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ABSTRACT
Objective The relationship between diseases and their
causative genes can be complex, especially in the case
of polygenic diseases. Further exacerbating the
challenges in their study is that many genes may be
causally related to multiple diseases. This study explored
the relationship between diseases through the
adaptation of an approach pioneered in the context of
information retrieval: vector space models.
Materials and Methods A vector space model
approach was developed that bridges gene disease
knowledge inferred across three knowledge bases:
Online Mendelian Inheritance in Man, GenBank, and
Medline. The approach was then used to identify
potentially related diseases for two target diseases:
Alzheimer disease and Prader-Willi Syndrome.
Results In the case of both Alzheimer Disease and
Prader-Willi Syndrome, a set of plausible diseases were
identified that may warrant further exploration.
Discussion This study furthers seminal work by
Swanson, et al. that demonstrated the potential for
mining literature for putative correlations. Using a vector
space modeling approach, information from both
biomedical literature and genomic resources (like
GenBank) can be combined towards identification of
putative correlations of interest. To this end, the
relevance of the predicted diseases of interest in this
study using the vector space modeling approach were
validated based on supporting literature.
Conclusion The results of this study suggest that
a vector space model approach may be a useful means
to identify potential relationships between complex
diseases, and thereby enable the coordination of gene-
based findings across multiple complex diseases.

INTRODUCTION
The manifestation of genetic diseases is inherently
linked to a causative network of genes. A given gene
may be involved in the etiology of multiple, symp-
tomatically related diseases. Thus, ascertaining the
relationship between a network of genes and
possibly related diseases can be a complex endeavor.1

Clinical interventions that are proven effective for
a given disease may shed light on the treatment of
related diseases. The field of medical genetics has
long been challenged with developing approaches for
determining how diseases relate to one another
according to causative genes.2 Especially compli-
cating the elucidation of relationships between
causative genes and diseases is the fact that many
diseases can be causally linked to a single gene, and
multiple genes can be related to a single disease.3

Previous work has demonstrated the potential to
link genes to disease phenotypes using similarity

networks. For example, clustering techniques
(similar to those used for gene expression analysis)
have been shown to organize phenotypic informa-
tion associated with genetic diseases.4 Additional
studies have focused on studying common molec-
ular pathways in complex diseases to identify
potential genes of interest.5 More recently, relat-
edness between complex diseases has been exam-
ined using graph theoretic approaches.6 These
methods have all depended on information that
could be inferred from disease catalogs (eg, related
disease entries in Online Mendelian Inheritance in
Man (OMIM)) or archives of curated resources such
as molecular pathway databases, such as the Kyoto
Encyclopedia of Genes and the Genomes Pathway
Database.
Vector space model approaches have been shown

to be effective in the context of information
retrieval systems.7 8 Most notably, the SMART
system has been demonstrated to effectively enable
reliable information retrieval compared with
experts,9 including within the biomedical
domain.10 Briefly, such approaches consider the
degree of similarity according to specified weights,
such as wqi and wij, respectively corresponding to
vectors, such as q and dj, where q represents the
‘query’ and dj the resulting document set (j repre-
sents a given document). The similarity (sim)
between vectors can be calculated using a similarity
metric such as the cosine (q):

simq(dj;q) ¼
d
!

j � q!�� d!j

��3j q!j
Therefore, for t-dimensional vectors, the cosine

similarity measure between a query q and given
document dj is calculated as:
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The vector space model approach is thus a clus-
tering approach for identifying related vectors
according to a specified weighting scheme (as
reflected by wqi and wij above). Accordingly, the
precision and recall of the returned results will
vary according to the chosen weighting scheme.7 In
the context of document retrieval, perhaps the
most commonly known such weighting scheme
is tf3idf (term frequency 3 inverse document
frequency).11

The basic local alignment search tool (BLAST+)12

is a commonly used approach to determine the
similarity between molecular sequences, and is
often used to identify molecular sequences of
interest from publicly accessible repositories (eg,
GenBank13). Similarity in BLAST+ is reported as an
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‘E-value,’ which reflects the expectation that a given result
would be recovered by chance (ie, lower E-values indicate greater
support for a given result, with 0.0 reflecting a result with high
confidence).

GenBank is part of the International Nucleotide Sequence
Data Consortium (along with EMBL and DDBJ) and provides
access to the sum of the world’s molecular sequence data
(totaling over 140 million records). GenBank is part of the Entrez
system, maintained at the National Library of Medicine’s
National Center for Biotechnology Information, and is thus
linked to a wide array of resources, including Medline. Medline
reflects the largest publicly available citation database of
biomedical literature (w20 million records). Previous work has
demonstrated the feasibility and utility of linking GenBank to
Medline records, mostly focusing on exploratory information
retrieval systems.14 15

The present study develops a vector space model approach to
identify potentially related diseases based on sequence similarity.
GenBankeMedline linkages were used to infer diseases (as
annotated according to medical subject heading (MeSH)
descriptors) that may be associated with a given gene associated
with a disease cataloged in OMIM records. The utility of the
proposed vector space model approach was demonstrated for
two etiologically different diseases with a genetic basis:
Alzheimer ’s disease and Prader-Willi syndrome. The top results
of this feasibility study were then manually evaluated for each
disease according to published literature.

METHODS
The goal of this study was to explore the potential of using
a vector space model approach to identify potentially related
genetic disorders. All scripts were written using the Ruby
scripting language and made use of the BioRuby gem (an
open source library of commonly used bioinformatics
methods16) to leverage NCBI Entrez utilities. Local versions of
the GenBank metadata and Medline databases, which were
acquired through appropriate licensing agreements from the
National Library of Medicine and parsed using a series of Ruby
scripts and stored in a MySQL relational database, were accessed
using the ‘mysql’ Ruby gem. The overall approach, shown in
figure 1, was to retrieve related genes (S) for a given disease gene
(G) using BLAST+. These retrieved related genes were then
linked to potentially related diseases (D) on the basis of MeSH
annotations of Medline records associated with the GenBank
entries.

Within the scope of the present study, a vector space model
approach was developed to identify related diseases
(d; enumerated by j) based on sequence similarity to a set of
related genes (s; enumerated by i) for a given set of genes
(g; enumerated by q) known to be associated with a disease (d0).
As shown in figure 2, the relationship between the vectors
q and j is quantified using the respective weighting variables,
wqi and wij.
The OMIM resource was used to identify genes (via links to

Entrez Gene records) known to be associated with a particular
disease. For the purposes of this feasibility study, genes associ-
ated with two diseases were identified: (1) Alzheimer ’s disease
(OMIM Record 104300): A2M, APOE, APP, PSEN1, and PSEN2;
and (2) Prader-Willi syndrome (OMIM Record 176270): SNRPN
and NDN. Nucleotide sequences were retrieved from GenBank
using the following query: SYM[gene name] not ‘genome’
not ‘chromosome’, where ‘SYM’ was the gene symbol. Based
on the nucleotide description (ie, as determined from the
FASTA annotation), each retrieved sequence was manually
verified to be the correct sequence associated for a given gene
symbol. In sum, there were 14 A2M, 44 APOE, 275 APP, 22
PSEN1, and 17 PSEN2 sequences for Alzheimer ’s disease as well
as 19 SNRPN and 11 NDN sequences for Prader-Willi syndrome
retrieved and verified.
For each retrieved sequence, a Ruby script was used to mediate

BLAST+ searches to identify similar sequences from GenBank.
Based on the E-value similarity score (xqi), the individual weight
(wqi) between a query sequence (gq) and GenBank sequence (si)
was calculated as:

wqi ¼ 1
exqi

A ‘gene vector ’ was then calculated for each retrieved gene
relative to the query genes (t):

w!qi ¼ wqiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+t

i¼1w
2
qi

q

To determine the diseases associated with each related
sequence, the local GenBank metadata database was queried for

Figure 1 Overall approach to identify related genes and associated
diseases. For a given query gene (G), related genes (S) were retrieved using
BLAST+. Related diseases (D) were then identified on the basis of MeSH
annotations (C) for Medline citations associated with retrieved sequences.

Figure 2 Overall approach to identify related diseases using a vector
space model approach. The vector space model approach developed in
this study aimed to link a query disease (d0) to a set of potentially related
diseases (dj). The method uses two vectors: (1) a ‘gene vector’ (wqi),
which is based on the number of related gene sequences (si) associated
with genes (gq) that are directly linked with the query disease; and (2)
a ‘disease vector’ (wij), which is a quantification of the relative
relationships of diseases associated with the related gene sequences (si).
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PubMed Identifiers (PMIDs). The PMIDs were then used to
retrieve the associated MeSH descriptors, and filtered so that
only MeSH descriptors in the ‘Disease [C]’ hierarchy were kept.
The weight (wij) for each related sequence (si) and disease (dj)
was then calculated as the ratio of the number of diseases
associated with a given sequence (sd) and the total number of
diseases retrieved (dj):

wij ¼ sd
dj

A ‘disease vector ’ was then calculated for the retrieved genes
that could be associated with at least one disease as inferred by
MeSH annotations of Medline records:

w!ij ¼ wijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+t

i¼1w
2
ij

q

Using a derivation of the previously described cosine similarity
measure, the cosine similarity (simq) between the set of query
genes (G) and a given retrieved disease (dj) was then calculated
using the gene vector and disease vector:

simq

�
G/dj

� ¼ +t
i¼1w

!
qi$w!ij

The overall similarity (sim[d0 /dj]) for a disease (dj) relative
to a given disease (d0) was then calculated based on the number
of genes (|G|) that linked the diseases to one another and the
similarity score (simq):

sim
�
d0/dj

� ¼ simq

�
G/dj

�
$jGj

Medline searches were then performed to identify potentially
supporting literature for each of the predicted related diseases for
two etiologically different, yet with significant underlying
genetic factors: Alzheimer ’s disease and Prader-Willi syndrome.

RESULTS
The vector space model approach was used to identify diseases
related to the two chosen diseases for this study (Alzheimer ’s
disease and Prader-Willi syndrome). The overall distribution of
scores is respectively shown in figures 3 and 4 for Alzheimer ’s

disease and Prader-Willi syndrome. The top 10 related diseases
(according to the overall similarity score) identified along with
the respective similarity scores for each disease are shown in
table 1. Based on Medline literature searches, it was found that
90% of the returned results for Alzheimer ’s disease were
potentially relevant; 80% of the returned results for Prader-Willi
syndrome were potentially relevant. Based on Boolean searches
for corroborating literature, there was direct support (ie, one or
more articles with the MeSH descriptor for the query disease
and the MeSH descriptor for the candidate disease) for all of the
suggested related diseases except for ‘drug induced liver disease’
and ‘thyroid neoplasms’ for Prader-Willi syndrome.
For the scenario where related diseases were sought for

Alzheimer ’s disease, five known associated genes were used as
the query set. The most related disease was reported as
Alzheimer ’s disease, which suggests that the algorithm is reli-
able in being able to recover the query disease itself. It also
implies that the genes chosen are strongly affiliated with
Alzheimer ’s disease and thus reflect genes of high relevance. The
next high-ranking disease, polycystic kidney disease, shares the
possibility of apoptotic processes having a role such as associated
with Alzheimer ’s disease.17 Additionally, polymorphisms in the
APOE gene are reported to have some association with both
polycystic kidney diseases18 and Alzheimer ’s disease.19 The
remaining related diseases return similar results when similar
MeSH-based PubMed queries are carried out.
The second scenario, where the approach was used to search

for related diseases to Prader-Willi syndrome, presented a slightly
different set of results. The most relevant disease found using
the vector space model approach developed here was Angelman
syndrome, which is a known to involve the same chromosomal
region as associated with Prader-Willi syndrome.20 While there is
a genetic underpinning emerging for drug-induced liver injury,21

MeSH-based searches did not reveal any direct correlation with
Prader-Willi syndrome. On the other hand, there is literature
describing the role of SNRPN in the context of thyroid
neoplasms22 (although not specific to the context of Prader-Willi
syndrome).

Figure 3 Similarity scores for
Alzheimer’s disease. The similarity
score (y-axis) for each related disease
(x-axis) is shown. Details for the top 10
diseases (highlighted in the box) are in
table 1.
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DISCUSSION
As there are many gene-to-disease and disease-to-gene relation-
ships, the study of polygenetic diseases is indeed a complex
endeavor. The exponential growth of molecular sequence data,
made possible in large part by significant advances in sequencing

technologies, provides a rich opportunity to explore the genomic
space relative to complex diseases. The increase in availability of
sequencing services also implies that there will be increased
interest in studying an increasing range of diseases. Under-
standing the relationship between diseases may be of utility in
identifying synergistic prophylaxes, diagnoses, or cures that
could be more generally applied beyond single diseases. In the
case of drug discovery, there has been increased interest in
studying how drugs may be repurposed for use in the context of
multiple diseases.23 24 On the other hand, although it is known
that many genes can be associated with many diseases, there has
been limited work in leveraging knowledge sources such as
GenBank and Medline to recover some of these linkages.
Seminal work by Swanson demonstrated the potential to

leverage secondary sources, such as biomedical literature, to
identify possibly meaningful linkages within biomedicine.25

Initially shown to identify a previously undiscovered correlation
(fish oil and Raynaud’s syndrome26), subsequent development of
the Arrowsmith system27 has shown the potential to validate
epidemiological studies (eg, correlation between estrogen and
Alzheimer ’s disease28). Literature mining approaches have also
been shown to have potential for identifying potential gene
candidates.29 30 The present study demonstrates an approach for
enhancing literature-based information for putative relationship
mining with an additional dimension of molecular sequence-
based relationships. Future work would involve quantifying the
impact of including molecular sequence information.
This study explored the potential to link potentially related

complex diseases based on genetic relationships as determined
by a vector space model approach. An important feature of the
proposed vector space model is that, like many information
retrieval paradigms (eg, tf3idf), it is specifically designed to
account for signal-to-noise challenges. This is especially impor-
tant in the light of the volume of potential data in exponentially
growing databases such as GenBank. The possible relationships
between diseases are based on the network of genes that relate
to each other on the basis of sequence similarity (as determined

Figure 4 Similarity scores for
Prader-Willi syndrome. The similarity
score (y-axis) for each related disease
(x-axis) is shown. Details for the top 10
diseases (highlighted in the box) are in
table 1.

Table 1 Top 10 most related diseases, based on similarity score, to
Alzheimer’s disease and Prader-Willi syndrome based on the vector
space model approach

Related disease
Simq

(G /dj)
Sim
(d0 /dj)

Corroborating
Medline entries

Alzheimer’s disease

Alzheimer’s disease 2.09E-08 8.38E-08 57 297

Disease models, animal 2.08E-08 4.16E-08 2718

Polycystic kidney diseases 2.06E-08 4.11E-08 2

Down’s syndrome 2.01E-08 4.02E-08 1153

Williams Syndrome 1.97E-08 3.93E-08 2

Neoplasms 1.94E-08 3.87E-08 665

Chromosome deletion 1.93E-08 3.86E-08 10

Polyploidy 1.86E-08 3.72E-08 4

Chromosome inversion 1.79E-08 3.57E-08 2

Melanoma 6.03E-09 2.41E-08 15

Prader-Willi syndrome

Genetic predisposition to disease 1.74E-17 3.48E-17 2407

Angelman syndrome 1.64E-17 3.27E-17 478

Drug-induced liver injury 1.74E-17 1.74E-17 0

Glioma 1.73E-17 1.73E-17 4

Neuroblastoma 1.63E-17 1.63E-17 7

Lupus erythematosus, systemic 1.63E-17 1.63E-17 1

Adrenal gland neoplasms 1.62E-17 1.62E-17 1

Thyroid neoplasms 1.62E-17 1.62E-17 0

Chromosome breakage 1.61E-17 1.61E-17 26

Melanoma 1.60E-17 1.60E-17 7

Respective geneedisease and diseaseedisease similarity scores are shown, as well as the
number of corroborating Medline entries (as determined by performing MeSH-based
searches using a Boolean ‘AND’ to identify citations associated with both the related
disease and the query disease). Literature searches were performed in August 2011.
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using BLAST+). However, it is known that BLAST+ alone may
not always recover the most related sequence,31 and sequence
similarity may by itself not be a sufficient criterion of homology.
Future work will thus incorporate more robust algorithmic
techniques to identify potentially related sequences, such as
those that leverage reciprocal sequence similarity (eg, COG,32

eggNOG,33 and InParanoid34) or phylogenetic relationships
between potentially orthologous sequences (eg, OrthoDB,35

OrthologID,36 and Roundup37).
In this study, the relatedness between diseases, via this

network of gene-based relationships, was determined using
a cosine similarity metric. Of course, there are other metrics that
might be worth exploring (eg, Dice38 or Jaccard39). Future work
will include comparisons of the relative ranking of related
diseases using such measures (eg, by comparing the relative
precision and recall of retrieved results using different similarity
metrics). Notably missing from the current feasibility study is
the development of a statistical approach for quantifying
the strength of the relationships; currently, the approach pres-
ents results as raw cosine scores. Akin to the E-value used by
BLAST+ for assessing the confidence of results, a similar type of
statistical metric will be needed for subsequent assessment of
the results as the approach is used for additional diseases. In the
absence of such a metric, it is difficult to compare the impor-
tance of suggested relationships between different diseases.
Nonetheless, for the purposes of this feasibility study, poten-
tially interesting relationships did emerge between suggested
related diseases.

A gene’s relationship to a particular disease is not necessarily
exclusive (eg, APOE is indeed associated with many cases of
Alzheimer ’s disease, but it is not universal). An advantage of the
vector space model is that it accounts for not just one gene, but
is specifically designed for finding related diseases based on
multiple genes. In fact, the proposed vector space model would
perform better at identifying potentially related diseases with
more information about a broader list of genes that might be
associated with a given disease. In this study, the genes of
interest were manually selected on the basis of their descriptions
and catalog information in OMIM; however, there may be
additional resources to consider that would have additional
genes of interest (eg, based on genome-wide association studies
(GWAS), as cataloged at the NHGRI GWAS Catalog).

The two diseases used to explore the feasibility of the
proposed methodology were chosen because of their dissimi-
larity, in terms of both their etiology and the number of cata-
loged genes referenced in OMIM. To this end, an important
distinction between the disease searches was the number of
query genes used: five for Alzheimer ’s disease versus two for
Prader-Willi syndrome. As suggested by the results, more
complex polygenic diseases may yield potentially more inter-
esting results, with the complexity of the disease being a func-
tion of the number of genes potentially involved in the disease
etiology. Further corroborating this notion is that there were 14
possibly related diseases returned for Prader-Willi syndrome,
compared with 91 for Alzheimer ’s disease. Thus a limitation of
the present study is that it only focused on the geneedisease
vector space. There are plans to explore the search space of
potentially related diseases as a measure of the number of genes
involved in complex diseases, which will also include empirical
measures of polymorphic rates within given genes (thus testing
the hypothesis that complex disorders that are more difficult to
study will have more potentially related genes).

The candidate diseases were based exclusively on MeSH
descriptors associated with Medline-indexed articles. A signifi-

cant challenge of this approach is that the MeSH descriptors
used for Medline indexing may be too general to actually be
meaningful to infer disease relationships. For this study, all
MeSH descriptors in the ‘Disease [C]’ hierarchy were included.
However, this resulted in a number of very generic disease
concepts being associated with the query diseases. For example,
in the case of Alzheimer ’s disease, ‘disease models, animal,’
‘chromosome deletion,’ and ‘chromosome inversion’ were all
returned as possibly related diseases. Although these may all be
relevant concepts to consider in the light of Alzheimer ’s disease
(and could be supported with Medline-indexed articles from
a Boolean search), they may not necessarily be meaningful if one
is seeking to identify related diseases. Similarly, restricting the
possible valid MeSH descriptors to only those in the ‘Disease
[C]’ hierarchy may also artificially restrict other potentially
related concepts of interest (eg, concepts in other MeSH hier-
archies, such as in ‘psychiatry and psychology [F]’). Future work
will thus require a more controlled approach to determine which
MeSH descriptors should be included in a query.
The number of corroborating Medline articles did not have

a direct relationship with the relatedness between potentially
related diseases. For example, in the case of polycystic kidney
disease and Alzheimer ’s disease, very few (two) articles were
found using MeSH-based Medline searches; however, using the
vector space model approach described here, polycystic kidney
disease ranked third most related. This type of finding may lead
to future work that incorporates the number of MeSH-based
results (or lack thereof) into an ‘interestingness’ score suggesting
disease relationships that might warrant further investigation
because of genetic evidence.
To date, much of the analysis carried out for gene-to-disease

relationships has been based almost exclusively on data from
curated resources, such as OMIM. Such studies depend on
adequate levels of annotation and also on the correction of the
putative relationships between diseases and the reported caus-
ative genes. This is undoubtedly a similar concern for the
approach provided for the present study. However, where the
present study does differ is leveraging the actual sequence
information to explore the genetic relational space. Notably
missing from this first vector space model approach are other
factors that can have significant influence on genetic diseases
(eg, epigenetic or environmental features). There has been
significant work demonstrating the potential to study genee
environment features,40 which will form the basis for future
work in adding a ‘geneeenvironment’ vector to the vector space
model to complement the geneedisease and geneegene vectors
described in this study. The development of the geneeenviron-
ment vector will be a significant endeavor, especially as currently
available public datasets are generally not of the same depth as
molecular sequence databases such as GenBank. Minimally, the
geneeenvironment vector will need to incorporate relationships
from resources such as the Genetic Association Database41 or
within publicly available datasets in dbGAP42 that include
environmental variables. Literature mining techniques may also
be used to provide corroborating evidence to determine the
strength of the relationships (eg, as cataloged by HuGEnet43).
The resulting geneeenvironment vector could then be incorpo-
rated into the vector space model, thus enabling environmental
variables to be incorporated to infer relationships between
diseases (in addition to the gene-based relationships demon-
strated in this feasibility study). A possible validation may be
the ability to recover diseaseedisease relationships that have
known common environmental relationships (eg, smoking and
its influence on atherosclerosis and lung cancer).

J Am Med Inform Assoc 2012;19:249e254. doi:10.1136/amiajnl-2011-000480 253

Research and applications



Through the use of the vector space model approach, this
study has demonstrated the potential to identify and rank
relationships between diseases. Accordingly, it presents a mech-
anism for hybridizing information from predominantly genomic
resources (eg, GenBank) and exploiting explicit linkages to
literature-based knowledge (eg, as reported in Medline).

CONCLUSION
Vector space model approaches have been used predominantly in
the context of information retrieval paradigms. Here, an adap-
tation of a vector space model approach is presented that enables
the incorporation of sequence-based information. In the context
of complex diseases, this study shows how the proposed
approach could be used to identify potentially related diseases
based on relationships to genes. The promising results of this
feasibility study suggest a potentially powerful method for
exploring the complex landscape of polygenetic diseases.
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