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ABSTRACT
Background and objective With recent breakthroughs
in high-throughput sequencing, identifying deleterious
mutations is one of the key challenges for personalized
medicine. At the gene and protein level, it has proven
difficult to determine the impact of previously unknown
variants. A statistical method has been developed to
assess the significance of disease mutation clusters on
protein domains by incorporating domain functional
annotations to assist in the functional characterization of
novel variants.
Methods Disease mutations aggregated from multiple
databases were mapped to domains, and were classified
as either cancer- or non-cancer-related. The statistical
method for identifying significantly disease-associated
domain positions was applied to both sets of mutations
and to randomly generated mutation sets for
comparison. To leverage the known function of protein
domain regions, the method optionally distributes
significant scores to associated functional feature
positions.
Results Most disease mutations are localized within
protein domains and display a tendency to cluster at
individual domain positions. The method identified
significant disease mutation hotspots in both the cancer
and non-cancer datasets. The domain significance scores
(DS-scores) for cancer form a bimodal distribution with
hotspots in oncogenes forming a second peak at higher
DS-scores than non-cancer, and hotspots in tumor
suppressors have scores more similar to non-cancers. In
addition, on an independent mutation benchmarking set,
the DS-score method identified mutations known to alter
protein function with very high precision.
Conclusion By aggregating mutations with known
disease association at the domain level, the method was
able to discover domain positions enriched with multiple
occurrences of deleterious mutations while incorporating
relevant functional annotations. The method can be
incorporated into translational bioinformatics tools to
characterize rare and novel variants within large-scale
sequencing studies.

INTRODUCTION
As next-generation sequencing technologies
continue to increase in throughput and decrease in
cost, the next challenge for enacting whole-
genome-based personalized medicine is to fully
explain the functional contributions of genetic
variations to human disease at the molecular level.
The first clinical assessment of a personal genome
recently demonstrated the potential of personalized

medicine.1 The study evaluated the possible impact
of variants both known and novel, rare and
common, and with likely pharmacogenomic effects
in combination with the patient’s clinical and
family history in order to suggest individualized
treatment strategies. However, lacking knowledge
of the functional mechanism by which a variant
might contribute to disease, the researchers took
a gene-based approach to prioritizing rare or novel
non-synonymous variants, focusing on variants
that occur in genes previously associated with
diseases or with drug response and with predicted
deleterious effects from variant effect prediction
tools.
A recent study demonstrated the limitation of

the gene-based approach to variant prioritization,
noting that proteins function through interaction
networks, and that mutations that cause
a complete loss of a protein (node removal) are
often phenotypically distinct from those that
disrupt specific interactions without loss of the
protein (edgetic perturbations).2 The same study
also showed several examples where non-synony-
mous mutations or small, in-frame insertions or
deletions in different domains in the same protein
produce distinct disease phenotypes by disrupting
different protein functions and interactions. Thus,
inferring the effect of a mutation based only on its
presence in the same gene as a previously disease-
associated mutation is likely to be misleading.
These results emphasize the need to functionally
characterize individual variants in order to accu-
rately predict their associations to disease, and
demonstrate the potential for protein domains to
provide the necessary functional information for
variant characterization.
Protein domains are the structural and functional

subunits of proteins. Different domains confer
proteins with different functions, and unique
combinations of domains confer proteins with the
wide variety of protein function seen today. In
addition, protein domains mediate most (approxi-
mately 75%) protein interactions.3 Individual
domains also contain distinct functional features
like binding sites, active sites, and post-trans-
lational modification sites. By mapping mutations
to their relative positions within protein domains,
the disruption of specific functional features or
protein interactions can be revealed, providing
a detailed explanation for the molecular contribu-
tion of the mutation to disease. In addition,
aggregating mutations from all proteins at the
domain level can also reveal individual positions
within the domain that are highly susceptible to
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disease-causing mutations, providing a significant aid to variant
prioritization. To visualize the aggregation patterns of disease
mutations at the protein and domain levels, we recently devel-
oped the Domain Mapping of Disease Mutations database
(DMDM), freely available at http://bioinf.umbc.edu/dmdm/.4

In this work, we study the patterns of aggregated cancer and
non-cancer disease mutations at the protein domain level. A
recent study showed that there are differences in the tendencies
of Mendelian disease-related mutations and cancer somatic
mutations to occur at solvent accessible positions within
proteins,5 while another study showed different tendencies for
mutations in oncogenes and tumor suppressors to cluster at
functional sites on the protein and within the three-dimensional
protein structure.6 Using domain visualizations provided by the
DMDM database, we were able to confirm the clustering of
disease mutations at individual domain positions and functional
feature sites for both cancers and Mendelian diseases, and for
known oncogenes and tumor suppressors. These observations
motivated our decision to separate cancer and non-cancer
mutations, and further cancer mutations in oncogenes and
tumor suppressors, to determine if distinct patterns of mutation
aggregation exist at the domain level. We first developed
a methodology to identify significantly mutated positions
within individual protein domains. In order to calculate the
domain significance score (the DS-score) for each position
within each domain, we mapped all known, disease-associated
mutations to their relative positions within the domains. The
DS-score is based on the probability for the current position
within the domain to contain the number of disease mutations
found, given the domain length and the total number of disease
mutations mapping to the domain. A significant DS-score for
a position implies that a mutation at the position is highly likely
to contribute to disease in any protein containing the domain. In
addition to this position-based DS-score, we also developed
a feature-based DS-score. Using the feature-based DS-score
methodology, the position-based DS-score for a significant
position annotated as part of a specific functional feature (eg,
binding site or active site) is distributed to all other positions
annotated as part of the same functional feature in the domain
under the assumption that the entire functional feature is crit-
ical to the normal function of the protein.

We find that disease mutations form significant cluster
hotspots for both cancers and non-cancers. Furthermore, we find
distinct differences between the DS-score distributions for both
cancers and non-cancers. While cancers and non-cancers display
a similar distribution at lower DS-scores, the DS-scores for
cancers form a bimodal distribution, with hotspots in oncogenes
forming a second peak at higher DS-scores, and hotspots in
tumor suppressors have scores more similar to non-cancers. We
also find that mutation hotspots in cancers tend to occur
significantly more often at functional feature positions than
non-cancers, while mutations in both sets show similar overlap
with highly conserved positions in protein domains.

Finally, the DS-scores for individual protein domain positions
can be used as predictors of the effect of uncharacterized, non-
synonymous single nucleotide variants (nsSNVs) from
sequencing studies. Numerous methods for predicting the effect
of nsSNVs have been developed over the last 10 years that use
a variety of features, including the evolutionary history of the
mutated position, the physicochemical properties of the resulting
amino acid substitution, and the predicted effect of the mutation
on protein structure, as well as other features and combinations
thereof.7e25 These have been recently reviewed.26e29 The DS-
score method is novel in that it uses the domain positions of

known disease mutations to predict the effects of unclassified
variants. Variants can be mapped to their domain positions, and
the domain positions checked for the presence of significant
clusters of known disease mutations. The occurrence of a variant
at a domain position with a significant cluster of disease muta-
tions implies that the variant is likely to be deleterious, even if it
occurs in a protein formerly unassociated with disease.
Domain sequences are highly conserved through evolution;

therefore we compared the DS-scores for significant mutation
hotspots to a simple measure of conservation for those positions
to ensure that the DS-score did not simply identify highly
conserved positions. We also compared the performance of the
DS-score method as a predictor of the effect of nsSNVs on an
independent mutation set to that of SIFT,7 a widely used
method that bases its predictions on the conservation of the
mutated positions, and to that of another domain-based
approach, the LogR.E-value method.25 The LogR.E-value method
bases its predictions on the change in alignment scores for the
wild-type and mutated protein sequences to a hidden Markov
model of the domain sequence. Due to the currently limited
number of disease mutations listed in public databases, the DS-
score has very low sensitivity compared to the SIFTand LogR.E-
value methods because they do not restrict their predictions of
damaging mutations to domain positions of known disease
mutations. However, the DS-score has a significantly higher
precision, outperforming SIFT and the LogR.E-value on muta-
tions predicted to alter protein function. In addition, when we
combine the DS-score prediction with that of SIFTor the LogR.
E-value, the precision increases even more, to over 95% for the
position-based DS-score, a characteristic important for the
potential application of the method in a clinical setting. To
facilitate the use of the DS-scores as an aid to variant classifi-
cation by the scientific community, pre-computed DS-scores for
all domains and domain positions are freely available on our FTP
site (http://bioinf.umbc.edu/ds-score/ftp/), as well as a Perl
script for mapping mutations from protein to domain positions.

MATERIALS AND METHODS
Databases
A human protein database containing 54 372 proteins was
created with 33 963 proteins from RefSeq30 and 20 409 proteins
from Swiss-Prot31 downloaded via NCBI’s E-utilities. Since the
RefSeq and Swiss-Prot databases contain many redundant
protein entries, we selected only one representative protein for
each unique Entrez gene ID, either the longest Swiss-Prot
protein, or the longest RefSeq protein if no Swiss-Prot protein
was listed for the gene ID. A protein domain set was obtained
from the Conserved Domain Database (CDD)32 (version 2.25),
which includes domains from CDD and the SMART,33 COG,34

and Pfam35 databases, with a total of 23 632 protein domains,
10 925 of which map to at least one human protein. Functional
feature information was collected for CDD domains from the
‘cddannot.dat’ file located in the CDD FTP directory (ftp://ftp.
ncbi.nih.gov/pub/mmdb/cdd), totaling 1727 unique functional
features. The non-overlapping set of human, non-synonymous
disease mutations was created from the OMIM36 and Swiss-Prot
variant databases obtained from E-utilities and UniProt’s FTP
directory (http://www.uniprot.org/docs/humsavar), respec-
tively. Mutations were classified as ‘cancer ’ or ‘non-cancer ’ using
a controlled vocabulary and manual curation. The resulting non-
cancer dataset consists mostly of mutations related to diseases
with Mendelian patterns of inheritance, but also contains
a small number of complex disease mutations. Randomized
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datasets were created for both the cancer and non-cancer
mutation sets by randomizing the domain position for each
mutation using a uniform probability distribution.

Mapping mutations to protein domains
Hidden Markov models for protein domains from SMART,
COG, CDD, and Pfam were built using multiple sequence
alignments from CDD with the hmmerbuild tool (HMMer
version 2.3.2).37 HMMer ’s hmmpfam tool was then used with
the global option to search for complete domains in human
proteins from the RefSeq and Swiss-Prot databases. Protein
mutations were distributed to protein domain positions
using HMMer ’s alignment output and assigning mutations that
fall on gap regions of the domain model to the last position
before the gap. Each mutation was mapped only to the repre-
sentative protein for each unique gene in the dataset. The
methods for mapping domains to human proteins and disease
mutations to their domain positions were previously described
for our DMDM tool.4 After mapping the mutations to domain
positions, 39.2% of human protein domains contained at
least one disease mutation from either the cancer or non-cancer
sets.

Estimating conservation of domain positions
The program AL2CO38 was used to estimate the entropies for
each column j in a protein domain alignment.

Hjh ¼ +
i¼1;20
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where p(ai,j) is the frequency of amino acid ai at position j. A
threshold for identifying highly conserved positions was esti-
mated by averaging the AL2CO scores for all domain positions
and adding one SD.

Estimating domain significance scores (DS-scores)
We developed a method to estimate a position-based DS-score
for each domain position. Let X be the number of mutations and
X(k) be the kth order of number of mutations. P{X(k)¼x} is from n
independent observations and only depends on the probability
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The position-based DS-score is the probability of observing
a cluster of a particular size given the number of available
positions in a domain and the total number of mutations
observed,
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where L is number of positions in the domain, and m is number
of mutations which are tied at maximum. We used a binomial
probability of observing a cluster with size less than k in
a domain with n mutations. Domain disease hotspots, or disease
hotspots, were defined for those positions with DS-scores $1.3
(significant with a p value #0.05). The feature-based DS-score
was created by distributing the highest position-based DS-score

for each functional feature to all other positions annotated with
the same functional feature in the domain. Figure 1 illustrates
how the DS-score is disseminated to all functional feature
positions. Perl and R were used to calculate and assign the DS-
scores.

Estimating the background distribution of significant DS-scores
We created two additional sets of mutations by randomizing the
domain position of each mutation in the cancer and non-cancer
sets. This process was repeated 1000 times for each set of
mutations. We then estimated the average and SD of the
number of significant domain positions, that is, those with DS-
scores $1.3, found in each randomized set of mutations.

Comparison of DS-score performance to SIFT and the
LogR.E-value
To compare the performance of the DS-score method to other
methods for predicting the effect nsSNVs, we used the set of all
single amino acid substitutions in human proteins extracted
from the Protein Mutant Database (PMD)39 used in Bromberg
et al.20 PMD contains information from the literature on the
effects of naturally occurring and experimentally induced
mutations on protein activity and association with disease when
applicable. Mutations noted to increase or decrease protein
activity were classified as ‘function-altering’, whereas mutations
noted to cause no change in function were classified as ‘neutral’.
Neutral mutations were added to the PMD set in order to
balance the number of function-altering and neutral mutations.
To do so, highly sequence similar (>40% identity) enzymes with
experimentally annotated functions in Swiss-Prot were aligned
by pairwise BLAST,40 and positions containing different amino
acids were assumed unlikely to affect protein function, and were
thus labeled as neutrals.
The set of all PMD and added neutral mutations was used to

benchmark the performance of the DS-score methods and to
compare it with the SIFT7 and LogR.E-value25 predictors. SIFT
predictions of ‘tolerated’ or ‘damaging’ were considered as
neutral or function-altering, respectively. A LogR.E-value
threshold of 1.0 (neutral < LogR.E-value 1.0 $ function-altering)
was used to classify mutations, which was the threshold
suggested by the authors of the LogR.E-value method to maxi-
mize precision in identifying deleterious mutations. Of the 15182
PMD mutations including added neutrals, 9049 (59.6%) occurred
within identified protein domain regions and produced prediction
results with both the SIFT and LogR.E-value methods. We
calculated the sensitivity, specificity, and precision of the SIFT
and LogR.E-value predictions in reference to the PMD-derived
classifications, and compared to the performance of the position-
based and feature-based DS-scores for the mutation positions
using a DS-score threshold of 1.3 (neutral < DS-score 1.3 $
function-altering). The DS-scores from the cancer and non-cancer
sets were combined and used to classify the mutations. We also
compared the performance of a simple method using a threshold
of two known disease mutations at the domain position (neutral
< 2 mutations $ function-altering) to classify the PMD and
added neutral mutations. Additionally, because the DS-score
method only considers the domain position of the mutation, and
not the actual amino acid change, we calculated the precision for
combining the DS-score predictions with the SIFT or LogR.E-
value predictions, which do consider the amino acid change. To
do so, mutations were classified as function-altering when both
the DS-score prediction and the SIFT or LogR.E-value prediction
classified the mutation as function-altering, otherwise the
mutation was classified as neutral.
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RESULTS
Disease mutations on protein domains
After mapping all available disease mutations in human proteins
to their corresponding domain positions, we found that 97% of
disease mutations, including both cancer and non-cancer
mutations, are located within a protein domain. In addition,
both mutation sets display a significantly higher tendency to
cluster at individual protein domain positions with respect to
the random sets, with 54.4% and 58.8% (p value for both sets
z0.0) of the cancer and non-cancer mutations, respectively,
located in protein domain positions that contain two or more
mutations, as shown in table 1.

Domain disease hotspots
We developed a method for identifying significant mutation
hotspots at individual protein domain positions or at annotated
functional feature positions within the domain. The position-
based DS-score was used to identify 986 and 2004 domain
hotspots for the cancer and non-cancer mutation sets, respec-
tively. As shown in table 1, these results are notably higher (p
value z 0.0 for both sets) with respect to what is expected by
chance. The average number of position-based hotspots in the
randomized sets were only eight (cancer) and 10 (non-cancer).
Alternatively, the feature-based DS-score identifies significant
clusters of mutations at annotated functional feature positions
within the domain (see figure 1). Using the feature-based DS-
score, we identified 11 031 feature-based hotspots in the cancer
mutation set and 8556 in the non-cancer set. The corresponding
randomized mutation sets yielded significantly lower counts,
with only 18 feature-based hotspots in each of the random sets.
The higher number of hotspots found using the feature-based
score than using the position-based score was expected, as
significant position-based scores are distributed throughout
functional features to assign the feature-based scores. We also
counted the number of position-based hotspots per domain in
each mutation set (figure 2A,B). The non-cancer set yielded
a higher overall number of position-based hotspots, likely due to

the higher number of mutations in the non-cancer set. The
distributions of the number of hotspots per domain for the
cancer and non-cancer datasets were similar, except for an
extreme outlier with 42 hotspots in the non-cancer set. Protein
domains with the highest number of position-based hotspots for
the cancer and non-cancer sets are shown in tables S1-A and S1-
B, respectively. As expected, kinase and RAS domains are
significantly represented in the cancer set.
The vast majority of the mutations in the non-cancer set are

from diseases with likely Mendelian patterns of inheritance.
While both the cancer and non-cancer (mainly Mendelian)
mutations in our study show significant patterns of aggregation
at the protein domain level, figure 2C,D shows that there are
significant differences in the distributions of the position-based
DS-score for these datasets. The cancer mutations contain
a second peak, indicating that cancer mutations have a signifi-
cantly higher tendency to cluster at specific protein domain
positions. The specific domains where these highly significant
clusters of cancer and non-cancer mutations occurred are listed
in tables S2-A and S2-B, respectively. These results confirm the
significance of kinase domain mutations in cancer, but also point
to the significance of other domains, such as EGF and collagen
domains to the non-cancer diseases. The results in figure 2C,D
were obtained using the DS-scores from all domains included in
the CDD, Pfam, SMART, and COG databases in order to include
all domains, including those exclusive to each domain set. We
also computed the DS-scores and plotted the distributions using
each domain database individually, and obtained similar DS-
score distribution patterns for the cancer and non-cancer
mutations. Figures S1-A and S1-B show the DS-score distribu-
tions for cancer and non-cancer mutations using only domains
from the CDD domain set.

Hotspots at conserved and functionally annotated positions
As shown in table 2, more than 50% of the position-based and
feature-based hotspots occur at highly conserved domain posi-
tions. For example, 58.1% (cancer) and 51.2% (non-cancer) of the

Figure 1 Visual representation of the
distinction between position-based and
feature-based DS-scores. A position-
based DS-score hotspot (left) is
represented as a peak of the DS-score
(line graph at bottom) at domain
position 63. The DS-score for the
hotspot at position 63 is distributed to
all other functional feature positions
(boxes below the sequence logos) to
create the feature-based DS-scores
(right). This figure is produced in colour
in the online journaleplease visit the
website (www.jamia.org) to view
the colour figure.

Table 1 Mutation, position-based, and feature-based hotspot counts; results for the random sets show
the average numbers and their standard deviations over 1000 randomizations

Cancer Non-cancer
Randomized
cancer

Randomized
non-cancer

Total mutations 33 688 205 174 33 688 205 174

Total position-based hotspots 986 2004 7 (63) 10 (66)

Total feature-based hotspots 11 031 8556 18 (620) 18 (620)

Mutations at position-based hotspots 13.7% 6.4% 0.06 (60.03)% 0.05 (60.04)%

Mutations at feature-based hotspots 29.2% 10.5% 0.07 (60.04)% 0.06 (60.04)%

Mutations at domain positions with
$2 mutations

54.4% 58.8% 33.2 (62.2)% 30.8 (63.1)%
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position-based hotspots are in highly conserved positions. A
slightly higher percentage, 67.6% (cancer) and 61.7% (non-
cancer), of the feature-based hotspots are highly conserved. All p
values estimated by the Fisher test for the comparison of these
results against the background, randomized sets were significant
(p values <0.05). To measure the correspondence of the DS-
scores and entropy-based conservation scores, we calculated the
Pearson correlation coefficient for all position-based hotspots in
each set, resulting in a correlation coefficient of 0.19 for cancer
and 0.10 for non-cancer. Additionally, to assess the functional
significance of the disease hotspots, we calculated the percentage
of position-based hotspots occurring at annotated functional
feature positions. Also shown in table 2, 69.8% of the cancer
hotspots occur at known, functional feature positions, while the
majority of hotspots in the non-cancer set have no functional
annotation. Only 35.9% of the non-cancer hotspots occur at
a functional feature site. As expected, the vast majority of
feature-based hotspots (97.6% for cancer and 90.3% for non-

cancer) occur at functionally annotated features within the
domain due to the nature of the feature-based DS-score assign-
ment. Tables S3-A and S3-B list the functional features with the
highest number of hotspots for the cancer and non-cancer
datasets, respectively.

DS-score prediction performance
We measured the performance of the position-based DS-scores
and feature-based DS-scores as predictors of the effect of
nsSNVs on protein function and compared to the performance
of two well known predictors: SIFT and the LogR.E-value. As
expected, due to the low number of mutations in public data-
bases with known disease phenotype, the sensitivities of the DS-
score based methods (3.3% for the position-based DS-score, 5.6%
for the feature-based DS-score) are extremely low compared
with those of SIFT (64.1%) and the LogR.E-value (56.0%) which
do not depend on the existing number of known disease
mutations. However, the sensitivity increased by relaxing the

Figure 2 Number of position-based hotspots per protein domain and the distribution of DS-scores for the cancer and non-cancer datasets. The
number of position-based hotspots was counted for each domain, and the distribution is shown in (A) and (B) for the cancer and non-cancer datasets,
respectively. The asterisk (*) in (B) denotes one domain with 42 hotspots. The distribution of DS-scores for significant domain positions is shown for
the cancer and non-cancer mutation sets in (C) and (D), respectively.
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parameters to predict deleterious domain positions. Using
a simple model that classified any mutation in a domain position
with two or more known disease mutations as likely to alter
protein function, the sensitivity increased significantly to 20.5%.
The specificities for the DS-score methods were very high in
comparison to SIFT and the LogR.E-value methods: 99.5% for
the position-based DS-score, 98.6% for the feature-based DS-
score, 94.2% for the simple model, 76.2% for SIFT, and 78.2% for
the LogR.E-value.

A comparison of the precision of the methods is shown in
table 3. The highest precision, 91.6%, was obtained by the
position-based DS-score, and there were only small decreases in
precision when the DS-score hotspots were extended to aggre-
gate mutations within the same functional features (87.2% for
the feature-based DS-score), or when the simple model was used
(85.6%). All methods had precisions higher than either SIFT
(82.0%) or the LogR.E-value (81.3%). We also combined the DS-
score method predictions with the SIFT and LogR.E-value
predictions to determine the impact on precision. The SIFT and
the LogR.E-value methods both consider the actual amino acid
change of the mutation, while the DS-score methods only
consider the domain position of the mutation. By requiring that
both the DS-score and the SIFT or LogR.E-value method under
consideration agreed that a mutation was predicted to alter
function, all methods increased in precision with only small
decreases in sensitivity. For example, combining the DS-score
with the LogR.E-value predictions resulted in increases in
precision of 4.1% and 3.8% for the position-based and feature-
based DS-scores, respectively, with accompanying decreases in
sensitivity of 0.9% and 1.7%. The precision for the simple model
also increased (up 6.3%), but had a larger decrease in sensitivity
(down 8.4%).

DISCUSSION
As the field of personalized medicine develops, there is a growing
need for new methods to identify deleterious mutations from
the millions of variants present in each individual’s genome.
Personalized treatment for individuals found to harbor harmful

mutations depends on the accurate assessment of mutation-
specific disease risk.41 In our approach to identify functionally
deleterious mutations, previously disease-associated mutations
from all human proteins were aggregated at the protein domain
level in order to identify and analyze disease hotspots. We
recently developed a tool to visualize the aggregation patterns of
disease mutations at the protein and domain levels, the DMDM
database. We also developed a statistical measure, the position-
based DS-score, to identify significantly mutated positions
within each domain, based on the probability of observing the
specific number of mutations at each position, given the length
of the domain and the total number of mutations mapping to
the domain. A similar method, mCluster,42 was recently devel-
oped to identify disease hotspots at the domain level, with
a focus on distinguishing driver mutations from passenger
mutations in cancer tumor sequencing data. However, in order
to distinguish passenger and driver mutations, mCluster inher-
ently includes somatic mutations from COSMIC43 and addi-
tional cancer sequencing studies with unknown disease
relevance. The DS-score method utilizes only mutations of
known disease relevance, consisting primarily of germline
mutations in addition to a much smaller number of validated,
cancer-associated somatic mutations from OMIM and Swiss-
Prot. By using only validated, disease-associated mutations, the
DS-score method is likely to be highly specific in identifying
true domain disease hotspots, as evidenced by the highly
significant enrichment (p value z0.0) of hotspots in the cancer
and non-cancer sets in comparison to the random mutation sets
(table 1).
Many current tools for predicting the impact of missense

mutations use sequence conservation as a feature to help classify
mutations as either neutral or deleterious including SIFT,7

PolyPhen,8 SNAP,20 and others. Using an entropy-based conser-
vation score, we calculated the percentage of times that signif-
icant DS-score hotspots overlapped with highly conserved
positions inside protein domains. As shown in table 2, we did
not find a perfect correspondence between highly conserved
positions and disease hotspots in either the position-based scores
for the cancer (58.1%) and non-cancer (51.2%) sets or in the
feature-based scores for the cancer (67.6%) and non-cancer
(61.7%) sets. We also found very low correlation coefficients
between the DS-scores and conservation scores for each set (0.19
for cancer and 0.10 for non-cancer), demonstrating that the DS-
score method for identifying mutation hotspots goes beyond
simply identifying mutations at highly conserved domain posi-
tions. Our DS-score methodology therefore incorporates addi-
tional information in its calculation of disease hotspots that
could be used to aid in the characterization of rare or novel
variants.
In addition to identifying significant disease mutation

hotspots in protein domains, the DS-score provides an inherent
functional context for explaining how mutations at the hotspot
contribute to disease. Domains confer proteins with specific
functional capabilities, and knowing that a specific capability is
potentially disrupted by a mutation is critical to the design and
implementation of future treatment strategies. Tools that
predict the impact of non-synonymous mutations, like SIFT, do
not currently provide this additional functional context
provided by the DS-score methodology. To further leverage the
functional context provided by the domain position of a muta-
tion, we also created the feature-based DS-score. NCBI’s
Conserved Domains Database provides manually curated
annotations for individual domain positions that contribute to
specific functional features like active sites, binding sites, and

Table 2 Percentage of hotspots occurring at highly conserved and
annotated functional feature positions

Cancer Non-cancer

Position-based hotspots at conserved positions 58.1% 51.2%

Feature-based hotspots at conserved positions 67.6% 61.7%

Position-based hotspots at functional features 69.8% 35.9%

Feature-based hotspots at functional features 97.6% 90.3%

Table 3 Benchmarking the precision of domain significance score
(DS-score) based methods for classifying human non-synonymous single
nucleotide variants of known functional effect from the Protein Mutant
Database

Method Precision (%)

Precision of method
combined with
SIFT (%)

Precision of method
combined with
LogR.E-value (%)

SIFT 82.0 N/A N/A

LogR.E-value 81.3 N/A N/A

Position-based
DS-score

91.6 95.1 95.7

Feature-based
DS-score

87.2 89.4 91.0

Domain positions
with $2 mutations

85.6 91.2 91.9

Precision was calculated as the percentage of mutations predicted to alter function that
were correctly predicted.
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phosphorylation sites. The feature-based DS-score is assigned by
distributing the highest position-based DS-score for each func-
tional feature to all other positions in the same functional
feature in the domain. Thus, the feature-based DS-score expands
the ability of the position-based DS-score to identify significant
mutation hotspots under the assumption that any mutation in
a functional feature already known to be disrupted in a disease
(via a significant position-based DS-score) is highly likely to also
contribute to disease.

The creation of the DS-score methodology allowed us to
study the patterns of disease mutation clustering for both the
cancer and non-cancer sets. We did not see significant differences
in the number of hotspots per domain between the two sets
(figure 2A,B). Surprisingly, we found a considerable difference in
the position-based DS-score distributions for the cancer and
non-cancer sets (figure 2C,D). Both sets show a similar distri-
bution at lower DS-scores with a peak around 2.5, then rapidly
dropping off as the score increases. The cancer set, however,
shows a second peak of DS-scores higher than 9.5. When we
compared the sets of genes containing mutations at the hotspots
scoring below 9.5 to the set scoring above 9.5 (table S4), we
found that only putative oncogenes were present in the set
scoring above 9.5, while both putative oncogenes and tumor
suppressor genes were present in the set scoring below 9.5. Of
the genes we could classify as either putative oncogenes or
tumor suppressors, the majority of genes containing mutations
at significant DS-score hotspots (17 out of 22) are known to be
oncogenes. These results suggest that mutations in oncogenes
tend to cluster more significantly than mutations in tumor
suppressors, and that mutations in tumor suppressors are more
similar to mutations in non-cancer genes, typically associated
with Mendelian disorders, than to mutations in oncogenes.

A recent study of the clustering patterns of somatic mutations
in cancer that allowed for variable length clusters found much
longer length clusters in tumor suppressors than in oncogenes,44

providing additional evidence consistent with our results.
Another recent study by Stehr et al of the structural impact of
somatic mutations in oncogenes and tumor suppressors6 found
significantly higher enrichment of clustering for mutations in
the three-dimensional structures of domains in oncogenes than
in tumor suppressors, also supporting our results. The same
study found that mutations in oncogenes were significantly
more likely to occur at solvent accessible sites and at functional
feature sites than were mutations in tumor suppressors. In
addition, mutations predicted to destabilize the protein were
highly enriched in tumor suppressors, but were highly depleted
in oncogenes. Stehr et al proposed an explanation for these
results, suggesting that activating mutations in oncogenes tend
to occur at specific functional features on the protein surface,
while mutations in tumor suppressors are more likely to be
destabilizing mutations spread throughout the protein core. A
study by Talavera et al provides support for this hypothesis,
showing an enrichment of oncogenic driver mutations at func-
tional sites on the surface of the protein.45 Our results also show
that a higher percentage of hotspots occur at functional features
in cancer (69.8%) than in non-cancer (35.9%) (table 2). Taken
together, our findings of significant differences between the
clustering profiles for mutations in cancers and non-cancers, and
between oncogenes and tumor suppressors, are in close agree-
ment with these studies. As expected due to their well-known
relevance to cancer, domains found primarily in the RAS family
of GTPases and in protein kinases dominate the list of domains
with the highest number of significant hotspots in the cancer set
(table S1-A). Additionally, different members of the family of

catalytic domains of protein kinases have the 10 highest scoring
hotspots in the cancer set (table S2-A). A recent study by Dixit
et al of mutations in kinases supports our finding of significant
clustering of cancer mutations at specific positions in the kinase
catalytic core domain.46 The study also found that these
hotspots were enriched for oncogenic, driver mutations, also in
agreement with our findings.
The domain in the non-cancer set containing both the highest

DS-score position (table S2-B), and the highest number of
significant positions (table S1-B) was the calcium-binding EGF-
like domain (EGF_CA, smart00179). The EGF_CA domain has
42 positions with a DS-score of 13.45. Both the score and the
number of hotspots are significant outliers in the non-cancer
distributions (figure 2B,D). The EGF_CA domain is relatively
short in length, containing only 84 amino acids, and is
commonly found in varying numbers of tandem repeats in
membrane-bound and extracellular proteins.47 Fibrillin-1, for
example, contains 43 EGF_CA domains, and NOTCH3 contains
27 EGF_CA domains. The short length of the domain and the
tandem repeat configuration likely contributes to the high
number of hotspots in the EGF_CA domain as disease mutations
spread throughout individual proteins hit multiple copies of the
domain, aggregating to the limited number of positions in the
domain model. This configuration of a very large number of
domain repeats in a single protein is not typical, however, as the
average protein has three or fewer domains.48

Interestingly, our domain-based approach also enables us to
detect common patterns of mutation for proteins involved in
different biological processes sharing a common domain.
Mutations in proteins containing the EGF_CA domain have
been linked to a number of diseases including hemophilia B,
Marfan syndrome, retinitis pigmentosa, and hypercholesterol-
emia.47 EGF_CA domains have a calcium binding site at the N-
terminal end of the domain in addition to six highly conserved
core cysteine residues which form three disulfide bridges.49

Disease mutations in the domain tend to cluster around the core
cysteine residues, likely causing a disruption in the domain
structure and loss of calcium binding which has been shown to
be critical for maintaining the biological activity of the protein.47

Loss of calcium binding has been shown to disrupt protein
interactions in the coagulation factor IX protein (associated
with hemophilia) and structural rigidity in fibrillin-1 (associated
with Marfan syndrome).47 While the extremely large number of
hotspots in the EGF_CA domain is not typical, this example
clearly demonstrates how knowledge of the domain position of
a mutation can aid in its functional characterization and in the
prediction of its potential impact on protein function regardless
of the protein the mutation actually occurs in.
Finally, our results collectively show that the DS-score

methodology could be used as a highly precise and specific
predictor of the effect of uncharacterized, rare or novel coding
variants from large-scale sequencing studies. Variants of interest
could be mapped to their domain positions, and the positions
checked for the presence of significant clusters of known,
disease-associated mutations identified by significant DS-score
hotspots. The occurrence of a variant at a domain position with
a significant cluster of validated, disease-associated mutations
implies that the variant is likely to be deleterious, even if it
occurs in a protein formerly unassociated with disease. Unfor-
tunately, due to the low number of disease-associated mutations
currently available from public databases, this also contributes
to a relatively low predicted sensitivity for the position-based
DS-score, as only 13.7% and 6.4% of the cancer and non-cancer
mutations fall in significant hotspots, respectively (table 1). By
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distributing the position-based DS-scores to all other positions
in the same functional features, the feature-based DS-score can
help to boost the sensitivity of the method, increasing the
percentage of mutations covered by hotspots in the cancer and
non-cancer sets to 29.2% and 10.5%.

To evaluate the performance of the DS-score methods as
predictors, we benchmarked the methods on the independent
PMD mutation dataset. While the sensitivities of the DS-score
methods were confirmed to be low on the PMD dataset, we also
confirmed that both the position-based and feature-based DS-
score methods had extremely high specificities, over 98% for
both methods. In addition, we found that the methods had very
high precision, over 91% and 87% for the position-based and
feature-based DS-score methods, respectively, outperforming
both SIFT (82.0%) and the LogR.E-value method (81.3%) as
shown in table 3. The precision of the methods was further
increased when we combined the DS-score prediction with that
of SIFT or the LogR.E-value method to account for the actual
amino acid change resulting from the mutation. These increases
in precision resulted from correctly reclassifying several muta-
tions from likely to alter protein function to likely to be neutral
due to relatively conservative amino acid substitutions. Since the
PMD dataset contains mutations known to alter protein func-
tion, both with and without association to disease, the high
precision of DS-score methods also demonstrates that the
methods are highly promising, not only for predicting which
variants are likely to cause disease, but also more generally for
predicting which variants will disrupt normal protein function.

The number of annotated disease mutations in public data-
bases continues to grow50 as disease association studies move to
large-scale, whole genome-based designs. In the near future,
a large number of novel disease-associated mutations will likely
be identified, in addition to an increasing number of rare disease-
associated mutations as methods to discover these low
frequency mutations become more sophisticated.51 Therefore,
we expect the sensitivity of the DS-score method to improve
substantially as the number of known disease mutations
increases and new domain disease hotspots are found. In the
meantime, the application of text mining methods for auto-
matically extracting previously identified mutations with
disease association from the literature52 can be applied to
supplement the mutation datasets from manually curated
databases like OMIM and Swiss-Prot. To evaluate the potential
for the DS-score method to increase in sensitivity as the number
of known disease mutations increases, we calculated the
percentage of mutations at domain positions with at least two
disease mutations: 54.4% for cancer and 58.8% for non-cancer,
which was substantially higher than the percentage of muta-
tions at position-based or feature-based DS-score hotspots (table
1). We also confirmed a substantial increase in sensitivity for the
simple predictor model that classified any mutation at a position
with two or more known disease mutations as likely to alter
protein function, from less than 6% for the position and feature-
based DS-score methods to over 20% for the simple model.
Therefore, the DS-score method is very likely to increase in
sensitivity while maintaining a high specificity as new disease-
associated mutations are identified in the future.

Conclusions
Through the development of our novel DS-score methodology
for identifying specific protein domain positions with significant
clustering of disease mutations, we performed a systematic
analysis of mutations related to both cancer and non-cancer
diseases. We show that cancer and non-cancer mutations both

form significant mutation hotspots. In addition, cancer muta-
tions, and more specifically mutations in known oncogenes,
show a higher tendency to cluster at individual domain posi-
tions, while non-cancer mutations and mutations in tumor
suppressor genes show lower tendencies to form significant
mutation hotspots. We also demonstrate the application of the
DS-score method as a highly specific and precise predictor of the
effect of non-synonymous mutations in domain regions,
particularly when used in combination with either the SIFT or
the LogR.E-value method. Therefore, we expect that the DS-
score methodology will be incorporated into the analysis of
large-scale sequencing projects to identify both novel and rare
variants associated with disease development. The most signif-
icant feature of the DS-score methodology, however, will be to
provide the critical functional explanation for how a variant
contributes to disease, essential for the development of future
personalized treatment strategies.
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