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The goal of many shotgun proteomics experiments is to
determine the protein complement of a complex biolog-
ical mixture. For many mixtures, most methodological
approaches fall significantly short of this goal. Existing
solutions to this problem typically subdivide the task
into two stages: first identifying a collection of peptides
with a low false discovery rate and then inferring from
the peptides a corresponding set of proteins. In con-
trast, we formulate the protein identification problem as
a single optimization problem, which we solve using
machine learning methods. This approach is motivated
by the observation that the peptide and protein level
tasks are cooperative, and the solution to each can be
improved by using information about the solution to the
other. The resulting algorithm directly controls the rel-
evant error rate, can incorporate a wide variety of evi-
dence and, for complex samples, provides 18–34%
more protein identifications than the current state of the
art approaches. Molecular & Cellular Proteomics 11:
10.1074/mcp.M111.012161, 1–10, 2012.

The problem of identifying proteins from a collection of
tandem mass spectra involves assigning spectra to peptides,
using either a de novo or database search strategy, and then
inferring the protein set from the resulting collection of pep-
tide-spectrum matches (PSMs).1 In practice, the goal of such
an experiment is to identify as many distinct proteins as
possible at a specified false discovery rate (FDR). However,
most of the previous work in the context of shotgun proteom-
ics analysis has focused on controlling error rates at the level
of PSMs or peptides (1–11) rather than the protein level FDR.

This approach creates difficulties for estimating protein
level FDRs because the PSM or peptide level error rate may
be significantly lower than the protein level error rate, espe-
cially in the context of a deeply saturated experiment (12, 13).
For example, consider a collection of 1000 spectra that map

to 100 distinct peptides with a 1% false discovery rate. This
1% false discovery rate corresponds to 10 incorrectly
mapped spectra, each of which is likely to map to a different,
incorrect peptide. Thus, the PSM error rate of 1% corre-
sponds to a peptide error rate of 10/110 � 9%. A similar
inflation of error rate will occur if we move to the protein level.

In general, when the end goal is to find the optimal solution
to a protein level problem, it is conceptually and practically
beneficial to directly solve the problem of interest rather than
artificially dividing the problem into two separate tasks. The
two tasks of protein and peptide level optimization are closely
related but are likely to have different optimal solutions. More-
over, many machine learning problems involving several sub-
tasks have been shown to benefit from a top-down approach
that solves several subtasks simultaneously, in contrast to
solving each of them separately. For example, the handwritten
document recognition task involves a variety of intermediate
problems including extraction of the field of interest, segmen-
tation into characters, and character recognition. An algorithm
that combines all the subtasks into a top-down optimization
problem substantially outperforms algorithms that treat these
subtasks as distinct modules (14). Similarly, object recogni-
tion (on photographs, for example) involves defining a hierar-
chy of features in the image such as edges, motifs, and
objects before training an object classifier. Systems that in-
troduce learning of the features in conjunction with classifica-
tion give superior results in comparison with methods that
involve hand-crafted feature generation before training a clas-
sifier (15). Such object recognition “end-to-end” learning sys-
tems have been used successfully in diverse tasks ranging
from building obstacle avoidance systems for mobile robots
(16) to segmentation problems in brain imaging (17, 18). Fi-
nally, in natural language processing, determining whether a
sentence is grammatically and semantically correct involves
several intermediate steps, such as predicting part of speech
tags, entity tags, semantic tags, etc. An approach that seeks
to optimize all of these tasks simultaneously, while avoiding
task-specific engineering, performs as well as or better than
all of the individual benchmarks for each subtask (19, 20).

In this work, we demonstrate that inferring proteins from
peptide-spectrum matches is another example of a problem
that benefits from the top-down approach. We describe a
machine learning method to optimize directly the desired
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quantity, the total number of proteins identified by the exper-
iment. We use a target decoy search strategy, searching each
spectrum against a database of real (target) peptides and
reversed (decoy) peptides. We then train a supervised learn-
ing algorithm to induce a ranking on the combined set of
target and decoy proteins, learning the parameters of the
model so that the top of the ranked list is enriched with target
proteins. Compared with existing methods (21–24), the direct
approach offers several advantages. First, by formulating an
optimization problem that operates at the protein level, our
approach correctly controls the relevant error rate. Second,
we exploit the structural properties of the problem to optimize
PSM, peptide, and protein level tasks simultaneously, and we
demonstrate that these tasks are cooperative such that each
task benefits from the solution to the other during optimiza-
tion. Finally, our approach does not filter any PSMs at any
stage of the analysis, with the motivation that even low scor-
ing PSMs can carry information about the presence of a
protein when considered in the context of other PSMs be-
longing to this protein.

EXPERIMENTAL PROCEDURES

Description of the Problem

The protein identification problem can be represented as a tripartite
graph, with layers corresponding to spectra, peptides, and proteins
(Fig. 1). An edge from a spectrum to a peptide indicates that the
database search procedure assigned a high score to the peptide. In
general, more than one spectrum may be assigned to a single pep-
tide. It is also possible to consider more than one high scoring match
for each spectrum, as we do in our analysis. An edge from a peptide
to a protein implies that the peptide occurs in the protein. This
peptide-to-protein mapping is many-to-many because each protein
contains multiple peptides, and each peptide may appear in more
than one protein. The input to the problem is the tripartite graph, with
a fixed set of features assigned to each peptide-spectrum match. In
this work, we represent each PSM using 17 features (Table I) that
collectively describe properties of the spectrum and of the peptide, as
well as the quality of the match between the observed and theoretical
spectra. The desired output is a ranking on proteins, with proteins that
are present in the sample appearing near the top of the ranked list.

We solve the protein identification problem using a target decoy
training strategy. Decoy databases have been used in shotgun pro-

teomics for two complementary purposes: 1) to provide false discov-
ery rate estimates for peptide identifications (1, 3, 25) and 2) to learn
to discriminate between correct and incorrect PSMs produced by a
database search algorithm (26–28). In the current work, we produce
a decoy database by reversing the amino acids in each target protein.
We then merge the target and decoy databases, and we search each
spectrum against the combined target decoy database, retaining a fixed
number of top scoring peptides for each spectrum. For the purposes of
training our ranking function, the target proteins are labeled as positive
examples, whereas decoy proteins are labeled as negative examples.

Barista Model

We are given a set of observed spectra S � {s1,…, sNS
} and a

database D of target and decoy proteins against which we perform a

FIG. 1. Barista. The tripartite graph represents the protein identification problem, with layers corresponding to spectra (gold), peptides (blue),
and proteins (red). Barista computes a parameterized nonlinear function f(�) on each PSM feature vector �(e,s). The score assigned to a peptide
is the maximum PSM score associated with it. The score assigned to a protein is a normalized sum of its peptide scores.

TABLE I
Features used to represent PSMs

Each PSM obtained from the search is represented using 17 fea-
tures. These are the same features used by Percolator, except that
three features were removed. These three features—for example, the
number of other spectra that match to the same peptide—capture
properties of the entire collection of PSMs. We removed them to
ensure complete separation between the training set and the test set.

1 XCorr Cross-correlation between calculated
and observed spectra

2 �Cn Fractional difference between current
and second best XCorr

3 �Cn
L Fractional difference between current

and fifth best XCorr
4 Sp Preliminary score for peptide versus

predicted fragment ion values
5 ln(rSp) The natural logarithm of the rank of

the match based on the Sp score
8 Mass The observed mass �M � H��

6 �M The difference in calculated and
observed mass

7 abs(�M) The absolute value of the difference
in calculated and observed mass

9 ionFrac The fraction of matched b and y ions
10 ln(NumSp) The natural logarithm of the number

of database peptides within the
specified m/z range

11 enzN Boolean: Is the peptide preceded by
an enzymatic (tryptic) site?

12 enzC Boolean: Does the peptide have an
enzymatic (tryptic) C terminus?

13 enzInt Number of missed internal enzymatic
(tryptic) sites

14 pepLen The length of the matched peptide,
in residues

15–17 charge1–3 Three Boolean features indicating the
charge state

Direct Maximization of Protein Identifications from Tandem Mass Spectra

10.1074/mcp.M111.012161–2 Molecular & Cellular Proteomics 11.2



database search. The search produces a set of PSMs. Denoting the
set of peptides as E � {e1,…, eNE

}, the PSMs are written as tuples
(ei,sj) � M, each representing a match of peptide i to spectrum j. Note
that, in general, we may opt to retain the single best scoring peptide
for each spectrum, or a small constant number of top-ranked PSMs
per spectrum. Each of the identified peptides ek belongs to one or
more proteins, leading to a set of proteins R � {r1,…, rNR

} that cover
the set of peptides. Thus, R includes every protein in D that has at
least one identified peptide (i.e. the maximal set of proteins that can
explain the observed spectra).

For our algorithm, we define a feature representation �(e,s) � Rd for
any given PSM. Our particular choice for this feature representation,
which is described in Table I, contains a variety of scores of the
quality of the peptide-spectrum match, as well as features that cap-
ture properties of the spectrum and properties of the peptide.

The Barista model consists of three score functions, defined with
respect to PSMs, peptides, and proteins (Fig. 1).

PSM Score—We define the score of a PSM to be a parameterized
function of its feature vector �(e,s). Previous work, such as Pep-
tideProphet (5) and Percolator (26), used a family of linear functions of
the following form,

f�e,s� � wT�(e,s) � b (Eq. 1)

where w � Rd. We chose a family of nonlinear functions given by
two-layer neural networks,

f�e,s� � �
i � 1

HU

wi
Ohi���e,s�� � b (Eq. 2)

where wO � RHU are the output layer weights for the hidden units
(HU), and hk(�(e,s)) is the kth hidden unit, defined as follows,

hk���e,s�� � tanh((wk
H)T�(e,s) � bk) (Eq. 3)

where wk
H � Rd and bk � R are the weight vector and threshold for

the kth hidden unit. The number of HU is a hyperparameter that can be
chosen by cross-validation. This nonlinear function is the improved
model used in Q-ranker (27). Throughout this work, we use a fixed value
of three hidden units. In preliminary experiments, we observed that
three or four hidden units provided approximately the same perform-
ance, whereas using five hidden units led to evidence of overfitting.

Peptide Score—Because a single peptide can have several spectra
matching to it (several PSMs), we define the score of a peptide as the
maximum score assigned to any of its PSMs,

g�e� � max
s:�e,s� � M

f�e,s� (Eq. 4)

where (e,s) � M is the set of PSMs assigned to peptide e. We take
the maximum over the PSMs for each peptide because of the argu-
ment presented in (21), that many spectra matching the same peptide
are not an indication of the correctness of the identification.

Protein Score—Finally, the score of a protein is defined in terms of
the scores of the peptides in that protein as follows,

F�r� �
1

�N�r��� �
e � N��r�

g�e� (Eq. 5)

where N(r) is the set of predicted peptides in protein r assuming
enzymatic cleavages, N�(r) is the set of peptides in the protein r that
were observed during the MS/MS experiment, and � is a hyperpa-
rameter of the model. The set N(r) is created by virtually digesting the
protein database D with the protease used to digest the protein
mixture for the mass spectrometry experiment. We require that the

predicted peptides have lengths in the range of 6–50 amino acids. We
do not allow internal cleavage sites in the peptides, with the motiva-
tion that we are trying to create an idealized model, where the diges-
tion went to completion. Alternatively, the normalization factor could
be treated as a trainable parameter of the model, although we did not
attempt to do so in this work.

Barista uses the predicted number of peptides, rather than the
number of observed peptides as a normalization factor, because the
predicted peptide number implicitly supplies an additional piece of
information: how many peptides appear in the protein but have not
been matched by any spectrum. This information allows Barista to
penalize longer proteins, which are more likely to receive random
matches during the database search procedure.

Setting � � 1 penalizes linearly, whereas setting � 	 1 punishes
larger sets of peptides to a lesser degree. In our experiments, we use
the fixed value � � 0.3, after selecting it in validation experiments
(supplemental Fig. 6).

Training the Model

Barista learns a protein score function that performs well on the
target decoy training task. For each protein ri � D, we have a label yi

� 
1, indicating whether it is a target (positive) or decoy (negative).
Given our set of proteins R and corresponding labels y, the goal is to
choose the parameters w of the discriminant function F(r), yielding
Equations 6 and 7.

F�ri� � 0 if yi � 1 (Eq. 6)

F�ri� � 0 if yi � �1 (Eq. 7)

To find F(r), we search for the function in the family that best fits the
empirical data. The quality of the fit is measured using a loss function
L(F(ri), yi), which quantifies the discrepancy between the values of F(ri)
and the true labels yi. We train the weights w using stochastic gradi-
ent descent with the hinge loss function (29).

L�F�ri),yi) � max(0,1 � yiF�ri)) (Eq. 8)

During training, the gradients �L(F(ri), yi)/�w of the loss function are
calculated with respect to each weight w, and the weights are up-
dated. After convergence, the final output is a ranked list of proteins,
sorted by score. The training procedure is summarized in Algorithm 1.
During training, the weights of the neural network that define the PSM
score function are optimized, because the PSM score is part of the
protein score calculation. These weights are the only adjustable pa-
rameters of the learning task.

Peptide Level and PSM Level Optimization

In this work, we also report results for peptide and PSM level
training. For peptide ranking, we use a similar procedure to the
protein level training: we pick a peptide example, ei, and we assign
this peptide a label based on the target/decoy labels of the corre-
sponding proteins. We then make a gradient step to optimize the

Algorithm 1 Training Barista

Input: labeled proteins (ri, yi)
repeat

Pick a random protein (ri, yi)
Compute F (ri) given by Equation 1.
if 1 � yF (ri) � 0 then

Make a gradient step to optimize L(F (ri),yi)
end if

until convergence.
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hinge loss function on the peptide level: Lpep(g(ej), yj) � max (0,1 �
yjg(ej)). Similarly, for PSM level training, we optimize the hinge loss
function at the PSM level: LPSM � max (0,1 � yjf(�(ej,si))).

Out-of-Sample Testing

In any supervised learning procedure, we must ensure that the data
used to train the model is kept apart from the data used to test the
model. Therefore, to produce a protein ranking for a given data set,
we use a procedure that trains and tests a collection of models. First,
we identify connected components in the given tripartite graph,
and we subdivide the graph into n approximately equally sized tripar-
tite graphs, ensuring that no edges are eliminated in the process. We
then train a model using n � 1 of the subgraphs as a training set and
one subgraph as the test set, and we repeat this train/test procedure
using each subgraph as one test set. In the end, we merge the scored
proteins from the various test sets, yielding a ranking on the entire set
of proteins.

The Barista software, which implements this cross-validated train/
test procedure, is available as part of the Crux software toolkit (avail-
able online).

Reporting Results

When reporting the set of proteins identified by Barista, we elimi-
nate all redundant proteins that are not necessary to explain the
spectra, as described in Ref. 23. Specifically, for every protein A, we
merge into a single meta-protein all the proteins Bi such that Bi � A
in terms of their observed peptide sets, and we report only A. For
degenerate peptides—peptides that appear in several proteins—
Barista produces a parsimonious solution, assigning these peptides
in a greedy fashion to a single meta-protein that contains it.

In addition, for the purposes of comparison with ProteinProphet,
we used the ProteinProphet method to generate all of the plots in the
paper. We considered only proteins that received ProteinProphet
probability greater than zero, thereby ignoring proteins with probabil-
ities artificially set to zero by the ProteinProphet parsimony proce-
dure. For the resulting set of proteins, we then assigned Barista
scores and sorted them based on Barista scores or ProteinProphet
probabilities. The Barista scores were assigned based on the parsi-
mony rules above.

Statistical Confidence Estimates

Throughout this work, we use the q value (30) as a statistical confi-
dence measure assigned to each PSM. If we specify a score threshold
t and refer to PSMs with scores better than t as accepted PSMs, then
the FDR is defined as the percentage of accepted PSMs that are
incorrect (i.e. the peptide was not present in the mass spectrometer
when the spectrum was produced). The q value is defined as the
minimal FDR threshold at which a given PSM is accepted. Note that
the q value is a general statistical confidence metric that is unrelated to
the Qscore method for evaluating SEQUEST results (1).

We calculate q values by using decoy PSMs (3). Denote the scores
of target PSMs f1, f2,…, fmf

and the scores of decoy PSMs d1, d2,…,
dmd

. For a given score threshold, t, the number of accepted target
PSMs (positives) is P(t) � �{fi � t; i � 1,…, mf }� and the number of
accepted decoy PSMs (negatives) is N(t) � �{di � t; i � 1,…, md}�. We
can estimate the FDR at a given threshold t as follows.

E
FDR(t�} �

	0

mf

md
�
di � t; i � 1,…,md��

�
 fi � t; i � 1,…,mf}�
(Eq. 9)

The q value assigned to score fi is then as shown in Equation 10.

q� fi) � min
fj 
 fi

E
FDR(fj)} (Eq. 10)

Data Sets

We analyzed six different data sets derived from three organisms:
yeast, Caenorhabditis elegans, and human. These data sets were
previously described in Refs. 26 and 31. For all of the data sets, the
peptides were assigned to spectra using the Crux implementation
(version 1.3) of the SEQUEST algorithm (32), with partial enzyme
specificity, a fixed carbamidomethylation modification of 57 Da to
cysteine, no variable amino acid modifications, and mass tolerance
for fragment ions of 
3 Da. The cleavage sites for trypsin, chymo-
trypsin, and elastase were set to KR2P, FHWYLM2P, and LVAG2P,
respectively. The search was performed against a concatenated tar-
get decoy database for each organism, composed of all available
open reading frames and their reversed versions. The top three PSMs
were retained for each spectrum for further analysis.

We also repeated the search on four of the data sets—yeast
digested with trypsin, C. elegans, and human—with two variable
modifications enabled. The modifications included oxidation of me-
thionine (molecular mass, 15.9949 Da) and phosphorylation of S/T/Y
(molecular mass, 79.95682 Da).

The first data set consists of spectra acquired from a tryptic digest
of an unfractionated yeast lysate and analyzed using a 4-h reverse
phase separation. The spectra were searched against a protein da-
tabase consisting of the predicted open reading frames from Saccha-
romyces cerevisiae (released February 4, 2004, 6298 proteins). The
database search on this data set resulted in 209,115 PSMs, yielding
a protein data set of 13,013 proteins total: 6527 targets and 6486
decoys. The next two data sets were derived in a similar fashion from
the same yeast lysate but treated using different proteolytic enzymes,
elastase, and chymotrypsin. The database search against them re-
sulted in 173,580 and 180,651 PSMs, respectively, and produced
data sets of 12,930 proteins (6470 targets and 6460 decoys) and
12,865 proteins (with 6425 targets and 6440 decoys). The fourth data
set is derived from a C. elegans lysate digested by trypsin and
processed analogously to the tryptic yeast data set. The worm data
set was derived from a 24-h MudPIT analysis of C. elegans proteins
containing 207,804 spectra, from which 10,000 spectra were ran-
domly sampled. These spectra were searched against a protein da-
tabase consisting of the predicted open reading frames from C.
elegans and common contaminants (Wormpep v160, 27,499 pro-
teins). This set produced 138,297 PSMs, which resulted in the protein
set of 40,117, with 20,240 targets and 19,877 decoys. Finally, the fifth
and sixth data sets consisted of tryptically digested human tissue
lysates, derived from amniotic fluid and gastric asperates. The human
protein database consisted of 76,588 proteins, downloaded from
online. These spectra received 725,937 and 621,600 PSMs, respec-
tively, which resulted in protein data sets of 139,996 (with 70,055
targets and 69,941 decoys) and 138,524 (with 69,327 targets and
69,197 decoys).

Defining a Gold Standard Based on External Data Sets

For the validation of our results against independent experimental
assays, we used protein sets identified by mRNA (33) and protein
tagging experiments (34). The following thresholds were applied to the
data sets: 1) all 1053 proteins whose mRNA copy count was higher than
the average copies/cell counts were considered present according to
the microarray experiments, and 2) all 527 proteins detected by both
GFP (green fluorescent protein) and TAP (a specific antigen) with inten-
sity above average intensity were considered present according to the
protein tagging experiment. The intersection of these sets, consisting of
391 proteins, was used in the validation experiments.
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For all of the target proteins in the yeast data sets, a protein was
considered a true positive if it was present among the 391 proteins in
the validation set and was considered a false positive otherwise. The
ranking of proteins was induced based on Barista scores or Pro-
teinProphet probabilities, and the receiver operating characteristic
curves were generated based on this ranking. The same set was used
to validate the proteins identified only by Barista and only by Pro-
teinProphet presented in supplemental Table 2. In addition, the sets
of proteins confirmed by mRNA and tagging experiments were used
separately to validate the ranking results of Barista and Pro-
teinProphet in supplemental Fig. 4.

RESULTS AND DISCUSSION

We compared ProteinProphet (21), IDPicker 2.0 (23, 35),
and Barista using the six data sets described above. Fig. 2
demonstrates that Barista successfully identifies more target
proteins than ProteinProphet and IDPicker across a wide
range of false discovery rates and across all six data sets. For
example, at an FDR threshold of 1%, Barista identifies 18%
more proteins than ProteinProphet (1347 compared with
1138) and 20% more than IDPicker (1347 compared with
1125) for the “yeast trypsin” data set. On the human amniotic
fluid and gastric aspirates data sets, Barista identifies 25%
and 26% more proteins, respectively, than ProteinProphet
(336 compared with 265 and 323 compared with 255) and
25% and 30% more than IDPicker (336 compared with 267
and 323 compared with 248; see supplemental Table 1 for
details). ProteinProphet does not support training a model on

one data set and then applying the trained model to a sepa-
rate data set; therefore, to allow a fair comparison of algo-
rithms, the results in Fig. 2 are based on training and testing
on the entire data set. However, supplemental Figs. 1 and 2
demonstrate that, even when we split the data into four equal
parts and train on only three-quarters of the data, Barista still
performs better on the held out test set than ProteinProphet in
nearly every case. Furthermore, supplemental Figs. 1 and 2
provide evidence that Barista is not overfitting the training set,
because the performance on the test set is similar to the
performance on the training set. Finally, we confirmed that
enabling variable modifications during search does not affect
the relative performance of the methods that we evaluated
(see supplemental Fig. 3 for details).

In addition to target decoy validation, we compared the
ability of ProteinProphet and Barista to recover proteins that
had been identified in log phase growing yeast cells using
alternative experimental methods. For this purpose, we gath-
ered a set of 391 proteins whose presence in yeast cells
during log phase growth is supported by three independent
assays: 1) mRNA counts established by microarray analysis
(33), 2) incorporating antigen specific tags into the yeast ORFs
and detecting the expression of the resulting protein with an
antigen, and 3) incorporating the sequence of green fluores-
cent protein into the yeast ORFs and detecting the resulting
fluorescence (34). For all of the target proteins in the yeast

FIG. 2. Comparison of ProteinProphet, IDPicker, and Barista performance on sample data sets. A–F plot the number of target proteins
as a function of q value threshold for three protein identification methods. The cyan series indicates the degree of overlap between proteins
identified by Barista and ProteinProphet. All of the results are reported with respect to the set of proteins that received probabilities greater
than 0 from ProteinProphet.
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data sets, a protein was considered a true positive if it was
present among the 391 proteins in the validation set. Fig. 3
shows that, across the three yeast data sets, the ranked list of
proteins in Barista is more highly enriched with these exter-
nally validated proteins than that in ProteinProphet.

We also used the abundance levels assigned to the proteins
measured by Western blot and GFP tagging experiments (34)
to investigate the extent to which Barista scores correlate with
protein abundance. Supplemental Fig. 4 shows that when
target proteins at FDR threshold of 1% are ranked by Barista
score, the top of the list is enriched with high abundance
proteins.

To better understand the relationship between the proteins
identified by ProteinProphet and Barista, we computed the
overlap between the sets of proteins identified as true posi-
tives by the two methods at a range of false discovery rates
(the cyan series in Fig. 2). For all six data sets, ProteinProphet
and Barista identify many of the same proteins. We further
investigated the composition of the nonoverlapping sets in the
yeast data sets identified by ProteinProphet and Barista at
FDR threshold of 1% by checking them against the proteins
identified by the alternative experimental methods described
above. For trypsin-digested yeast, the percentage of nonover-
lapping proteins also identified by the alternative experimental
methods was 32% for Barista and 11% for ProteinProphet.
For elastase, these percentages were 71 and 58%, respec-
tively, and for chymotrypsin, they were 80 and 78%. Thus, on
these data sets, the external validation more strongly sup-
ports the Barista identifications than the ProteinProphet iden-
tifications (see supplemental Table 2 for further details).

Next we investigated proteins identified by ProteinProphet
and Barista in the human tissue data sets. A previous study of
these data sets (31) determined that amniotic fluid and gastric
aspirates collected at birth express essentially the same pro-
teins but that the abundance of a few proteins varies signifi-
cantly between the two tissues. We focused on a group of
homologous proteins containing tubulin �, one of the proteins
shown to have significant abundance differences between the

gastric aspirates and amniotic fluid. This protein group was
identified with high confidence by both ProteinProphet (prob-
ability � 0.99) and Barista (FDR 	 1%) in the gastric aspirate
sample. However, in the amniotic fluid sample, the tubulin �

protein was identified with high confidence (FDR 	 1%) only
by Barista; ProteinProphet assigned this group a low proba-
bility of 0.3. Given that the same proteins tend to be present
in both samples and given that both methods agree that this
protein group is present in one sample, it seems likely that the
“present” call in Barista for the amniotic fluid sample is
correct.

Further investigation of this identification showed that tu-
bulin � was confidently identified by Barista in the amniotic
fluid sample based primarily on a single high scoring peptide
with amino acid sequence NSSYFVEWIPNNVK. One other
peptide received a positive score very close to 0 and therefore
made a negligible contribution to the overall protein ranking.
The rest of the peptides received negative scores that did not
contribute to the overall positive score of the protein. Fig. 4A
shows the spectrum that matched to NSSYFVEWIPNNVK.
Note that the high intensity y5� and b9� peaks result from
ions formed from the cleavage N-terminal to proline, which is
known to result in high peaks. In addition, this peptide be-
longs uniquely to the group of homologous proteins contain-
ing tubulin � and therefore unambiguously identifies this
group.

Finally, in further support of this identification, we exploit
the fact that tubulin � was confidently identified in gastric
aspirates by both ProteinProphet and Barista and that the
peptide sequence NSSYFVEWIPNNVK contributed to the
identification in this other tissue. We compared the spectra
responsible for the peptide sequence identification NSSY-
FVEWIPNNVK in gastric aspirates (Fig. 4B) and for the same
peptide sequence identification in amniotic fluid (Fig. 4A), and
verified that these spectra contain most of the major peaks in
common. We also include in supplemental Fig. 5 two other
confident peptide assignments that permitted the identifica-
tion of the tubulin � group in gastric aspirates by both Pro-

FIG. 3. Comparison of ProteinProphet, IDPicker, and Barista against independent experimental assays. All of the results are reported
on the set of proteins that received probabilities greater than 0 from ProteinProphet. Each panel plots for Barista and ProteinProphet the
number of true positive proteins as a function of the total number of identified proteins, where true positive proteins are those confirmed by
alternative experimental methods, as described in the text.
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teinProphet and Barista, thereby confirming the tubulin �

identification in gastric aspirates and, by extension, in the
amniotic fluid.

Because all but a single identified peptide received either
negative scores or scores close to zero in the Barista model,
the identification of tubulin � in the amniotic fluid was essen-
tially a single hit, because it was based on one high scoring
peptide. This example suggests that Barista is less biased
against proteins with a single good identification than Pro-
teinProphet, which penalizes the tubulin � protein group more
stringently for the presence of peptides with low probability
scores. The validity of this identification by Barista agrees with
recent evidence that requiring at least two peptides per pro-
tein unnecessarily eliminates many true identifications (36).

In general, basing a protein identification on a single pep-
tide identification can introduce a risk of false positives. None-
theless, Barista is able to successfully identify some “one-hit
wonder” proteins based on a single high scoring peptide
because the Barista model normalizes the protein score by
the total number of peptides occurring in the protein. Conse-
quently, Barista favors one-hit wonders on proteins of shorter
lengths. To give an example, we compared the number and
the average lengths of single-hit proteins in the amniotic fluid
and in the gastric aspirates that were identified by Barista at
FDR threshold 1% with the single-hit proteins identified by
ProteinProphet at the same confidence level. For Pro-
teinProphet, which uses only peptides with probability greater
than 0.05 for protein identification, the proteins identified
based on a single peptide were considered one-hit wonders
for the purposes of this comparison. For Barista, which does
not discard low quality peptides even if they received negative
scores, we count the proteins with a single positively scoring
peptide as one-hit wonders. Although Barista identifies
slightly more single-hit proteins than ProteinProphet in both

amniotic fluid (6% versus 3%) and gastric aspirates (5% ver-
sus 3%), the proteins identified by Barista have on average
shorter lengths. In the amniotic fluid, the average length of
Barista single-hit proteins is 138 in comparison with the av-
erage length of 236 of the one-hit wonders identified by the
ProteinProphet. Similarly, in the gastric aspirates, the single-
hit proteins identified by Barista have an average length of
272, in comparison with the average length of 506 of the
single-hit proteins identified by the ProteinProphet. Thus, by
normalizing with respect to the total number of peptides in the
protein, Barista successfully discards long, single-hit proteins
and retains short, single-hit proteins.

Thus far, Barista focused on optimizing a single value: the
number of proteins identified from a shotgun proteomics ex-
periment. This approach contrasts with previous applications
of machine learning to this task (5, 26, 27, 37, 38), which
optimize at the level of PSMs or peptides. In general, focusing
on one optimization target or the other will depend on the
goal of the proteomics experiment. However, in some appli-
cations, it may be desirable to simultaneously achieve high
levels of peptide and protein identification. Because the
Barista model involves training peptide level and PSM level
scoring functions as a part of the protein level optimization,
we can measure the performance of Barista separately on the
peptide or PSM identification task. Moreover, we can adapt
the algorithm to optimize directly on the peptide or PSM levels
(see “Experimental Procedures” for details).

Fig. 5 compares the performance of three variants of
Barista, optimizing at the PSM, peptide, or protein level. All
three methods are evaluated at the PSM, peptide, and protein
levels on the yeast and worm and two human tissue data sets
digested with trypsin.

The results demonstrate that performing protein level opti-
mization gives as good results in terms of peptide and PSM

(A) AF NSSYFVEWIPNNVK (B) GA NSSYFVEWIPNNVK
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FIG. 4. Same peptide contributed to identification of tubulin � in amniotic fluid and gastric aspirates. A, the annotated spectrum that
matches the �2 charged peptide NSSYFVEWIPNNVK in the amniotic fluid. B, the annotated spectrum that matches the �2 charged peptide
NSSYFVEWIPNNVK in the gastric aspirates. The peaks colored in red are b-ions and the neutral losses associated with the b-ions; the peaks
colored in blue are y-ions and the neutral losses associated with the y-ions. However, b-ions and y-ions are annotated. (The high peak near
b9� (at m/z 1126.38) in B occurs at m/z 1127.35, i.e. within the 1-Da range.)
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FIG. 5. Comparison of optimization at the protein, peptide, and PSM levels. Three types of optimization: protein level (red lines), peptide
level (blue lines), and PSM level (magenta lines), were performed. The results were measured on the training and testing sets at the protein level
(A, D, G, and J), peptide level (B, E, H, and K), and the PSM level (C, F, I, and L). The plots show number of target proteins/peptides/PSMs
as a function of q value threshold.
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identification as the direct peptide level and PSM level opti-
mizations. These results indicate that the protein, peptide,
and PSM level optimization tasks are cooperative; hence, the
solution to one of the tasks may potentially be improved when
given access to information about the solution to the other
task. This cooperativity is not particularly surprising because,
for example, the protein ranking task introduces higher level
information about the scores of all peptides belonging to the
same protein. Therefore, even if the goal of the experiment is
to optimize peptide identifications, it is feasible to accomplish
this task by also optimizing the protein level task.

From a general optimization perspective, the main advan-
tage of the protein level training is that it makes more efficient
use of available data. The three optimization tasks—protein,
peptide, and PSM level optimization—are closely related but
are likely to have different optimal solutions. Fig. 5 (A, D, G,
and J) demonstrates that when the end goal is to find the
optimal solution to the protein level task, it is clearly beneficial
to directly solve the problem of interest.

Many algorithms designed for inferring a set of proteins
from a collection of PSMs divide the problem into two stages:
assessing the quality of the PSMs and then inferring the
protein set (21–24). We claim that subdividing the protein
identification problem in this fashion results in a significant
loss of information during the second stage of the analysis.
For example, typically only a subset of spectra are assigned to
a peptide during the peptide identification stage, so informa-
tion about the unassigned spectra is not available to the
protein identification algorithm. Also, if at most one peptide is
assigned to each spectrum, and if for a particular spectrum
that assignment happens to be incorrect, then information
about the second-ranked, possibly correct peptide is not
available during the protein identification stage. Finally, if the
quality of the match between a peptide and a spectrum is
summarized using a single score, such as the probability
assigned by PeptideProphet, then detailed information about
precisely how the peptide matches the spectrum is lost. In
contrast, the machine learning approach described here di-
rectly optimizes the number of identified proteins, taking into
account all available information to obtain the best possible
result.
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