, with & the localization length of the wa-
vefunctions, and r the spatial distance between the two points. In
a recent work (46), the distribution of relaxation rates was calcu-
lated for this case, taking into account the correlations that exist
(the distances are not independent in this case). It was found that
one still obtains the 1/4 distribution, albeit with small but inter-
esting logarithmic corrections. Here, the role played by the tem-
perature T in Eq. 3 is played by the localization length &. Related
considerations for a varying height of the barrier through which
the tunneling occurs are given in ref. 47.

In both cases, of thermal activation and of quantum mechan-
ical tunneling, we would like the barrier distribution to be broad
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Fig. 3. Schematic description of the different stages of the aging protocol.
Attime t = —t,, a perturbation is applied to the system, which is turned off at
time t = 0. We will be interested in the form of the relaxation of the physical
observable in the last stage.
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in energy or real space; namely, it should be large compared to
the energy kT or the localization length &, respectively, in order to
achieve a broad range of relaxation rates.

So far, we discussed two different natural ways that lead to this
broad distribution of relaxation rates; namely, thermal activation
(19, 42, 43) and quantum tunneling (46). The exponential nature
of these processes is the key ingredient in obtaining Eq. 2. Both
mechanisms, however, are inadequate to describe the logarithmic
relaxation in crumpling paper, for example (5). We shall now pre-
sent another mechanism, which does not rely on a variable being
exponential, but rather, on the central-limit theorem. This sug-
gests the mechanism should be broadly applicable. We will show
how the interplay of many random processes can, under general
conditions, lead to a log-normal distribution, which is well ap-
proximated over a broad range by Eq. 2.

Multiplicative Processes. In many physical examples, an observable
depends on the product of many approximately independent vari-
ables, which is referred to as a multiplicative process. Under-
standing the importance of such processes in nature dates
back (at least) to Shockley (48), who discussed the connection
of multiplicative processes to log-normal distribution that we
shall also utilize here. See ref. 49 for a strongly related discussion
in the context of 1/f noise.

An example of a multiplicative process is the transmission of a
particle through a one-dimensional disordered wire: If we divide
the wire into a large number of segments, it is known that the
average transmission is the product of the individual transmis-
sions through each segment (50). Fig. 4 demonstrates pictorially
another such example; namely, how for electron glasses relaxa-
tion can occur via the simultaneous tunneling of various elec-
trons, which is also approximately a multiplicative process. If
we assume that the relaxation rate 4 is a product of many inde-
pendent variables x;, we can readily calculate the resulting distri-

A

Fig.4. Pictorial demonstration of different physical mechanisms leading to a
broad distribution of relaxation rates. (A) The energy landscape of various
complex systems, including glasses, contains many minima. The energetic bar-
riers separating them are smoothly distributed over a certain range. In order
for the system to relax its energy, it must cross these barriers by thermal ac-
tivation or by quantum mechanical tunneling: Both are exponential in the
barrier, which lead to a rate distribution described by P(2) ~ 1/4, as we discuss
in detail. (B) Many particle transitions in an electron glass are an example of a
multiplicative process: In many electronic configurations, moving any single
electron in the system to one of the vacant sites will result in higher energy,
and therefore these processes will not occur at low enough temperatures.
However, changing the position of a larger number of electrons can result
in a lower energy. The rates of this process can be approximately written
as a product of the rates of the single particle processes involved, leading
to a rate distribution described by a log-normal distribution.
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bution of relaxation rates. Because 4 = [[x;, we have, using the
central-limit theorem,

P(log(A)) — e~lloal@)-xl/a2, [4]

By changing back to the variable 4, we find that it follows a log-
normal distribution:

P(2) ~ e~llog(Ato) /AT /A, [5]

where ¢, is a constant with the dimensions of time. Far from the
tails of the distribution (namely, when |log(1ty)| < A), the distri-
bution reduces to Eq. 2. Remarkably, in the crumpling paper
example, the distribution of the lengths of the segments was mea-
sured directly, and shown to follow a log-normal distribution (51).
The compatibility of log-normal distribution and logarithmic re-
laxations fits well with the theoretical framework we suggest.

We shall now discuss the implications of this distribution on
aging experiments, showing it leads to aging of a particular form,
called “full” aging, in a particular limit. This was done in the con-
text of relaxation in electron glasses in (33). The derivation we
will present, however, does not rely on any peculiar properties
of this specific system, and as such will be broadly applicable
for all physical systems that follow the 1/2 distribution.

Let us assume that the system supports i = 1...N > 1 relaxa-
tion modes, with corresponding relaxation rates 4;, each of which
contributes an amount X, to the physical observable (e.g., conduc-
tance or dielectric constant). Before going to the more involved
aging experiment, let us consider the case where we excite all
of these modes by some uniform amplitude. The physical observa-
ble X measured a time ¢ after the perturbation, would read
X (t) = XY, which in the continuous limit goes to

Amax

X() = X, / AAP(R)e ™, (6]

J Ain

where P(4) is the distribution of relaxation rates. In the case where
P(4) ~ 1/4, introduced earlier, with A.;, and A, the lower and
upper cutoffs, we obtain the difference of two exponential integral
function (33, 52):
X(t) = Xo[E| Amint) — E1 (Anaxt)]- [7]
For the case where the involved times are much smaller than
the reciprocal lower cutoff A.;,, and much larger than the reci-
procal upper cutoff, the equation reduces to a simpler form:

X(t) = Xo[~7E — log(Amint)]- [8]

Thus, we expect a logarithmic relaxation, which is indeed experi-
mentally observed in a large variety of systems, as discussed ear-
lier. Fig. 1 shows such a logarithmic relaxation, measured in an
indium oxide sample.

Going on to the aging protocol, we shall assume that the per-
turbation is small enough such that the rates of the relaxing
modes are indifferent to it. Nonetheless, upon the application
of the perturbation, the fixed point to which the system attempts
to relax (which does not have to be the true equilibrium, but can
be a metastable state) is different when the perturbation is ap-
plied. Therefore, during the second stage of the experiment
(see Fig. 4), the system relaxes toward the new metastable state,
which means that the relaxation modes are excited with respect to
the original metastable state: Relaxation to the new metastable
state implies excitation with respect to the old one. The closer
we get to the new minimum, the further we are from the initial one.

Let us illustrate this for the example of a single relaxation
mode: In this case the relaxation is exponential, and therefore
at the moment when the perturbation is switched off the distance

Amir et al.

from the new metastable state is proportional to e ™. At this mo-
ment the distance from the original metastable state is 1 — e™%»;
indeed, for ¢, = 0 nothing happens, whereas for ¢, — oo the lar-
gest possible excitation occurs. A time ¢ later, the amplitude of the
relaxation mode, which decays exponentially, would therefore be
(1 —e™*)e~. Generalizing this for the case of many relaxation
modes, we find that a time ¢ after the perturbation has been
switched off, the physical observable is given by

X(t) =X, A A_m“ dAP(2)(1 — e )e= [9]

This can be written, as before, in terms of exponential integral
function. Assuming that we are in the regime of intermediate
asymptotics, where the experimental timescales are much larger
than the reciprocal upper cutoff and much smaller than the re-
ciprocal lower cutoff, we obtain the difference of two logarithms:

X(1)/Xo = log[Amin (t + 1,,)] = log[Amint] [10]

leading to Eq. 1.

It should be noted that the regime where the experimental
time is comparable to 1/, can also be reached, and it was
shown that Eq. 9 accounts of the aging behavior in porous silicon
also in the case where significant deviations from the full aging
regime were observed (39). In other words, the model predicts
full aging only in the asymptotic regime, and can also account
for the deviations from full aging. Related system dependent cut-
offs were also discussed in the context of spin-glass (27).

Connection to 1/f Noise

The broad underlying distribution of relaxation rates, which
played a crucial role in determining the slow relaxations, is also
central for understanding low-frequency noise in many systems. A
variety of physical, biological, and financial models show a uni-
versal form of low-frequency noise (44, 45, 49, 53), with a power-
spectrum scaling as 1/f. This ubiquitous form of noise is deeply
related to the logarithmic relaxation that we study here, the un-
derlying principle being a roughly uniform distribution of effec-
tive barriers. In ref. 54, a relation between the two physical
phenomena was made, based on a theory devised by Onsager
nearly a century ago: The connection is made through the Onsa-
ger’s regression principle, stating that the relaxation of a system
close to its equilibrium is related to the spectrum of the fluctua-
tions of the system around the equilibrium (55). Each mode with
a rate A generates a Lorentzian noise spectrum (42, 43):

A

1) - (1]

Summing over many modes using the distribution of Eq. 2 yields
1/f noise. Linking these two seemingly unrelated universal beha-
viors, logarithmic relaxations and 1 /f noise, seems to us both con-
ceptually appealing and of practical importance. For one, it
means that the different physical mechanisms we suggested to
yield the broad distribution of relaxation rates would also imply
1/f noise.

Other Appearances of the 1/ Distribution in Nature

In fact, the P(1) ~ 1/4 distribution, which plays a pivotal role in
determining the aging, logarithmic relaxations, and 1/f noise, ap-
pears also in completely different contexts. The Gutenberg—Rich-
ter law (56), for example, states that the distribution of the
magnitude of earthquake is a power law. The exponent is experi-
mentally found, in various methods of analysis, to be close to one
(57). Another striking example lies in the so-called “first-digit
problem.”
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Toward the end of the 19th century, the astronomer Simon
Newcomb noticed, while looking at his logarithm table, that num-
bers starting with 1 are looked up far more often than higher
digits (58). Half a century later, the physicist Frank Benford
rediscovered the phenomenon, and asked himself the following
question: What is the distribution of the leading digits of numbers
encountered in a certain scenario? (40). Remarkably, in hugely
differing datasets such as those found in tax returns, tables of
physical constants, birth rates, and many others, the relative oc-
cupance of each digit follows a universal (and nonuniform) dis-
tribution: P(d) = log(1 + 1/d), where d is the digit. This is known
as Benford’s law, and it is robust enough to be used to detect
frauds in tax returns (59). It can be explained in a simple way,
if we assume that the distribution of x, the variable measured,
follows approximately P(x) ~ 1/x, over a large window. Clearly,
the probability that the first digit is 1 is proportional to
[31/xdx + [351/xdx + ... = N log[2], where N is the number of
decades spanned by the distribution (assumed to be a large num-
ber). Similarly for the digit d, one obtains N log[(d + 1) /d], yield-
ing Benford’s law. Thus, there is an intimate relation between the
1 /x distribution leading to logarithmic, slow relaxations, and Ben-
ford’s law, stating universal statistics in the first-digit problem. It
remains a challenge to find the unifying mechanisms between
these various observations.

The Extent of Applicability of the Theory

So far, we have discussed three different physical mechanisms
leading to the same aging behavior. There are, of course, other
forms of slow relaxations in nature, which are also commonly
observed, and many fascinating physical systems that do not fit
into the framework outlined here. Two important examples are
the aging behavior of spin-glass systems, which appears to be
more complex (7-9) and is not described by this model, and
the behavior of molecular and colloidal glasses, which have re-
ceived much attention in recent years (14, 15). As indicated by
refs. 60 and 61, the model proposed here is not consistent with
the relaxations observed in these systems. Another generic form
of slow relaxations in nature is stretched exponential relaxation
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e~/"" which has been experimentally observed in various sys-
tems (1, 16, 62-64), and for which several theoretical models have
been proposed (65-68). For small 3, this form is similar to Eq. 1,
but it is still possible to distinguish the two, by analyzing the short-
time behavior, where a power law markedly differs from a loga-
rithm. It would be interesting to make a better classification of
these two universality classes (and possibly others), and to deter-
mine the extent and limitations of the applicability of each of
them, but this task is beyond the scope of this work.

Conclusions

To summarize, in this paper we discussed a generic model for slow
relaxations and aging, whose signature is a distinct crossover from
a logarithm to a power law, with no fitting parameters other than
the overall scaling. Theoretically, we have shown how various dif-
ferent physical mechanisms give rise to a broad distribution of
relaxation rates, of a particular form, and analyzed the resulting
aging behavior. The data from various experiments was shown to
agree well with this prediction, over many decades in time. The
experiments measure different physical observables, in a variety
of systems and temperatures. This form of aging is fundamentally
connected to other phenomena that are commonly observed in
nature, such as 1/f noise. Part of the beauty of physics lies in
the surprising connections it offers, between different fields
and phenomena. We showed that one could understand on equal
footing the aging of quantum tunneling in electron glasses (33)
and the mechanical relaxations of plant roots (4), and that both
are connected to the 1/f noise electrical engineers are well famil-
iar with. As such, we believe the model presented can serve as a
paradigm for slow relaxations and aging for a broad class of
systems.
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