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Abstract
Oxidative stress has been associated with the onset and progression of mild cognitive impairment
(MCI) and Alzheimer disease (AD). AD and MCI brain and plasma display extensive oxidative
stress as indexed by protein oxidation, lipid peroxidation, free radical formation, DNA oxidation,
and decreased antioxidants. The most abundant endogenous antioxidant, glutathione, plays a
significant role in combating oxidative stress. The ratio of oxidized to reduced glutathione is
utilized as a measure of intensity of oxidative stress. Antioxidants have long been considered as an
approach to slow down AD progression. In this review, we focus on the elevation on glutathione
through N-acytl-cysteine (NAC) and γ-glutamylcysteine ethyl ester (GCEE) as a potential
therapeutic approach for Alzheimer disease.
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1. Introduction
Alzheimer disease (AD) is a largely sporadic, age-related neurodegenerative disorder
pathologically characterized by the accumulation of abnormal protein deposits, including
extracellular amyloid plaques, intracellular neurofibrillary tangles (NFT), and loss of
synaptic connections within selective brain regions [1]. One of the main components of
amyloid plaques is the amyloid β-peptide (Aβ), generated by the proteolytic cleavage of the
amyloid precursor protein (APP) by β- and γ-secretases. Aβ exists in many forms, such as
soluble, aggregated, oligomeric, protofibrillar, and fibrillar forms [2; 3], and a number of
studies have demonstrate that the oligomeric form of Aβ is highly toxic and associated with
oxidative stress [4; 5; 6].

Aβ(1–42)-associated free radicals can abstract an allylic hydrogen-atom from the
unsaturated acyl chains of lipid molecules within the lipid bilayer, thereby leading to the
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initiation of lipid peroxidation processes [7; 8]. The process of lipid peroxidation generates
highly reactive products, such as 4-hydroxy-2-nonenal (HNE) and acrolein, that can further
react with proteins and enzymes, effectively amplifying the effects of Aβ(1–42)-induced
free radical processes [8; 9].

Under normal conditions, oxidative stress and damage are combated by endogenous
antioxidant compounds and enzymes within the cell. However, the brain is particularly
vulnerable to oxidative damage due to the high levels of unsaturated lipids, oxygen, redox
metal ions, and relatively poor antioxidant systems. As previously reported by our
laboratory and others, both AD and mild cognitive impairment (MCI) brains have
significantly decreased levels of antioxidant enzymes, making the brain more vulnerable to
Aβ(1–42)-induced toxic effects [10]. Oxidative stress is also evident in AD brain by marked
levels of protein, lipid, DNA, and RNA oxidation, neuronal dysfunction and death [11; 12].
Consequently, one way of boosting defenses in the brain is by assisting the antioxidant
defense system particularly endogenous glutathione (GSH) and glutathione-related enzymes.

2. Glutathione (GSH)
The most prevalent antioxidant in the brain, glutathione, is found in millimolar
concentrations in most cells. A thiol-containing molecule, GSH is capable of reacting with
reactive oxygen species (ROS) and nucleophilic compounds such as HNE and acrolein, lipid
peroxidation products that react with thiols in proteins. Reduced GSH reacts with free
radicals to form oxidized glutathione (GSSG), which can be catalyzed by the enzyme
glutathione peroxidase (GPx) or occur independently. GSSG is recycled back to two GSH
molecules by GSH reductase (GR) utilizing the reducing equivalents of NADPH (Figure 1).
Glutathione S-transferases (GST) are a group of enzymes that catalyze the reaction between
GSH and nucleophilic compounds such as HNE and acrolein. The resulting glutathione-S-
conjugates are effluxed from the cell by the multidrug resistance protein-1 (MRP-1) [13;
14]. In AD hippocampus, GST and MRP-1 are covalently bound by the lipid peroxidation
product HNE, rendering them inactive [13; 15]. Thus, glutathione-S-conjugates are not
readily formed or exported, possibly increasing HNE levels in the cell [16].

Post-translational modification of proteins by glutathionylation is reversible by glutaredoxin,
a thiol transferase [17]. Redox sensitive proteins could be protected from oxidative stress by
glutathionylation. Indeed, several proteins in AD inferior parietal lobule (IPL), including
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), α-enolase, and p53, were identified
as glutathionylated [18; 19]. GAPDH and α-enolase also have decreased activity in AD
brain, and were previously reported to be oxidatively modified [20; 21; 22]. GAPDH and α-
enolase are enzymes in the energy producing glycolytic pathway; oxidative modification and
decreased activity may contribute to the alteration in glucose metabolism noted in AD [23].
Moreover, both enzymes have pro-survival functions in addition to roles in glycolysis.
Oxidative dysfunction of these enzymes is deleterious to neurons [24; 25].

GSH levels are decreased in diseases with oxidative stress - including AD - and with age
[26]. In AD peripheral lymphocytes, GSH levels are decreased and GSSG levels are
increased, consistent with increased oxidative stress [27]. The ratio of GSSG to GSH is used
as a marker of redox thiol status and oxidative stress. Indeed, with increasing progression of
AD, GSSG and GSSG/GSH levels are found to increase. Lloret and colleagues found a
linear correlation between increased GSSG levels and decreased cognitive status of AD
patients using the Mini Mental Status examination (MMSE) [28].

Mild cognitive impairment (MCI) is often referred to as a transitional period between
normal cognitive aging and mild dementia or probable AD. Many individuals with amnestic
MCI develop AD, suggesting MCI is the earliest stage of AD [29; 30]. Several studies have
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demonstrated oxidative stress in MCI brain. In MCI hippocampus, a brain region highly
affected in AD, superoxide dismutase (SOD) and GST activity is decreased, although
protein expression was increased. The ratio of GSH/GSSG was decreased consistent with
oxidative stress conditions. No significant difference in GPx or GR enzyme activity was
noted [31]. Many enzymes are redox sensitive and easily oxidized, rendering them inactive
even though protein expression level is high. Lipid and protein oxidative stress products
were also elevated in the superior and middle temporal gyri of MCI brain [9; 32; 33]. Recent
reports demonstrated peripheral serum levels of MCI and AD patients had significantly
decreased GPx and SOD activity compared to age-matched controls, but did not differ from
each other [34]. These researchers also showed increased levels of lipid peroxidation
product malondialdehyde (MDA) compared to controls, with a significant increase from
MCI to AD. Several previous studies also reported an increase in peripheral lipid and protein
oxidation in AD and MCI patients [35; 36; 37; 38]. Decreased SOD and GPx antioxidant
activity over time, leads to an accumulation of H2O2 and lipid peroxidation, possibly leading
to the pathological alterations characteristic of AD. The above studies all concluded that
oxidative stress conditions in early AD are already present in MCI, and the decreased
antioxidant activity, particularly glutathione, may initiate the progression to AD [37]. A
recent study demonstrated that MCI patients that progressed to AD displayed an increased
distribution of the ApoE ε4 allele, a risk factor for sporadic AD, and displayed a significant
decrease in the ratio of oxidized to reduced glutathione and vitamin E levels compared to
MCI patients that remained at MCI status over time [39]. Oxidative stress indices increased
over time in both MCI and MCI patients that progressed to AD, with no difference between
the two groups. This study confirms that a decrease of antioxidants, particularly reduced
glutathione, over time is a major contributor to the progression of MCI to AD. Increased
peripheral oxidative stress indices, such as MDA, TBARS, or protein carbonyls, could
potentially be used as a biomarker for diagnosing the onset of MCI, while a steady decrease
of reduced glutathione may be a biomarker for progression to AD. An early diagnosis would
allow early intervention utilizing appropriate antioxidants and other therapies.

Glutathione is comprised of the amino acids glutamate, cysteine, and glycine. Glutamate and
glycine are found in millimolar concentrations, whereas free cysteine is limited with most
non-protein cysteine being stored within GSH. Two enzymes are involved in synthesis of
GSH: γ-glutamylcysteine ligase (also called γ-glutamylcysteine synthetase) and gluthathione
synthase (Fig. 2). Because the physiological amount of brain-resident cysteine limits the
formation of GSH, most current research has focused on increasing cysteine levels in the
brain as an indirect way to increase the levels of GSH. In particular, N-acetyl-L-cysteine
(NAC) is known to directly increase brain cysteine levels, allowing for increased
biosynthesis of GSH in the brain and periphery [40]. Additionally, γ-Glutamylcysteine ethyl
ester (GCEE) introduces the precursor for the last step in GSH synthesis, guiding cysteine
directly towards GSH synthesis in the brain and periphery and avoiding the feedback
inhibition of γ-glutaminecysteine ligase.

3. N-Acetyl-L-Cysteine (NAC)
NAC (Figure 3) has been shown to be an effective precursor to GSH production and crosses
the blood brain barrier (BBB) [41; 42]. NAC provides cysteine, the rate limiting substrate in
glutathione synthesis. NAC acts as an antioxidant by increasing GSH levels and by directly
interacting with free radicals. Intraperitoneal (i.p.) injection of NAC to rodents increased
GSH in brain and synaptosomes and offered protection against peroxynitrite, hydroxyl
radicals, acrolein, and oxidative stress induced by 3-nitro-propionic acid [40; 43; 44; 45].
NAC also improved neuronal survival in the hippocampus after ischemic-reperfusion [46].
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Pretreatment with NAC in mice receiving intracerebroventricular (i.c.v.) injections of Aβ
had improved learning and memory compared to vehicle-treated animals [47]. NAC also
increased GSH levels, protected against Aβ-induced protein and lipid peroxidation, and
decreased acetylcholine levels and choline acetyltransferase (ChAT) activity [47]. SAMP8
(Senescence Accelerated Mouse) mice overexpress APP resulting in elevated levels of Aβ in
the brain. SAMP8 mice administered NAC had improved cognition in the T-maze footshock
avoidance paradigm and the lever press appetitive task [42]. Recently, AD-relevant APP/
PS-1 mice were orally administered NAC in drinking water for 5 months, before deposition
of Aβ occurred in the brain. The antioxidant administered before Aβ induced oxidation
occurred decreased protein and lipid oxidation, nitration of proteins, and increased
glutathione peroxidase and reductase activity compared to age matched controls [48]. Such
treatment clearly decreased oxidative stress in vivo in mice brain.

In AD brain and neuronal cultures exposed to Aβ, dying cells display characteristics of
apoptosis [49]. A shift in redox status due to NAC changes the signaling pathways involved
in the apoptosis signaling cascade [50; 51]. NAC protection against Aβ involves several
signaling pathways involved in apoptosis including: activation of the Ras/ERK pathway,
stimulating p35/Cdk5 activity, and reduced phosphorylation/deactivation of MLK3-MKK7-
JNK3 signaling cascade [50; 51; 52]. NAC also acts as a transcription factor activating the
RAS-ERK pathway, rescuing neurons from apoptotic cell death [52]. Therefore, in addition
to antioxidant properties, and increasing GSH levels, NAC protects against Aβ toxicity
through activation of anti-apoptotic signaling pathways.

NAC may play a role in amyloid precursor protein (APP) processing and Aβ formation. Aβ
results from two proteases cleaving APP: β-secretase and γ-secretase. NAC down-regulates
APP gene transcription, resulting in undetectable levels of APP mRNA in neuroblastoma
cells. This activity may be related to decreased binding activity of transcription factor NF-
κB, which is increased by oxidative stress and Aβ [53]. Another group demonstrated that
NAC significantly decreased soluble levels of Aβ(1–40) and Aβ(1–42) and modestly
reduced insoluble Aβ(1–40) in TgCRND8 transgenic mice that overexpress the APP gene
[54]. Olivieri et al. (2001) showed NAC affected APP processing and increased levels of
Aβ(1–40) by itself, suggesting the influence of β-secretase and γ-secretase cleavage of APP
in neuroblastoma cells [55].

The role of Pin1 has been investigated in APP processing. Pin1 catalyzes the structural
formation of phosphorylated Ser/Thr-Pro for dephosphorylation of APP. In AD models and
AD brain, this motif remains phosphorylated resulting in increased Aβ production [56; 57].
Our laboratory demonstrated oxidation and decreased levels of Pin1 in MCI and AD brain
[9; 58; 59]. Utilizing proteomics, we identify elevated levels of Pin1 in preclinical AD
(PCAD) brain [60], consistent with the notion that PCAD subjects, characterized by normal
scores on tests of cognition but having AD-like pathology in brain, respond to elevated Aβ
by increasing expression of Pin1. Our laboratory also demonstrated, NAC treatment slightly
elevated Pin1 in APP/PS1 mice over a 5 month period, possibly decreasing Aβ induced
oxidative stress [48]. Results concerning NAC's effect on Aβ formation requires further
study.

NAC capped quantum dots were utilized to block fibril formation of Aβ by blocking the
active site of fibrils, nuclear fibrils, or protofibrils, possibly through hydrogen bonding [61].
Free NAC was unable to block Aβ fibril formation. Future antifibrilogenesis may involve
quantum dot technology.

Neprilysin is a principal degrading peptidase of Aβ. In AD affected brain regions, neprilysin
is oxidatively modified by HNE and has decreased levels and activity [62; 63].
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Preincubation with NAC was able to prevent HNE and Aβ-induced HNE addition to
neprilysin and thus maintain neprilysin activity [64]. We suggest that NAC may be
protective through modulation of Aβ formation and degradation via influence on APP
transcription, processing, signaling pathways, and preventing oxidative stress.

Alzheimer disease presents a prominent neuroinflammation component. Astrocytes are the
main supplier of GSH to microglia and neurons. During chronic inflammation and oxidative
stress, astrocytes release toxic inflammatory mediators and free radicals, accelerating
activation of microglia and neurodegeneration [65]. Recently, decreased intracellular
glutathione was correlated with the release of pro-inflammatory factors TNF-α, IL-6, and
nitrite ions and activation of the inflammatory pathways, P38 MAP-kinase, Jun-N-terminal
kinase, NF-κB, in human microglia and astrocytes [66]. Extracellular GSH attenuated the
BSO-reduction of intracellular levels of GSH in the above microglia and astrocytes,
suggesting involvement of a membrane channel or transporter. NAC directly inhibited
inflammatory factor NF-κB and blocked production of nitric oxide from inducible nitric
oxide synthase and inflammatory cytokines [67]. Increasing glutathione levels with NAC in
glial cells and astrocyes may confer protection against the neuro-inflammation component of
AD.

Given the multi-faceted way NAC is capable of modulating AD (see Figure 4), patient
supplementation with NAC has been addressed. In a previous study by Adair et al. (2001),
late-stage AD patients supplemented with NAC over a six month period not only tolerated
the treatment well, but also demonstrated significantly improved performance on the Letter
Fluency Task and the Wechsler Memory Scale Immediate Number Recall [68], although,
measures of oxidative stress in peripheral blood did not differ significantly [68]. More
recently, AD patients were given a vitamin/nutriceutical supplement that included folate,
vitamin B12, α-tocopherol, S-adenosyl methionine, NAC, and acetyl-L-carnitine [69]. All
cognitive endpoints were found to favor the multi-supplement. Several antioxidant clinical
trials had no effects or marginal positive effects on MCI progression to AD or AD [70; 71;
72]. They did not include a multi-supplement approach or a glutathione enhancing drug. The
failures in many antioxidant clinical trials likely arise from starting the therapies in the late
stages of AD, not monitoring drug levels and markers for the in vivo therapeutic effect of the
drug, not utilizing a multi-antioxidant approach that covers both lipophilic and hydrophilic
areas of the cell or recycle the oxidized antioxidants back to the reduced state, and not taking
into account the basal redox status of the subjects in the trials [10; 73; 74]. These limitations
must be taken into consideration when determining if an antioxidant therapy would be
beneficial in slow or preventing the progression of MCI and AD.

4. γ-Glutamylcysteine Ethyl Ester (GCEE)
Another effective means for increasing biosynthesis of GSH is GCEE (Figure 5) [75]. γ-
Glutamylcysteine formation is the rate-limiting step for the biosynthesis of GSH. Providing
γ-glutamylcysteine bypasses the feed-back inhibition by GSH on γ-glutamylcysteine
synthetase (GCS), the enzyme that catalyzes production of γ-glutamylcysteine. Attachment
of an ethyl ester moiety allows γ-glutamylcysteine to more easily cross the cell membrane
and blood-brain barrier (BBB). Protection against myocardial ischemic-reprefusion and
mydocardial dysfunction in Se-deficient rats was afforded by GCEE [76; 77]. GCEE is able
to increase brain and mitochondrial GSH levels and protect synaptosomes, neuronal cells,
and mitochondria against peroxynitrite damage [78; 79]. Neuronal cells were also protected
against Aβ(1–42)-induced protein oxidation, loss of mitochondrial function, and DNA
fragmentaion by GCEE up-regulation of GSH. GCEE did not, however, disrupt Aβ(1–42)
fibril formation [80; 81]. Aβ(1–42) is known to deplete GSH cellular levels which can lead
to neuronal death. However, 24 hours after Aβ(1–42) addition, GSH and GCS levels
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increase intracellularly, offering protection against Aβ(1–42)-induced apoptosis in cortical
neurons [82; 83; 84]. Recently, i.p. injections of GCEE protected against kainic acid induced
ROS and downregulated c-fos mRNA in the cortex and hippocampus of rats [85]. GCEE
may react directly with ROS due to the cysteine residue and/or increase GSH, which can
protect against ROS and nucleophilic compounds.

5. Conclusions
Oxidative stress is a known characteristic of MCI and AD. Up regulation of endogenous
antioxidants is vital in combating oxidative stress and thus helping to slow the advancement
of MCI and Alzheimer disease. Glutathione is the most abundant and versatile endogenous
antioxidant with many enzyme systems to enhance its function. NAC (FDA approved) and
GCEE are known to increase glutathione in the brain and periphery and protect against
ROS-producing substances in vivo. More research needs to be invested in GCEE, since it
has no known harmful effects and by-passes the feedback inhibition cycle of glutathione.
Increasing glutathione remains a promising therapeutic strategy to slow or prevent MCI and
Alzheimer disease.
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Highlights

• Glutathione (GSH) is the most abundant endogenous antioxidant in brain

• Oxidative stress is a prominent feature of Alzheimer disease and MCI brain

• Elevation of GSH in vivo protects brain against AD-relevant Abeta(1–42)

• Elevation of GSH in brain induces several protective pathways
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Figure 1.
Recycling of glutathione (GSH) and oxidized glutathione (GSSG).
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Figure 2.
Synthesis of Glutathione
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Figure 3.
Structure of N-acetyl-L-cysteine (NAC).
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Figure 4.
A) Aβ produces ROS that eventually leads to the depletion of antioxidants and oxidative
stress in Alzheimer disease. The increased oxidation induces apoptotic signaling pathways
and inflammation in astrocytes. Astrocytes release toxic inflammatory mediators and free
radicals, accelerating activation of microglia and neurodegeneration, connecting the cycle of
negative events perpetuating AD.
B) NAC down-regulates APP gene transcription, resulting in undetectable levels of APP
mRNA. Thus, since less Aβ is transcribed, fewer free radicals are produced by Aβ. NAC
increases antioxidant levels of glutathione and reacts with ROS preventing oxidative stress.
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The decreased oxidation in the cells induces anti-apoptotic signaling pathways and prevents
inflammation of the cell. NAC directly inhibits inflammatory factor NF-κB and blocks
production of nitric oxide from inducible nitric oxide synthase and inflammatory cytokines.
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Figure 5.
Structure of γ-glutymylcysteine ethyl ester (GCEE).
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