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ABSTRACT
Objective To evaluate data fragmentation across
healthcare centers with regard to the accuracy of a high-
throughput clinical phenotyping (HTCP) algorithm
developed to differentiate (1) patients with type 2
diabetes mellitus (T2DM) and (2) patients with no
diabetes.
Materials and methods This population-based study
identified all Olmsted County, Minnesota residents in
2007. We used provider-linked electronic medical record
data from the two healthcare centers that provide >95%
of all care to County residents (ie, Olmsted Medical
Center and Mayo Clinic in Rochester, Minnesota, USA).
Subjects were limited to residents with one or more
encounter January 1, 2006 through December 31, 2007
at both healthcare centers. DM-relevant data on
diagnoses, laboratory results, and medication from both
centers were obtained during this period. The algorithm
was first executed using data from both centers (ie, the
gold standard) and then from Mayo Clinic alone. Positive
predictive values and false-negative rates were
calculated, and the McNemar test was used to compare
categorization when data from the Mayo Clinic alone
were used with the gold standard. Age and sex were
compared between true-positive and false-negative
subjects with T2DM. Statistical significance was
accepted as p<0.05.
Results With data from both medical centers, 765
subjects with T2DM (4256 non-DM subjects) were
identified. When single-center data were used, 252
T2DM subjects (1573 non-DM subjects) were missed;
an additional false-positive 27 T2DM subjects (215 non-
DM subjects) were identified. The positive predictive
values and false-negative rates were 95.0% (513/540)
and 32.9% (252/765), respectively, for T2DM subjects
and 92.6% (2683/2898) and 37.0% (1573/4256),
respectively, for non-DM subjects. Age and sex
distribution differed between true-positive (mean age
62.1; 45% female) and false-negative (mean age 65.0;
56.0% female) T2DM subjects.
Conclusion The findings show that application of an
HTCP algorithm using data from a single medical center
contributes to misclassification. These findings should be
considered carefully by researchers when developing and
executing HTCP algorithms.

BACKGROUND AND SIGNIFICANCE
Subject selectiondthe process of identifying
patients with specific clinical characteristicsdis an
essential component of clinical studies. Accurate
selection consumes considerable time and effort to
gather, abstract, and review medical charts, and it is
often the rate-limiting step in clinical research.1

Recently, the increased adoption of electronic
medical record (EMR) systems has provided
researchers with an advanced tool to improve this
inefficient process.2 By leveraging the machine-
processable content through an EMR system, clin-
ical researchers can develop a high-throughput
clinical phenotyping (HTCP) algorithm (a set of
inclusion and exclusion criteria for identifying
patients with specified characteristics), execute the
algorithm against already existing data within an
EMR system, and rapidly obtain a large pool of
eligible study subjects.3e6

The Electronic Medical Records and Genomics
(eMERGE) Network,5 a national consortium
funded by the National Human Genome Research
Institute, has devoted substantial efforts to
exploring the possibility of leveraging EMRs as
resources for subject selection. The eMERGE I
Network consisted of five national leading
academic medical centers: Mayo Clinic, Rochester,
Minnesota; Northwestern University Medical
Center, Chicago, Illinois; Vanderbilt University
Medical Center, Nashville, Tennessee; Marshfield
Clinic in Wisconsin, Marshfield, Wisconsin; and the
Group Health Cooperative with the University of
Washington, Seattle, Washington. One of its
primary goals was to develop HTCP algorithms for
identifying subjects suitable for genotype- and
phenotype-associated studies. In order to ensure
that an algorithm is transportable and that various
institutions can execute it to obtain reliable
outputs, each algorithm developed in the eMERGE
Network was proposed, reviewed, and validated by
domain experts across participating medical
centers.
The HTCP approach of leveraging EMR data for

subject selection is appealing because it offers
increased efficiency while reducing the large amount
of manual detail work that is required. We hypoth-
esize that results of HTCP are more accurate if all
medical data for every patient are available for
review. However, the ability to capture all of
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a patient’s medical data is limited when patients are seen by
multiple healthcare centers. A recent study indicates that, of the
nearly 3.7 million patients who sought treatment in acute care
settings inMassachusetts during a 5-year period, over 30% visited
more than one hospital and 1%dor 43 794 patientsdvisited five
or more hospitals during the study period.7 Similar findings on
multiple healthcare centers for primary care visits were reported
by Smith et al.8 The resultant data fragmentation across health-
care centers leads to incomplete data from any one EMR when
researchers execute an HTCPalgorithm at a single medical center.
The absent data could be crucial in qualifying or disqualifying
a study subject and could cause subject selection errors.

Previous studies of the effect of data fragmentation on clinical
outcomes suggested that data fragmentation wasted valuable
medical resources and could adversely affect treatment
outcomes.8e13 Cox and his colleagues14 investigated the influ-
ence of missing data and demonstrated that subjects with
missing data differed significantly in terms of variables crucial to
the study outcome and that distortion led to biased results.

To our knowledge, the impact of data fragmentation across
healthcare centers on an HTCP algorithm has not been explicitly
investigated. The present study evaluated the effect of data
fragmentation on an HTCP algorithm developed within the
eMERGE Network for specifying patients with type 2 diabetes
mellitus (T2DM).

THE EMERGE T2DM ALGORITHM
T2DM is a multiple gene-related chronic disease that poses an
enormous public health burden.15 As provided in detail else-
where (unpublished material, Wei W, 2011),16 the eMERGE
T2DM algorithm is EMR based and was developed by
researchers from Northwestern University and enhanced by
other participating institutes within the eMERGE Network. The
primary goal of this algorithm is to maximize the positive
predictive value (PPV) or the precision of identifying ‘T2DM
subjects’, a term used herein to mean patients with T2DM, and
to avoid confounding by inclusion as subjects individuals
without any type of diabetes mellitus (DM) or individuals with
type 1 DM (T1DM). With respect to unaffected subjects (herein
termed ‘non-DM subjects’), the goal of the algorithm is to
maximize the PPV of identifying individuals with no DM,
excluding even those at risk of DM which has not yet mani-
fested itself (ie, pre-DM).

Previous evidence has suggested that ICD-9-CM (International
Classification of Diseases, Ninth Revision, Clinical Modification)
codes alone would not provide enough accuracy to identify
patients with DM.17 18 More importantly, T2DM subjects
identified using only diagnosis codes could be contaminated
with T1DM subjects because many patients are assigned the
code for ‘diabetes mellitus, unspecified type’ and some patients
with T2DM diagnosis codes are actually T1DM subjects who
have been wrongly assigned a code for T2DM. To avoid such
potential misclassification, the algorithm developers supple-
mented the use of diagnosis codes with relevant laboratory
results and medication prescriptions (figures 1 and 2).
Previous evaluation studies indicated that the algorithm

achieved 98% and 100% PPVs for identification of T2DM
subjects and non-DM subjects, respectively, compared with
clinician review.16 However, both the EMR data and the records
that were reviewed came from the same medical center. Thus
the effect of data fragmentation across healthcare centers on its
performance is still unknown. We chose to evaluate the effect of
data fragmentation across healthcare centers on the basis of this
algorithm because it involves virtually all structured EMR data
(ie, diagnosis, laboratory values, and medication) and has
demonstrated high accuracy within a single medical center.

MATERIALS AND METHODS
Study setting
This is a population-based medical records study. It was conducted
in Olmsted County, Minnesota (2010 census ¼144248).

Data resources
The study took advantage of Rochester Epidemiology Project
(REP) resources.19 REP is a medical records-linkage system for all
residents of Olmsted County, which has been continuously
funded by National Institutes of Health since 1966. Population-
based studies using REP resources are afforded because
Rochester, the county seat, is geographically isolated (approxi-
mately 136 km from the nearest urban center) and home to
Mayo Clinic, one of the world’s largest medical centers. Thus
>95% of medical care received by County residents is provided
by either Mayo Clinic, with its two affiliated hospitals, or
Olmsted Medical Center (OMC), a second group practice, with
its affiliated hospital.20 The REP maintains a unique identifier
for each Olmsted County resident over time and across

Figure 1 The eMERGE algorithm for
identifying T2DM subjects. DM,
diabetes mellitus; Dx, diagnosis;
eMERGE, Electronic Medical Records
and Genomics; ICD-9-CM, International
Classification of Diseases, 9th Revision,
Clinical Modification; T1DM, type 1
diabetes mellitus; T2DM, type 2
diabetes mellitus.
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healthcare centers, and each resident’s clinical data from virtu-
ally all sources of medical care (hospital inpatient, hospital
outpatient, emergency department, office, and nursing home
visits) can be combined for approved clinical research.19 20

Eligible subjects
The study was approved by the Mayo Clinic and the OMC
Institutional Review Boards. We first used the REP census19 to
identify all unique individuals residing in Olmsted County in
2007. Persons who refused authorization for use of their medical
record in research at either OMC or Mayo Clinic (typically,
<5%21) were excluded. To be eligible for this study, subjects had
to be Olmsted County residents and to have had at least one
encounter at Mayo Clinic from January 1, 2006 through
December 31, 2007 and also at least one encounter at OMC from
January 1, 2006 through December 31, 2007.

EMR data
We obtained 2 years of EMR data for eligible patients (2006 and
2007) from OMC and Mayo Clinic separately. We searched
administrative claims data to determine the presence (or
absence) of DM-relevant ICD-9-CM codes (see online appendix
(ICD_codes)). Outpatient laboratory data for DM-relevant tests
were reviewed to determine whether a subject had an abnormal
value. The sources of medication data were electronic outpatient
prescription databases. One author (PJC), a licensed internal
medicine physician with a focus on diabetes, manually reviewed
the databases and provided a list of generic drug names, brand
names, synonyms, and abbreviations for DM-relevant medica-
tions (see online appendix (drug list)). We searched the medi-
cation data for the terms on the list to determine whether or not
a patient had been prescribed any such medications.

Data analysis
We first executed the eMERGE T2DM algorithm (figures 1 and 2)
on EMR data combined from both OMC and Mayo Clinic EMR

systems. The categorization of eligible patients as ‘T2DM
subjects’ and ‘non-DM subjects’ using data from both EMR
systems was considered the gold standard in this study. We then
executed the algorithm using Mayo Clinic EMR data alone; for
T2DM subjects and non-DM subjects separately, we calculated
the number of true positives (TPs), false positives (FPs), true
negatives (TNs), and false negatives (FNs) against the gold
standard. We also estimated PPVs and false-negative rates (FNRs)
to evaluate misclassification errors caused by data fragmentation
across healthcare centers.
The numerator for PPV is the number of TP subjectsdthat is,

those identified using EMR data from both centers who were
also identified as such using EMR data from Mayo Clinic alone.
The denominator for PPV is the sum of TP subjects plus the
number of FP subjects, with FP subjects defined as subjects
categorized as not subjects by the gold standard but as subjects
by EMR data from Mayo Clinic alone.
The numerator for FNR is the number of subjects categorized

as subjects using the gold standard, but who were categorized as
not subjects using EMR data from Mayo Clinic alone. The
denominator for FNR is the number of FN subjects plus the
number of TP subjects.
The McNemar test22 was used to analyze whether the catego-

rization that resulted from the use of EMR data from two centers
differed from the categorization when Mayo Clinic EMR data
alone were used. The distributions of two commonly used epide-
miological characteristics (age and sex) were compared between TP
T2DM subjects and FN T2DM subjects to estimate whether
T2DM subjects falsely excluded because of data fragmentation
were statistically different from identified T2DM subjects.
Comparison of the mean age between two groups was performed
with the t test. Comparison of sex proportions was performed
with the c2 test. Statistical significance was accepted when p was
<0.05. All data are presented as mean and SD. Statistical analysis
was performed with R for Windows software V.2.11.1.23

RESULTS
Of 139 654 Olmsted County residents in 2007, 12 740 (9.1%) had
at least one encounter at the Mayo Clinic from January 1, 2006
through December 31, 2007 and at least one encounter at OMC
within the same time frame (table 1). These 12 740 residents
were eligible for the present study.

T2DM subject identification
Of the 12 740 eligible subjects, 6.0% (765) met eMERGE T2DM
algorithm inclusion criteria for T2DM subjects when their
combined Mayo Clinic and OMC EMR data were used (table 2).
These 765 subjects were considered true T2DM subjects for this
study.
By comparison, 540 patients were identified as T2DM

subjects when their Mayo Clinic EMR data alone were used; 513
were TP and 27 were FP (table 2). The PPV was 95% (513/540).
The other 252 true T2DM subjects were FN (ie, incorrectly

Figure 2 The eMERGE algorithm for identifying non-DM subjects. DM,
diabetes mellitus; eMERGE, Electronic Medical Records and Genomics;
ICD9, International Classification of Diseases, 9th Revision; Rx,
prescription.

Table 1 Demographic characteristics of Olmsted County
residents and eligible patients

Characteristic Value

Olmsted county residents in 2007 (n¼139 654)

Age (years), mean (SD) 35.8 (22.9)

Female sex, % 53.2

Eligible subjects (n¼12 740)

Age (years), mean (SD) 40.9 (23.0)

Female sex, % 54.9
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excluded when Mayo Clinic EMR data alone were used). The
FNR was 32.9% (252/765). We found differences in the mean age
(p¼0.012) and sex proportion (p¼0.004) between the group of
513 correctly identified T2DM subjects (62.1 (15.2) years; female
to male ratio, 230:283) and the group of 252 missed T2DM
subjects (65.0 (14.7) years; female to male ratio, 141:111). The
McNemar test also indicated a difference between the catego-
rization with EMR data from both centers and the categoriza-
tion with data from Mayo Clinic alone (p<0.001).

With respect to which eMERGE inclusion/exclusion criteria
(see figure 1) accounted for the misclassification of T2DM
subjects with Mayo Clinic EMR data alone, all 27 FP T2DM
subjects and 111 of the 252 (44%) FN T2DM subjects resulted
from incomplete diagnosis codes at Mayo Clinic (table 3).
Incomplete medication data at Mayo Clinic led to 75 (30%) FN
T2DM subjects; an additional 53 (21%) FN T2DM subjects
resulted from having only one encounter at Mayo Clinic
2006e2007 (the algorithm required at least two encounters).
The remaining 13 (5%) FN T2DM subjects had abnormal
laboratory results missing at Mayo Clinic.

Non-DM subject identification
With EMR data from both OMC and Mayo Clinic, 4256 subjects
were identified by the algorithm as non-DM subjects (table 2).
These were considered gold-standard non-DM subjects for this
study.

With EMR data fromMayo Clinic alone, 2898 eligible subjects
were categorized as non-DM subjects. However, only 2683 were
TP, 215 were FP, and 1573 were FN (ie, incorrectly excluded as
non-DM subjects when EMR data from a single medical center
were used). The PPV and FNR were 92.6% (2683/2898) and

37.0% (1573/4256), respectively (table 2). Statistical analysis
indicated a difference between the categorization with data
from the two healthcare centers and that with data from Mayo
Clinic alone (p <0.001).
With respect to which eMERGE inclusion/exclusion criteria

(see figure 2) accounted for the misclassification of non-DM
subjects with Mayo Clinic EMR data alone, incomplete labora-
tory data contributed to 135 (63%) FP non-DM subjects and
1074 (68%) FN non-DM subjects (table 3). Incomplete diagnosis
codes contributed to another 73 (34%) FP non-DM subjects, and
499 (32%) of FN non-DM subjects resulted from having fewer
than two encounters at Mayo Clinic 2006e2007.

DISCUSSION
Current clinical research is limited by a labor-intensive subject
selection process, which has become a formidable obstacle to
conducting broad and deep studies and drawing powerful
conclusions. An HTCP algorithm leverages machine-processable
EMR data, improving such inefficiency. Oftentimes, a patient is
seen by multiple medical centers, and thus a single medical
center does not have the patient’s complete medical data when
executing an algorithm. To our knowledge, how this data frag-
mentation across healthcare providers affects the accuracy of an
HTCP algorithm has not been previously investigated. Such an
investigation is difficult to conduct because it requires accessing
multiple EMRs from heterogeneous sources at multiple medical
centers. By taking advantage of the REP, we accomplished such
a novel demonstration.
When using the combined Mayo Clinic and OMC EMR data

for the 12 740 eligible subjects, 6.0% (765) met eMERGE T2DM
algorithm inclusion criteria for T2DM subjects (table 2). This
percentage is slightly lower than the prevalence of DM for all
age groups in the USA (8.3%)24 because not all Olmsted County
residents were tested for DM in the 2 years of the study.
Our results, combined with findings from other studies,8 14

show the advantage of access to more complete data for clinical
research. In the present study, data fragmentation across
healthcare centers resulted in incomplete data for any one EMR
when the eMERGE T2DM algorithm was executed in Olmsted
County, and that incompleteness substantially decreased the
algorithm’s accuracy.
For T2DM subject identification, we found categorization

differences with data from both centers relative to the use of data
from any one alone. The differences were mainly the result of
a large proportion of FN T2DM subjects (n¼252; FNR, 32.9%).
The 252 FN T2DM subjects differed with respect to age and sex
distribution from the 513 TP T2DM subjects. This difference
suggests that, for age/sex-matched designs, matching could be
skewed when HTCP algorithms are applied to EMR data from
a single medical center. Even though the eMERGE T2DM

Table 2 Categorization of eligible patients as T2DM and non-DM subjects

Data source TPs, N FPs, N TNs, N FNs, N
Sensitivity
(TP/(TP+FN)),%

Specificity
(TN/(FP+TN)), %

PPV
(TP/(TP+FP)), %

FNR
(FN/(TP+FN)), % p Value*

T2DM subject

Mayo Clinic alone 513 27 11 948 252 67.1 99.8 95.0 32.9 <0.001

Mayo Clinic + OMC 765 0 11 975 0 100 100 100 0

Non-DM subject

Mayo Clinic alone 2683 215 8269 1573 63.0 97.5 92.6 37.0 <0.001

Mayo Clinic + OMC 4256 0 8484 0 100 100 100 0

*p Value for comparison of categorizations between Mayo Clinic alone and Mayo Clinic + OMC.
DM, diabetes mellitus; FNR, false-negative rate; FN, false negative; FP, false positive; OMC, Olmsted Medical Center; PPV, positive predictive value; TN, true negative; TP, true positive; T2DM,
type 2 diabetes mellitus.

Table 3 Number of, and reasons that contributed to, FP and FN results

Subjects n (%) Reasons that contributed to FP or FN results

FP

T2DM subjects 27 (100) Incomplete data for T1DM diagnosis

Non-DM subjects 73 (34) Incomplete data for DM-relevant diagnosis

7 (3) Incomplete use history of antidiabetes
medication or supplies

135 (63) Absence of laboratory results

FN

T2DM subjects 53 (21) <2 visits at Mayo Clinic between January 1,
2006 and December 31, 2007

111 (44) Incomplete data for T2DM diagnosis

75 (30) Incomplete treatment history of antidiabetes
medication or supplies

13 (5) Absence of laboratory results

Non-DM subjects 499 (32) <2 visits at Mayo Clinic between January 1,
2006 and December 31, 2007

1074 (68) Absence of laboratory results

DM, diabetes mellitus; FN, false negative; FP, false positive; T1DM, type 1 diabetes
mellitus; T2DM, type 2 diabetes mellitus.
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algorithm is reported to achieve 98% for identification of T2DM
subjects compared with clinician review,16 we still identified 27
(5.0%) FP T2DM subjects because of data fragmentation across
healthcare centers.

For non-DM subject identification, we also found categoriza-
tion differences using data from both centers relative to using
data from any one alone. The differences were mainly the result
of a large proportion of FN non-DM subjects (n¼1573; FNR,
37.0%). Even though the eMERGE T2DM algorithm is reported
to achieve 100% PPVs for identification of non-DM subjects
compared with clinician review,16 we still identified 215 (7.4%)
FP non-DM subjects because of data fragmentation across
healthcare centers.

An incomplete diagnosis is the main reason for FP errors and
accounted for all FP T2DM subjects. Absent laboratory results
and incomplete diagnosis led to the majority of FP non-DM
subjects. FNs were caused by the incompleteness of diagnosis,
laboratory values, or prior medications. We also found that 53
subjects (21%) and 499 subjects (32%) were missed because they
had made fewer than two clinical visits during the study period.
As the time frame we used was 2 years, which is broader than
the recommended frequency of T2DM visits (3e6 months),24 25

these insufficient clinical visits must have resulted from data
fragmentation across centers as well.

The misclassification errors caused by data fragmentation
could lead to sampling bias and risk serious distortions in the
findings of resulting studies.26 These outcomes should be care-
fully considered by clinical researchers when developing or
executing an algorithm. The ultimate solution for the data
fragmentation problem is integrating EMR systems across
various healthcare centers. However, to achieve such an ambi-
tious goal, not only do serious technological challenges exist, but
also complex ethical issues need to be addressed. Some ONC
(the Office of the National Coordinator) funded Beacon projects
prototype this issue.27

Clinical narratives (unstructured clinical data) document
a patient’s detailed description about diseases that may contain
data from other healthcare centers. This additional information
can be extracted by using natural language processing tech-
niques and turned into normalized data for further analysis
using other advanced techniquesdfor example, data mining.28

Then, discovered patterns could be reviewed and adopted in
subject selection criteria. This approach may work with the
caveat that additional data must be relevant for the condition
under study. Our previous work, along with other studies, has
shown its potential for subject selection tasks.6 29e32

Several issues about this study design should be considered
when interpreting the findings. Because of unavoidable random
or systematic errors (eg, physician experience, communication
quality between the patient and the clinician, and coding
quality), it is extremely difficult to obtain a patient’s actual
condition or the true gold standard.33 The manual effort
required to validate the distinction between T1DM and T2DM
obtained using the algorithm against medical review requires
information at the time of DM onset34 and was beyond the
scope of the present study. In this study, our gold standard was
based on classifications using 2 years of EMR data from two
major healthcare centers in Olmsted County. Because most
Olmsted County residents receive their healthcare at these two
healthcare centers and the observation window we chose is
much broader than the recommended frequency of T2DM visits,
this is a pragmatic gold standard for this study.

Our results may not generalize to largemetropolitan areas. Our
study setting is a sparsely populated, relatively isolated county in

southeastern Minnesota. The residents of Olmsted County have
fewer options for healthcare centers than people living in a large
metropolitan area. Thus the misclassification errors that we
found by comparing the selected categorizations are most likely
smaller than in a usual situation. Also, this study focuses on how
HCTP is affected by incomplete data due to data fragmentation
across healthcare centers alone. It does not investigate the impact
of incomplete data due to other factors, for example, insufficient
longitudinal data, which is a topic for another study (unpublished
material, Wei W, 2011). In addition, the algorithm scope of our
study is limited to the eMERGE T2DM algorithm alone. For a
more complete evaluation of the impact of data fragmentation on
an HTCP algorithm, this study needs to be repeated at different
geographic locations under various periods of observation on
a wide spectrum of HTCP algorithms.

CONCLUSION
This study, to our knowledge, is the first attempt to assess the
impact of data fragmentation on an HTCP algorithm across
multi-institution EMRs. Our results show that data fragmen-
tation across healthcare centers causes misclassification errors of
an HTCP algorithm. This risk should be carefully considered by
clinical researchers when developing or executing an HTCP
algorithm.
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