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Division of labor among functionally specialized modules occurs
at all levels of biological organization in both animals and plants.
Well-known examples include the evolution of specialized en-
zymes after gene duplication, the evolution of specialized cell
types, limb diversification in arthropods, and the evolution of
specialized colony members in many taxa of marine invertebrates
and social insects. Here, we identify conditions favoring the
evolution of division of labor by means of a general mathematical
model. Our starting point is the assumption that modules contrib-
ute to two different biological tasks and that the potential of
modules to contribute to these tasks is traded off. Our results are
phrased in terms of properties of performance functions that map
the phenotype of modules to measures of performance. We show
that division of labor is favored by three factors: positional effects
that predispose modules for one of the tasks, accelerating per-
formance functions, and synergistic interactions between mod-
ules. If modules can be lost or damaged, selection for robustness
can counteract selection for functional specialization. To illustrate
our theory we apply it to the evolution of specialized enzymes
coded by duplicated genes.
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All organisms face different tasks during their life, like the
acquisition of food, locomotion, reproduction and repair, to

name a few. In organisms with a modular structure often dif-
ferent tasks are executed by specific modules that are specialized
for their task, a phenomenon we call division of labor or func-
tional specialization. Division of labor can be found at all levels of
biological organization. For instance, for many genes it is be-
lieved that they originated from a duplication event (1, 2). If the
original gene coded for an unspecific enzyme while some time
after duplication each copy of the gene codes for a more specific
enzyme, division of labor has evolved. Another example is the
evolution of novel cell types that goes hand in hand with division
of labor (3–6). A particular well-studied instance of division of
labor at the cellular level is the transition from undifferentiated
multicellular organisms to organisms with germ–soma differen-
tiation in the green algae volvocaceae (7, 8). Another example of
cell differentiation, this time from multicellular cyanobacteria, is
the differentiation into carbon-fixating vegetative cells and ni-
trogen-fixating heterocysts (9, 10). There is also the suggestion
that division of labor is a common feature in bacterial pop-
ulations (11). At higher levels of organization, division of labor
can be found in teeth (12) and arthropod limbs (13). Also some
instances of left–right asymmetry (14) in bilateral organisms such
as asymmetric chelipeds in fiddler craps can be classified as di-
vision of labor. Division of labor can also be found in colonial
organisms. It is present in eusocial insects (15–18) and many
groups of aquatic invertebrates, e.g., in colonial cnidaria (19–22)
and bryozoa and thaliacea (23). Another intriguing example for
division of labor is heteranthery in plants where some species
with nectarless flowers produce two types of anthers: feeding
anthers and pollination anthers (24, 25). The evolution of di-
vision of labor has also been linked to major transitions in evo-

lution (26) and it is this aspect of division of labor that has
received the lion’s share of attention by theoreticians (15, 27–
35). These transitions are the change from unicellular to multi-
cellular organization with germ–soma differentiation and the
emergence of group living. Central to both these transitions and
accordingly to the accompanying modeling effort is the potential
for genetic conflict and cheating (36).
For each level of organization also examples can be found where

functional specialization is not pronounced or even absent. In
these cases modules are involved in several tasks and show char-
acteristics that allow them to be classified as generalist modules.
For instance, ant colonies typically have to execute between 20 and
40 different tasks, depending on the size of the colony. However,
of 263 ant genera only 20% consist of morphologically differen-
tiated worker castes (15). The highest number of such physical
castes is three, which is realized in only three genera. In addition to
physical castes, ants (and many social bees and wasps) go through
ontogenetic stages in which individuals fulfill different tasks, but
the total number of temporal and physical castes rarely seems to
exceed six (15). Similarly, it has been noted that polymorphisms
are conspicuously absent from some taxa of colonial marine in-
vertebrates (23) and that limb differentiation in crustaceans con-
sistently increased over geological time but never reached the
highest possible complexity indexes (37). It is furthermore clear
that many genes and cells fulfill a multitude of tasks.
This comparison of modules that either have or have not

evolved functional specialization is evidence that division of la-
bor is not an inevitable outcome of evolution, raising the ques-
tion: What limits the evolution of specialized modules? Whether
division of labor can evolve will at least partly depend on system-
specific factors such as the availability of genetic variation and
thus on developmental constraints, on possible costs for main-
taining differentiated developmental pathways, and, in the case
of colonial organisms, on possible conflicts between individual
colony members over reproduction. In this article we propose,
however, that there are also necessary conditions that have to be
fulfilled for division of labor to evolve that are not system spe-
cific. More specifically, we derive conditions that constitute mini-
mal requirements and have to be fulfilled by any system for
division of labor to be favored by selection.
Our results are derived from a minimal set of assumptions that

presumably are fulfilled in many biological systems: (i) Ancestral
modules were identical in form and function to each other and
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these undifferentiated modules contributed to two tasks, (ii)
fitness increases with increasing levels of performance in both
tasks, and (iii) functional constraints result in a trade-off: mod-
ules that are well adapted to contribute to one task can con-
tribute less to the other task and vice versa. We phrase our result
in terms of properties of functions that map traits to functional
performance. More specifically, we show that the evolution of
division of labor is favored by three factors: (a) positional effects
(the contribution of different modules to the different tasks
depends on their position within the organism), (b) accelerating
performance functions, and (c) synergistic interactions between
modules. Furthermore, we show that selection for functional ro-
bustness can counteract selection for division of labor. Although
our framework is very general and not geared toward any specific
system, concrete predictions can be generated when the relevant
functions are derived from mechanistic considerations in a specific
system. This point is illustrated by applying our framework to the
evolution of specialized enzymes coded by duplicated genes.

Model and Results
We consider an organism that contains n different modules at
some level of its organization that contribute to two tasks. For
example, in many arthropods iterated body segments carry
appendages that are involved in multiple functions such as for-
aging and locomotion (13, 37) or walking and burst swimming
(38). Another example fitting within our framework, and one
that we explore in some depth later, is pairs of duplicated genes
coding for bifunctional gene products.
We assume that performance in both tasks is connected by

a trade-off; i.e., the performance of a given module cannot be
maximized for both tasks simultaneously. With n modules, evo-
lution is then naturally constrained to move on an n-dimensional
trade-off manifold. To see this, assume first that phenotypic
variation occurs only at a single module (all other modules are
fixed at a particular phenotype). We can map all states (geno-
types) of this module to a 2D space by assigning them perfor-
mance values for each task. Due to the trade-off, adaptive
evolution in this module will reach a state where a further in-
crease in the performance for one task can be achieved only at
the cost of a reduced performance in the other task. The set of
states with this property forms a one-dimensional boundary in
the 2D space of performances. This boundary is often referred to
as trade-off curve (39). Once it is reached, any further (non-
deleterious) evolutionary change can occur only along this curve.
For a single variable module, we can parameterize the position
on the trade-off curve by a scalar θ. For n variable modules, the
corresponding trade-off manifold can be parameterized by an
n-dimensional vector (θ1, . . . , θn), where θi corresponds to var-
iation in the ith module. From now on, we refer to θi as the trait
value of the ith module. Because different parameterizations
correspond to different scalings of the underlying traits, results
do not depend on the chosen parameterization. In Application:
Specialization of Duplicated Genes we give an explicit example of
such a parameterization.
In our model we can distinguish assumptions affecting the

phenotype and assumptions affecting fitness. These are now
described in turn. Performance in the two tasks, measured at the
level of the whole individual, is denoted by F1 and F2 or, stressing
the dependence of performance on the traits, by F1(θ1, . . . , θn)
and F2(θ1, . . . , θn). The assumption that evolution is constrained
by trade-offs implies

∂F1ðθ1; . . . ; θnÞ
∂θi

> 0 and
∂F2ðθ1; . . . ; θnÞ

∂θi
< 0 [1]

for i ∈ {1, . . . , n}, where the choice that F1 is increasing in
its arguments while F2 is decreasing in its arguments is made
without loss of generality. Fitness of a phenotype is denoted by

ρ(F1, F2) or, more precisely, by ρ(F1(θ1, . . . , θn), F2(θ1, . . . , θn)).
The only assumption we make with respect to fitness is that it is an
increasing function of performance in both tasks:

∂ρðF1;F2Þ
∂Fi

> 0 for i ∈ f1; 2g: [2]

Our framework is very general in the sense that we not have to
choose a specific measure of fitness. In particular, our theory is
independent of a change in fitness scale (sensu ref. 40).
We first derive the theory for two modules and later extend it

to n modules. We envisage a scenario where, ancestrally, the two
modules have identical characteristics. These phenotypes are
described by vectors (θ1, θ2) with θ1 = θ = θ2. Throughout, we
refer to the one-dimensional trait space defined by θ1 = θ2 as

A

B

Fig. 1. Convex (A) and concave (B) performance landscape for the first task.
Performance F1ðθ1; θ2Þ, plotted on the z axis, is a monotonically increasing
function of the trait values of the two modules, θ1 and θ2, plotted on the x
and y axes, respectively. Shaded lines show performance along the con-
strained trait space defined by θ1 ¼ θ2. Thick solid lines show performance
along a straight line orthogonal to the constrained trait space. Another
possibility to visualize the curvature of performance landscapes is by means
of contour lines or iso-performance curves. An iso-performance curve con-
sists of all combinations ðθ1; θ2Þ that result in the same level of performance
Fiðθ1; θ2Þ. Iso-performance curves are shown as thin solid lines and are useful
in Fig. 2 and Fig. S1. Importantly, for F1 iso-performance curves are concave if
and only if the thick solid line is convex (A) and convex if and only if the thick
solid line is concave (B). For F2 this relationship is reversed. Note that with
nonequivalent modules it is also possible that a performance landscape is
convex along one axis and concave along the other.
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constrained trait space. This constrained trait space corresponds
to the thick shaded curve in Fig. 1 and to the diagonal line in the
contour plots of the fitness landscape shown in Fig. 2. All phe-
notypes characterized by (θ1, θ2) with θ1 ≠ θ2 show some degree
of functional specialization. Central to our theory are values θ*
that are maxima of the fitness function in the constrained trait
space and hence characterized by

0 ¼ dρðF1ðθ; θÞ;F2ðθ; θÞÞ
dθ

�����
θ¼θ*

[3]

0>
d2ρðF1ðθ; θÞ;F2ðθ; θÞÞ

dθ2

�����
θ¼θ*

: [4]

Evolution of undifferentiated modules, that is, evolution in the
constrained trait space, approaches such points θ*. In the un-
constrained, 2D trait space this point is written as (θ*, θ*), in-
dicated by the solid circles in Fig. 2.
The purpose of this article is to determine conditions under

which functionally differentiated phenotypes (θ1, θ2) with θ1 ≠ θ2
exist that have a higher fitness than the phenotype (θ*, θ*).
Whether such phenotypes can exist depends on whether func-
tionally differentiated phenotypes perform better in the two

tasks than the undifferentiated phenotype (θ*, θ*). It is therefore
no surprise that our main results can be phrased largely in terms
of curvature properties of the performance functions Fi(θ1, θ2).
In the continuation of our argument we distinguish two scenar-
ios, corresponding to equivalent and nonequivalent modules.

Equivalent Modules. We call two modules equivalent with respect
to the ith task if Fi(θ1, θ2) is symmetric, i.e., if Fi(θ1, θ2) = Fi(θ2,
θ1). In this case the contribution of a module to a task depends
only on its phenotype and not on its location within the organ-
ism, that is, not on its label 1 or 2. Examples are organisms that
are rotational symmetric and transregulated duplicated genes. A
consequence of equivalence is that graphs of the performance
functions F1 and F2 and the fitness function ρ are symmetrical
around the constrained trait space (i.e., mirror symmetric around
the 45° line in Figs. 1 and 2 A–C). It follows that in the case of
equivalent modules the point (θ*, θ*) can generically be only
a fitness maximum or a minimum in the direction orthogonal to
the constrained trait space (Fig. 2 A–C). In the first case, (θ*, θ*)
is a fitness maximum in the unconstrained 2D trait space whereas
in the second case it is a saddle point of the fitness landscape. By
evaluating the Hessian matrix of the functions F1(θ1, θ2) and
F2(θ1, θ2) in the direction of the vector (1, −1), it is now
straightforward to show that the curvature of the performance

A B C

FED

Fig. 2. Fitness landscape for the case of two equivalent modules (A–C) and two nonequivalent modules (D–F). Contours of the fitness landscape are indicated
by shading with lighter shades indicating higher fitness. Solid circles indicate the location of fitness maxima ðθ*; θ*Þ in the constrained trait. The expected
direction of the evolutionary dynamics is indicated by arrows. The solid and dashed curves depict iso-performance curves of the underlying performance
functions F1 and F2, respectively, as introduced in the Fig. 1 legend. (A) Iso-performance curves are convex for F1 and concave for F2, indicating that functional
differentiation decreases performance in both tasks. Thus, the point ðθ*; θ*Þ is a fitness maximum. (B) Iso-performance curves are concave for F1 and convex
for F2, indicating that functional differentiation increases performance in both tasks. Thus, the point ðθ*; θ*Þ is a saddle point of the fitness landscape. (C) Iso-
performance curves are concave for both F1 and F2, indicating that functional differentiation increases performance for task 1 and decreases performance for
task 2. In this particular example the increase in performance in task 1 is sufficiently large to outweigh the decrease in performance in task 2 such that the
point ðθ*; θ*Þ is still a saddle point of the fitness landscape. For plots D, E, and F it is assumed that module 1 has an intrinsic advantage in contributing to task 2
whereas module 2 has an intrinsic advantage in contributing to task 1. Each plot in the lower row is a perturbation of the corresponding plot in the upper
row. In D nonequivalence of modules moves the fitness maximum above the diagonal whereas in E and F nonequivalence moves the saddle point below the
diagonal. In both cases, selection favors specialization of module 1 for task 1 and of module 2 for task 2. Note that extrema of the fitness landscape cor-
respond to points ðθ1; θ2Þ where iso-performance curves for F1 and F2 are tangent to each other. Plots show the function ρðF1; F2Þ ¼ F1 * F2 with F1 and F2
defined in Eq. S2 in SI Text A with n ¼ 2 and p ¼ 0:5.
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landscape for the ith task in the direction orthogonal to the
constrained trait space at the point (θ*, θ*) is given by

Ci : ¼ 1
2

 
∂2Fiðθ1; θ2Þ

∂θ21
þ ∂2Fiðθ1; θ2Þ

∂θ22
− 2

∂2Fiðθ1; θ2Þ
∂θ1∂θ2

!

¼ ∂2Fiðθ1; θ2Þ
∂θ21

−
∂2Fiðθ1; θ2Þ
∂θ1∂θ2

;

[5]

where all derivatives are evaluated at the point (θ*, θ*). The
simplification leading to the second equality results from the fact
that for equivalent modules ∂2Fiðθ1; θ2Þ=∂θ21 ¼ ∂2Fiðθ1; θ2Þ=∂θ22.
If Ci > 0, then performance of phenotypes with differentiated
modules lying on the line orthogonal to the constrained trait
space exceeds performance of the undifferentiated phenotype
(θ*, θ*) (Fig. 1A). These phenotypes, characterized by trait
vectors (θ1, θ2) = (θ* + Δ, θ* − Δ), are represented by the thick
black line in Fig. 1. In contrast, if Ci < 0, then performance has
a maximum at the point (θ*, θ*) in the direction orthogonal to
the constrained trait space (Fig. 1B).
On the basis of these curvature properties we show in

Appendix: Saddle Points of the Fitness Landscape that the point
(θ*, θ*) is a saddle point of the fitness landscape if and only if

∂ρðF1;F2Þ
∂F1

C1 þ ∂ρðF1;F2Þ
∂F2

C2 > 0; [6]

where again all derivatives are evaluated at the point (θ*, θ*).
Condition Eq. 6 can be phrased verbally as follows: Functional
specialization is favored by natural selection if the sum of the
effects of specialization on performance in the two tasks,
weighted by the effect of a change in performance on fitness, is
positive. Remember that by assumption Eq. 2 the weighting
terms ∂ρ(F1, F2)/∂Fi are positive. It should be noted that if
functional differentiation is favored in the case of equivalent
modules, due to the symmetry no prediction can be made about
which module specializes on which function (Fig. 2B).
Two cases can be distinguished under which condition Eq. 6

is fulfilled. First, if functional specialization increases performance
in both tasks, thus if C1 > 0 and C2 > 0, then both terms on the
left-hand side of condition Eq. 6 are positive (Fig. 2B). In this case
functional specialization is unambiguously advantageous. Second,
if functional differentiation increases performance in one task, say
task 1 (C1 > 0), while it decreases performance in task 2 (C2 < 0),
then the situation is more complicated. Condition Eq. 6 is then
fulfilled if C1∂ρðF1;F2Þ=∂F1 > −C2∂ρðF1;F2Þ=∂F2, that is, if ei-
ther the gain in performance due to functional specialization in
task 1 is sufficiently large or a change in performance in task 1 has
a large effect compared with the effect of a change in performance
in task 2 (Fig. 2C).
The definition of Ci shows that for the case of equivalent

modules two factors favorable for functional specialization exist:

i) Accelerating performance functions: We say that a perfor-
mance function is accelerating if the performance landscape
is convex along the trait axes [∂2Fiðθ1; θ2Þ=∂θ21 > 0; Fig. 1A]
and saturating if the performance landscape is concave along
the trait axes [∂2Fiðθ1; θ2Þ=∂θ21 < 0; Fig. 1B]. With accelerating
performance functions, the gain in performance through in-
creased specialization of one module exceeds the loss due to
decreased specialization of the other module, resulting in in-
creased performance at the level of the whole organism.

ii) Synergistic interactions between modules: Modules interact
with each other when performance in a task cannot be
expressed as the sum of their separate contributions. We
say that modules interact synergistically when the joint contri-
bution of two differentiated modules to performance exceeds
the sum of their separate contributions. From Eq. 5 it is clear

that this case corresponds to a negative mixed derivative
∂2Fiðθ1; θ2Þ=∂θ1∂θ2. Conversely, modules interact antagonisti-
cally when the joint contribution of two differentiated mod-
ules to performance is less than the sum of their separate
contributions, corresponding to a positive mixed derivative.

Nonequivalent Modules. If the two modules are not equivalent
with respect to a task, then the effect of a change in a module on
performance depends on the module, for instance because of its
position within the organism. An example is serial modules such
as limbs in arthropods. Limbs at anterior segments are likely to
have a higher contribution to food processing than limbs at more
posterior segments even if limbs are not differentiated yet. An-
other example is teeth, where anterior ones will be more efficient
at cutting than posterior ones. We refer to such asymmetries as
positional effects.
If the two modules are nonequivalent with respect to the ith

task, thus if Fiðθ1; θ2Þ is not symmetric with respect to its argu-
ments, then the performance landscape for the ith task is not
mirror symmetric with respect to the 45° line. Then, generically,
also the fitness landscape lacks this mirror symmetry. As a con-
sequence, with nonequivalent modules the point ðθ*; θ*Þ is not
an extremum in the extended trait space and thus neither
a maximum nor a saddle point of the fitness landscape (Fig. 2 D–

F). Instead, the fitness landscape is increasing in one direction
along the line that passes orthogonally through the point ðθ*; θ*Þ
and directional selection at the point ðθ*; θ*Þ favors functional
specialization. More precisely, in Appendix: Saddle Points of the
Fitness Landscape we show that phenotypes ðθ*þ Δ; θ*−ΔÞ,
with Δ small and positive, are favored if

∂F1

∂θ1
∂F1

∂θ2
>

∂F2

∂θ1
∂F2

∂θ2
;

��
[7]

where all derivatives are evaluated at the point ðθ*; θ*Þ, whereas
phenotypes ðθ*−Δ; θ*þ ΔÞ are favored if inequality Eq. 7 is
reversed. Thus, in contrast to the case of equivalent modules,
with nonequivalent modules specialization away from the con-
strained trait space is possible only to one side (compare Fig. 2B
with 2 D–F). Condition Eq. 7 makes intuitive sense. If the con-
tribution of module 1 to task 1 exceeds the contribution of
module 2, then the left-hand side of inequality Eq. 7 exceeds one.
On the other hand, if the contribution of module 2 to task 2
exceeds the contribution of module 1, then the right-hand side of
inequality Eq. 7 is less than one. In this case one expects module
1 to specialize on task 1 whereas module 2 specializes on task 2.
Importantly, with nonequivalent modules functional speciali-

zation is favored regardless of the curvature of the performance
landscapes described by Ci. However, this curvature determines
the degree to which functional specialization is favored. When
C1 and C2 are negative, then nonequivalence constitutes a per-
turbation of a fitness landscape that has a maximum at ðθ*; θ*Þ.
In other words, the maximum moves slightly off-diagonal
(compare Fig. 2A with 2D). On the other hand, when C1 and C2
are positive, then nonequivalence constitutes a perturbation of
a fitness landscape that has a saddle point at ðθ*; θ*Þ. In this case,
the saddle point moves slightly off-diagonal (compare Fig. 2B
with 2E). In the first case, functional specialization is favored
only to a limited degree whereas in the second case it is favored
to a larger degree (compare Fig. 2D with 2E).
So far the starting point of our considerations was a phenotype

ðθ*; θ*Þ that fulfills Eqs. 3 and 4, i.e., that is a maximum of the
fitness function in the constrained trait space. This assumption
can be justified because specialization requires the develop-
mental decoupling of modules. Initially serially homologous
modules will have high genetic correlations and thus the selec-
tion response along the constrained space is going to be much
higher than the selection response orthogonal to it. In this case
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the population is thus expected to reach the fitness optimum of
the constrained space first before selection for specialization is
likely to be effective. However, in other cases, for example with
duplicated genes, the decoupling is a by-product of the duplica-
tion, and independent evolution in the two modules is actually the
default scenario. What are the conditions for functional speciali-
zation in this more general scenario? Whenever a phenotype
ðθ; θÞ is not at a maximum in the constrained trait space, pheno-
types ðθ1; θ2Þ exist in its neighborhood with ρðF1ðθ1; θ2Þ;
F2ðθ1; θ2ÞÞ> ρðF1ðθ; θÞ;F2ðθ; θÞÞ. However, only in the neighbor-
hood of a point ðθ*; θ*Þ that is not a maximum in the direction of
the vector ð1; − 1Þ (i.e., that is either a saddle point or a point that
is not a critical point in the unconstrained trait space) is invasion
of such mutants not merely a short excursion away from the
constrained trait space but the start of functional specialization.
These considerations justify the focus on points ðθ*; θ*Þ.
Application: Specialization of Duplicated Genes
In this section, we apply our framework to a specific example:
specialization of duplicated genes. This application allows us to
incorporate system-specific mechanistic details in the formula-
tion of the performance functions, which, in turn, results in some
surprisingly concrete predictions. However, it should be clear
that we do not aim at developing a full-fledged theory for spe-
cialization of duplicated genes but merely illustrate how our
framework can be applied to concrete examples.
For a long time, the predominant hypothesis for the evolution

of new function in duplicated genes was due to Ohno (1). His
model, called neofunctionalization, assumes that duplication
results in a redundant copy of a gene. This copy is freed from
purifying selection. In most cases, mutations will deteriorate the
sequence, resulting in a loss of function. Occasionally, however,
mutation may result in a gene coding for a new function. This
new sequence would then be under positive selection. With ac-
cumulating molecular data the importance of neofunctionalization
has been questioned to the extent that some researchers believe
that new functions rarely, if ever, evolve according to Ohno’s
model (2, 41–43). In the meantime, a suite of alternative models
explaining the fixation, maintenance, and specialization of gene
duplicates has been developed (see ref. 44 for a recent review).
One of these alternatives, proposed by Hughes (2, 41), fits
squarely within our framework but has, according to Innan and
Kondrashov (44), never been explored formally. Hughes’ verbal
model is based on the observation that some gene products serve
two functions that cannot be independently improved (45, 46). If
such a bifunctional gene becomes duplicated, the duplicate can
become either lost or fixed where fixation can occur either by
drift or due to positive selection because of a dosage effect. If in
the unduplicated gene neither function could be improved without
deteriorating the other function, each copy of the fixed duplicates
can then specialize on a different function. This latter step earned
this model the name escape from adaptive conflict (47). Here, we
use our framework to investigate this idea more formally.
We consider a gene coding for an unspecific enzyme that binds

to and converts two different substrates. The affinity of the en-
zyme to the different substrates is determined by structural
features. Selection acts to maximize the affinities for both sub-
strates but ultimately has to run into a constraint where an in-
crease in affinity for one enzyme comes at the expense of
a decrease in affinity for the other substrate. If we denote the
affinity of the enzyme for the ith substrate by ai, we can then
write one affinity as a function of the other one: a2ða1Þ with
da2ða1Þ=da1 < 0. Thus, we can characterize the gene by the af-
finity of the corresponding enzyme to substrate 1, which is more
accessible to measurements than the structural features of the
enzyme that determine the affinities. If the gene becomes du-
plicated, we have to extend our notation to be able to distinguish
between enzymes coded by the two loci. The affinity of the en-

zyme coded by the ith locus for the jth substrate is denoted by ai;j.
Performance is defined as the total amount of substrate con-
verted and denoted F1ða1;1; a2;1Þ and F2ða1;2ða1;1Þ; a2;2ða2;1ÞÞ for
substrates 1 and 2, respectively. After duplication the two loci are
identical, and thus equivalent, and characterized by ða*; a*Þ,
where the asterisk indicates that we assume that ða*; a*Þ corre-
sponds to a maximum of the constrained trait space. We seek the
condition for this point to be a saddle point of the fitness func-
tion ρðF1ða1;1; a2;1Þ;F2ða1;2ða1;1Þ; a2;2ða2;1ÞÞÞ.
In SI Text C we show that condition Eq. 6 for the example of

duplicated genes equals

∂ρ
∂F2

 �
da1;2
da1;1

�2�∂2F2

∂a21;2
−

∂2F2

∂a1;2∂a2;2

�
þ ∂F2

∂a1;2
d2a1;2
da21;1

!

þ ∂ρ
∂F1

 
∂2F1

∂a21;1
−

∂2F1

∂a1;1∂a2;1

!
> 0; [8]

where all derivatives are evaluated at a point ða*; a*Þ. Note that
this inequality does not show the same pleasing symmetry as
condition Eq. 6. The more complex form of the left-hand side of
condition Eq. 8 is due to the manner in which we introduced the
trade-off: F2ða1;2ða1;1Þ; a2;2ða2;1ÞÞ is not directly a function of a1;1
and a2;1 but via the functions a1;2ða1;1Þ and a2;2ða2;1Þ. Keeping in
mind that da1;2=da1;1 < 0, we can draw the following conclusions:

i) A saturating response of the amount of converted substrate
to an increase in substrate affinity disfavors specialization,
whereas an accelerating response favors specialization.

ii) Synergistic interactions between the gene products coded by
different loci favor specialization.

iii) A convex trade-off ðd2a1;2ða1;1Þ=da21;1 > 0Þ between the affini-
ties to the two substrates favors specialization, whereas a con-
cave trade-off ðd2a1;2ða1;1Þ=da21;1 < 0Þ disfavors specialization.

In the following we show how information about these func-
tional properties could be derived from mechanistic consid-
erations. It is widely acknowledged that substrate conversion by
enzymes can be approximated by Michaelis–Menten kinetics.
Then the speed of the substrate conversion, at quasi-steady state,
is described by

v ¼ vmax½s�
KM þ ½s�; [9]

where vmax denotes the maximum conversion rate, ½s� the sub-
strate concentration, and KM the Michaelis–Menten constant. At
½s� ¼ KM, the reaction reaches its half-maximum speed vmax=2.
By deriving the Michaelis–Menten kinetics from an explicit
model one can show that KM ¼ ðk− 1 þ k2Þ=k1, where k1 is the
speed with which enzyme–substrate complexes are formed
whereas k− 1 and k2 are the decay constants for this complex,
either to substrate and enzyme or to converted substrate and
enzyme, respectively (48). Eq. 9 can be rewritten as

v ¼
~k1vmax ½s�
1þ ~k1 ½s�

; [10]

where ~k1 ¼ k1=ðk− 1 þ k2Þ. Obviously, v is a saturating function
of ~k1 and therefore of k1. The total amount of converted sub-
strate, Fi, is proportional to the speed with which the substrate is
produced. If we now identify the affinity a with the constant k1,
the double derivatives ∂2Fi=∂a2i;1 in condition Eq. 8 are negative.
In other words, negative curvature of the performance function
is a mechanistic consequence of Michaelis–Menten kinetics and
disfavors functional specialization. Hence, functional speciali-
zation of duplicated multifunctional enzymes is far from a for-

E330 | www.pnas.org/cgi/doi/10.1073/pnas.1110521109 Rueffler et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1110521109/-/DCSupplemental/pnas.201110521SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1110521109


gone conclusion and we have to investigate other potential fac-
tors that could explain it.
Interactions between gene products coded by different loci can

emerge when enzymes are dimers or multimers. For example,
consider a dimeric enzyme and let us assume that before gene
duplication such dimers are formed by two proteins coded by the
same gene; i.e., the enzyme is a homodimer. After gene duplica-
tion dimers can form from pairs of proteins that are both coded by
the original locus, both coded by the new locus, or from pairs
where one protein is coded by the original locus and the other by
the new locus. If the two loci accumulate different mutations, the
latter enzymes become heterodimers. If heterodimers perform,
averaged over the two different substrates, better than each
homodimer, then specialization of duplicated loci is favored by
selection. In the terminology of our model, interactions between
the two loci occur through the formation of heterodimers. If these
heterodimers perform better than homodimers, then the in-
teraction between loci is synergistic and functional specialization is
adaptive. In SI Text C we formalize this verbal argument and show
that the strength of the selective force due to heterodimers
increases with the frequency with which they are formed.
The third factor affecting condition Eq. 8, trade-off curvature,

is basically unknown. Thus, whereas Michaelis–Menten kinetics
is a ubiquitous mechanism disfavoring specialization, synergistic
interactions between loci are a mechanism that might allow
specialization despite constraints imposed by Michaelis–Menten
kinetics, although only under rather special conditions. On the
basis of these findings one might conclude that the conditions for
specialization of duplicated genes are only rarely met. However,
so far we have assumed that duplicated genes are equivalent.
This need not to be the case. Often genes with multiple functions
will execute these functions in different tissues or at different
times. If the two copies of a duplicated gene differ in their reg-
ulatory regions, either because of mutations or because of the
duplication event itself, positional effects are present. Then
changes in the coding region of a gene specializing it for one
function are always favored if these changes occur in the copy
that expresses the gene preferentially in the appropriate location
or at the appropriate time. Thus, the scope for specialization
between duplicated genes can become much wider if differences
between their regulatory regions exist. This latter idea is closely
related to the duplication–degeneration–complementation model
suggested by Force and colleagues (42). These authors argue that
duplicated genes are easily maintained if degenerative mutations
affect complementary regulatory regions. Our model suggests
that under such conditions duplicated genes not only are main-
tained but also become specialized for alternative tasks.

Many Modules
Many examples given in the introductory section of this paper are
about organisms that consist of many modules, posing the ques-
tion of how our results are affected if more than two modules are
involved in the execution of two tasks. Answering this question in
full generality is complex, because we then would have to deal
with an n-dimensional trait space, n being the number of modules.
Here we make the simplifying assumption that the n modules of
an organism fall into two groups with modules within the same
group being characterized by the same trait value θ. This as-
sumption is justified if the developmental program for the mod-
ules contains switches that allow only for discrete alternatives.
Revisiting our introductory example, this means that m pairs of
appendages in a shrimp are specialized on walking whereas the
remaining n−m pairs are specialized on burst swimming. We
note that our approach is conservative in the sense that it is
possible that an undifferentiated organism resides at a saddle
point of the fitness landscape when each module is allowed to
change independently whereas it resides at a maximum under the
constraint that modules within each group are identical.

For n equivalent modules we show in SI Text A that condition
Eq. 6 remains necessary and sufficient for the existence of
a saddle point. The difference is that in the case of nmodules the
allocation of modules to the different tasks, determined by m
and n, imposes a constraint on the variation in θ1 and θ2 for
specialization to evolve. Consider an organism with n modules,
m of which are characterized by θ1 ¼ θ*þ Δ1 and n−m by
θ2 ¼ θ*−Δ2 with Δ1 and Δ2 small and positive. In SI Text A we
show that if condition Eq. 6 is just barely fulfilled, then Δ1 and Δ2
have to be related according to

Δ2

Δ2 þ Δ1
¼ m

n
[11]

for specialization to be favored. This result can also be inter-
preted the other way around: If phenotypic variation occurs
mainly in the direction given by Δ1 and Δ2, then the allocation of
modules to the different tasks has to be such that Eq. 11 is ful-
filled. This result implies that the number of modules specializing
on each task has to compensate for the degree of specialization:
If one group is highly specialized for one task while the other
group is only weakly specialized for the other task, the second
group should comprise more modules than the the first one (Fig.
S1). This finding is relevant when in the initial phase of spe-
cialization the phenotypes of the different modules cannot
evolve independently but are positively correlated due to shared
developmental pathways. Then Δ1 ≠Δ2 and therefore the two
groups of modules are expected to differ in size, a phenomenon
that indeed seems common in nature.
In SI Text A we also prove that as the left-hand side of con-

dition Eq. 6 increases, the constraint given by Eq. 11 becomes
more relaxed. In other words, as the inequality in condition Eq. 6
becomes more pronounced, functional specialization is favored
for a wider array of values m, Δ1, and Δ2. Furthermore, as the
inequality in condition Eq. 6 becomes more pronounced, the
direction of fastest fitness increase becomes increasingly tilted in
the direction where both types of modules become specialized to
a similar degree, i.e., in the direction of the vector ð1; − 1Þ (SI
Text A). This result is true regardless of the frequency of the two
types of modules. Similarly, as the inequality in condition Eq. 6
becomes more pronounced, the optimal allocation of modules to
the different tasks approaches m ¼ n=2 regardless of the di-
rection of functional specialization given by Δ1 and Δ2. Finally,
for the case of n nonequivalent modules we prove in SI Text B
that condition Eq. 7 remains unchanged.
In cases with more than two modules, functional differentiation

can result in very different spatial configurations. For instance, in
cyanobacteria nitrogen-fixating heterocysts and photosynthesizing
cells are evenly distributed within an individual. Intuitively the
reason is clear: Each heterocyst has to supply a certain number of
neighboring photosynthesizing cells with nitrogen and a homoge-
neous distribution maximizes the efficiency of diffusion as
a transport mechanism whereas aggregated heterocysts would be
ineffective in providing all photosynthesizing cells with nitrogen.
On the other hand, specialized tissues and organs are examples
where differentiated cells are aggregated. This type of pattern
formation can be understood within our framework by realizing
that the strength of interactions between modules in many cases
depends on their distance. In cyanobacteria, heterocysts and
photosynthesizing cells exchange metabolites and due to diffusion
synergistic interactions exist between neighboring cells. These
interactions favor a mosaic of cell types. In contrast, we hypoth-
esize that the evolution of aggregations of specialized cells results
from interactions that are antagonistic between neighboring cells.
With such interactions a group of cells specializing for the same
task performs better than would be expected on the basis of the
sum of their separate contributions.
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Functional Specialization and Environmental Robustness
During the lifespan of an organism modules can be damaged due
to various causes. For instance, one paralog of a duplicated gene
can become functionless due to a somatic mutation, and
appendages of an arthropod can be lost or damaged in a preda-
tor attack. If modules are highly differentiated, damage to one
module can result in a drastic decrease in performance in the
task it was specialized for and a high level of performance cannot
be robustly maintained. If fitness becomes drastically reduced as
soon as an organism cannot execute both tasks reasonably well,
then it is clear that selection for robustness, i.e., a reliable ability
to perform both tasks, disfavors functional specialization. This is,
for instance, the case when performance in the two tasks affects
fitness multiplicatively, e.g., when performance in one task
affects survival whereas performance in the other task affects
reproduction. If either survival or reproduction is drastically
reduced, the same holds true for fitness.
The just described scenario is not the only possibility by which

selection for robustness can disfavor functional specialization. By
means of a simple example we show how selection for robustness
can act in a scenario where fitness does not hinge on the reliable
execution of both tasks. Specifically, we consider the case that
the two performances can compensate each other in their effect
on fitness. Mathematically, this means that fitness depends ad-
ditively on performance in the two tasks. For simplicity, we
consider the case of two equivalent modules that become dam-
aged with the same constant probability per unit of time. This
probability is sufficiently low such that we can neglect the pos-
sibility that both modules become damaged. All individuals have
the same life span that we scale to one. If we assume that off-
spring are produced continuously throughout life and that re-
production is proportional to the sum of the performance in both
tasks at the moment of reproduction, then the expected fitness
can be written as

E½ρðθ1; θ2Þ� ¼ E½t�F1ðθ1; θ2Þ þ 1−E½t�
2

ðf1ðθ1Þ þ f1ðθ2ÞÞ

þ E½t�F2ðθ1; θ2Þ þ 1−E½t�
2

ðf2ðθ1Þ þ f2ðθ2ÞÞ;

where fiðθjÞ denotes performance of an organism with only one
module intact and the other functionless and E½t� is the expected
time where a module becomes damaged. The curvature of the
average performance landscape orthogonal to the constrained
trait space at ðθ*; θ*Þ equals

Ci ¼ E½t�
 
∂2Fiðθ1; θ2Þ

∂θ21
−
∂2Fiðθ1; θ2Þ
∂θ1∂θ2

!
þ ð1−E½t�Þ ∂2fiðθ1Þ

∂θ21
;

where all derivatives are evaluated at ðθ*; θ*Þ. The first term
accounts for the time before one of the modules was damaged
and the second term accounts for the time with only one intact
module. Consider the case that performance functions are sat-
urating but that in an intact organism condition Eq. 6 is never-
theless fulfilled due to synergistic effects between modules. If the
risk of damage is sufficiently high such that the life span as an
intact organism is sufficiently short, then Ci can become negative
and condition Eq. 6 is not fulfilled anymore.

Discussion
We present a unifying perspective for the evolution of functional
specialization of repeated modules. Such functional specializa-
tion, also known as division of labor, is present over a wide range
of organismal complexity from molecules to organisms organized
in colonies. A distinctive feature of our mathematical framework
is its generality because it is based on few mild assumptions: A
set of ancestrally undifferentiated modules contributes to two

tasks, fitness is increasing with increasing levels of performance
in each task, and specialization of modules is constrained by a
trade-off; i.e., a module with characteristics suitable for one task
can contribute only little to the other task.
Our results are largely phrased in terms of functions that map

traits to performance whereas the map from performance to fit-
ness plays a minor role. We consider this aspect of our approach
particularly important because detailed knowledge of fitness
landscapes is generally very hard to come by or requires a suite of
extra assumptions whereas the map from traits to performance
can sometimes be measured directly or deduced from mechanistic
considerations. The important but also very natural assumption
we make about fitness is that it is monotonically increasing with
performance in both tasks. For simplicity of the presentation we
phrased our results in terms of fitness that is density and frequency
independent. If this independence is not given, all that is required
is to confirm by means of an invasion analysis (49, 50) that the
point θ* is an attractor of the evolutionary dynamics in the con-
strained trait space.
We identify the following properties of performance functions

that favor functional differentiation. First, if modules are dif-
ferently predisposed to contribute to a task due to their position
within the organism, then specialization of modules, at least
partially, is always favored by selection. We refer to this phe-
nomenon as positional effects. In the absence of positional
effects, functional specialization is selectively favored whenever
condition Eq. 6 is fulfilled. Specifically, functional specialization
is favored by the following two features. (i) Accelerating perfor-
mance functions: When performance is an accelerating function
of the degree of specialization, then the gain in performance due
to specialization of a module for one task exceeds the loss in
performance due to specialization of another module for the
other task. As a consequence, performance increases when half
the modules specialize for one task while the remaining modules
specialize for the other task. This mechanism has indeed been
proposed as the driving force for germ–soma differentiation in
Volvox by Michod and coworkers (27, 28). (ii) Synergistic inter-
actions between modules: In this case the performance of an or-
ganism consisting of differentiated modules exceeds the per-
formance that could be expected on the basis of the sum of the
separate contributions from all modules. This last result can also
be phrased the other way around: Functional specialization is
favored if the performance of an organism with undifferentiated
modules is less than what could be expected on the basis of the
sum of the separate contributions from all modules. In other
words, interference between identical modules performing the
same task favors functional specialization.
Because our conditions are only necessary for functional

specialization to be favored, and generally not sufficient, we
suggest that it is useful to take the opposite perspective: When
none of the above conditions is fulfilled, the evolution of spe-
cialization cannot be expected to be caused by natural selection.
From this perspective, the absence of positional effects, as for
example in rotational symmetric organisms, saturating perfor-
mance functions, and antagonistic interactions between modules
can all prevent the emergence of division of labor. As a further
factor that can counteract the emergence of division of labor we
identify selection for environmental robustness. We show that if
modules can become damaged, then organisms with differenti-
ated modules can have a lower performance when averaged over
their life time than organisms with undifferentiated modules.
Given the generality of our approach it is inevitable that our

conditions are only necessary but not sufficient for division of
labor to evolve by natural selection. Constraints at various levels
can frustrate the emergence of differentiated modules even in
the presence of positional effects or if condition Eq. 6 is fulfilled.
For instance, costs for maintaining differentiated developmental
pathways are not included in our theory. If such costs exist, the
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conditions for the emergence of division of labor will be more
stringent. Furthermore, it is clear that functional specialization
can evolve only if the strictly positive correlation between mod-
ules—which we assumed as the ancestral state—can be broken.
In some cases a positive correlation can be broken easily. An
example we considered is the evolutionary fate of duplicated
genes that should be completely uncorrelated. In other cases, in-
dependent changes between modules require the evolution of
independent developmental programs and empirical evidence
exists that this process is possible. For instance, it has been shown
that antagonistic selection of correlated, serially homologous traits
can lead to complementary changes in trait size (51, 52). In ad-
dition, recent QTL mapping studies have shown that in inter-
crosses of inbred mouse strains there is ample genetic variation for
trait correlation, so-called relationship QTL (53). Hence, for
quantitative traits it may be easy to change genetic correlations
(54). Several authors even suggested that segmented body plans
are successful exactly because they facilitate the evolution of in-
dependent developmental pathways between modules (55, 56). To
conclude our discussion of constraints we note that it has been
suggested that “evolution is best viewed as a history of organisms
finding devious routes for getting around constraints” (ref. 57,
p. 282), suggesting that long-term evolution might indeed be
governed by the conditions identified in this article.
The theory presented here is best understood as a formal

framework for the analysis of specific, mechanistic models. The
results presented above, in particular condition Eq. 6, provide
criteria for the analysis of a large set of specific models. Hence,
these results are more a guide for the analysis of mechanistic
models rather than a model itself. To illustrate this point, we
apply our framework to the evolution of the coding region of
multifunctional duplicated genes. We thereby formalize a verbal
model introduced by Hughes (2, 41), who suggests that special-
ization of duplicated genes with multiple functions can be driven
by what has been called “escape from adaptive conflict.” By
applying our framework we identify Michaelis–Menten enzyme
kinetics as a factor acting against specialization of multifunc-
tional enzymes coded by duplicated genes. If specialization is
observed nevertheless, we predict that other forces favoring
specialization have to be in place. Candidates are synergistic
interactions between gene products coded by the duplicated loci
or positional effects due to differences in the regulatory regions
of the duplicated genes and both possibilities are explored in
some detail in Application: Specialization of Duplicated Genes. In
conclusion, although our framework is very general and derived
from few mild assumptions, surprisingly specific predictions
emerge when applied to concrete examples.
Some existing models about the evolution of division of labor

can be understood within our framework. For instance, Michod
and coworkers (27, 28) and Gavrilets (31) investigated the evo-
lution of germ–soma differentiation in multicellular organisms
by means of mathematical models. In an undifferentiated mul-
ticellular organism all cells contribute to survival and re-
production, two tasks that are likely to be traded off. Both
Michod and Gavrilets find that germ–soma differentiation can
evolve when the trade-off curve that relates survival to re-
production is convex. This finding is related to our results in the
following way. Let θ denote the proportion of energy a cell
allocates to functions improving its survival. The trade-off results
form the fact that such a cell can allocate only the remaining
fraction, 1− θ, to reproduction. Let F1ðθ; θÞ and F2ðθ; θÞ denote
a colony’s survival and reproduction, respectively. It is then easy
to show that if both F1 and F2 are accelerating functions, i.e.,
they are convex, then also the curve one obtains when plotting F1
against F2 for different values of θ is convex. Thus, in the absence
of interactions between cells and positional effects, the findings
of Michod and Gavrilets are driven by the remaining factor,
accelerating performance functions.

In the remainder of the Discussion we relate our results to the
evolution of organismal complexity. Complexity is often defined
as the number of independent parameters necessary to describe
an organism’s morphology (58–61). According to this definition,
functional specialization then clearly corresponds to an increase
in complexity because once θ1 ≠ θ2, two parameters instead of
one are necessary to describe the phenotype of the two modules.
Carroll (56) and Wainwright (38) speculate that segmentation in
metazoans has been favored because it more easily allows one to
increase complexity and explore new dimensions of morpho-space.
It has been repeatedly reported that over the tree of life or-

ganismal complexity is positively correlated with size, in particular
with cell number (5, 62) and colony size (15, 63). Our model shows
that a priori module number has no influence on the strength of
selection for functional specialization because condition Eq. 6 is
independent of n. Thus, a positive size–complexity relationship
requires that module size or module number is correlated with one
or more of the factors favoring functional specialization. For in-
stance, a positive size–complexity relationship could result from an
intrinsically higher robustness of larger organisms (15). If large
modules are less prone to damage or if, in the case of many
modules, the risk decreases that all modules specialized for a cer-
tain task are damaged or lost, then selection for robustness
becomes a weaker force counteracting selection for division of
labor. Furthermore, it seems feasible that increased body size
amplifies the strength of positional effects resulting in increased
levels of differentiation. It is an interesting idea that the evo-
lution of functional specialization could be a self-reinforcing
process: Increased levels of functional specialization in one type
of module could create positional effects that then favor
functional differentiation in another type of module. Last but
not least, body size and module number can also affect the
magnitude of the derivatives featured in condition Eq. 6 as for
example argued by Michod and coworkers (28, 29).
In a recent book on the evolution of complexity McShea and

Brandon (64) argue that increase in body plan complexity is the
prediction of a zero-force law, meaning that complexity in terms
of the number of differentiated parts increases in evolution un-
less special constraints apply. The argument is that small changes
will inevitably arise, leading to more and more differences be-
tween parts of the organism. Here we discuss this idea in the light
of our model. We first observe that a zero-force perspective has
to accommodate the fact that organisms are under selection as
soon as there is heritable variation and reproduction, and both
are boundary conditions of organismal existence. Our model
suggests that functional specialization can be understood from
an adaptationist point of view, i.e., in terms of fitness maximi-
zation. On the basis of this perspective, our model predicts that
stable heritable differentiation will occur only if performance as
a function of traits fulfills certain conditions. If condition Eq. 6 is
not fulfilled and in the absence of positional effects, natural se-
lection will actively maintain uniformity among modules re-
gardless of random variation in their phenotype. Thus, even
under very general conditions, as long as selection is acting on
the parts of an organism and there are trade-offs regarding the
performance of different functions, an increase in complexity is
not inevitable. This could be one reason why there are still rel-
atively simple organisms in the world, for instance undiffer-
entiated colonies of protozoans, or metazoans with few or
without any internal organs.

Appendix: Saddle Points of the Fitness Landscape
In this Appendix we derive the conditions under which functional
specialization is favored for the case of two modules, first for
equivalent modules and then for nonequivalent modules. The
derivation of the general case of n modules can be found in SI
Text A and B.
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For the case of equivalent modules the fitness landscape is
symmetric with respect to mirroring across the line θ1 ¼ θ2
representing the constrained trait space. Thus, the point ðθ*; θ*Þ
is an extremum of the fitness landscape and its shape locally
around the point ðθ*; θ*Þ can be described by the Hessian matrix
H of the fitness function ρ with entries hij ¼ ∂2ρðθ1; θ2Þ=∂θi∂θj
for i; j∈ f1; 2g and with all partial derivatives evaluated at
ðθ1; θ2Þ ¼ ðθ*; θ*Þ. For equivalent modules h11 ¼ h22. Then, be-
cause the Hessian matrix is also symmetric, both diagonal entries
and both off-diagonal entries are equal to each other and the
eigenvectors of the Hessian matrix equal ð1; 1Þ and ð1; − 1Þ. The
assumption that the point ðθ*; θ*Þ is a maximum in the con-
strained trait space means that the eigenvalue corresponding to
ð1; 1Þ is negative. The point ðθ*; θ*Þ is a maximum of the fitness
landscape if also the eigenvalue corresponding to the eigenvector
ð1; − 1Þ is negative. Conversely, the point ðθ*; θ*Þ is a saddle
point of the fitness landscape if the eigenvalue corresponding to
the eigenvector ð1; − 1Þ is positive.
The curvature of thefitness landscape in thedirectionof the vector

ð1; − 1Þ and thus the eigenvalue corresponding to this vector equal
ð1= ffiffiffi

2
p

;− 1=
ffiffiffi
2

p ÞHð1= ffiffiffi
2

p
;− 1=

ffiffiffi
2

p ÞT ¼ 1=2ðaþ bþ cþ dÞ with

a ¼ ∂2ρ
∂F2

1

��
∂F1

∂θ1

�2

þ
�
∂F1

∂θ2

�2

− 2
∂F1

∂θ1
∂F1

∂θ2

�

b ¼ ∂2ρ
∂F2

2

��
∂F2

∂θ1

�2

þ
�
∂F2

∂θ2

�2

− 2
∂F2

∂θ1
∂F2

∂θ2

�

c ¼ 2
∂2ρ

∂F1∂F2

�
∂F1

∂θ1
∂F2

∂θ1
−
∂F1

∂θ1
∂F2

∂θ2
þ ∂F1

∂θ2
∂F2

∂θ2
−
∂F1

∂θ2
∂F2

∂θ1

�

d ¼ ∂ρ
∂F1

 
∂2F1

∂θ21
þ ∂2F1

∂θ22
− 2

∂2F1

∂θ1∂θ2

!

þ ∂ρ
∂F2

 
∂2F2

∂θ21
þ ∂2F2

∂θ22
− 2

∂2F2

∂θ1∂θ2

!
:

Using that for equivalent modules ∂F1=∂θ1 ¼ ∂F1=∂θ2,
∂F2=∂θ1 ¼ ∂F1=∂θ2, ∂2F1=∂θ21 ¼ ∂2F1=∂θ22, and ∂2F2=∂θ21 ¼
∂2F2=∂θ22, the expression 1=2ðaþ bþ cþ dÞ simplifies to the left-
hand side of condition Eq. 6.
For the case that modules are nonequivalent we calculate

the gradient of the fitness function at ðθ*; θ*Þ: Dρðθ1; θ2Þ ¼
ðDρðθ1; θ2Þ1;Dρðθ1; θ2Þ2Þ with

Dρðθ1; θ2Þi ¼
∂ρ
∂F1

∂F1

∂θi
þ ∂ρ
∂F2

∂F2

∂θi
:

The derivative in the direction of the constrained trait space
equals dρðθ; θÞ=dθ ¼ Dρðθ1; θ2Þ1 þDρðθ1; θ2Þ2 and because we
have dρðθ; θÞ=dθ ¼ 0 at θ*, it follows that

∂ρ
∂F1

¼ − c
�
∂F2

∂θ1
þ ∂F2

∂θ2

�
[12a]

∂ρ
∂F2

¼ c
�
∂F1

∂θ1
þ ∂F1

∂θ2

�
[12b]

for some positive constant c. Inserting Eq. 12a and Eq. 12b into
Dρðθ1; θ2Þ gives ð1; − 1Þ as a gradient at the point ðθ*; θ*Þ. The
derivative in the direction of the gradient equals

∂ρðθ1; θ2Þ
∂θ1

−
∂ρðθ1; θ2Þ

∂θ2
¼ 2c

�
∂F1

∂θ1
∂F2

∂θ2
−
∂F1

∂θ2
∂F2

∂θ1

�
;

leading to condition Eq. 7.
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