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Abstract
The nucleosides of adenine and cytosine have pKa values of 3.50 and 4.08, respectively, and are
assumed to be unprotonated under physiological conditions. However, evidence from recent NMR
and X-Ray crystallography studies has revealed the prevalence of protonated adenine and cytosine
in RNA macromolecules. Such nucleotides with elevated pKa values may play a role in stabilizing
RNA structure and participate in the mechanism of ribozyme catalysis. With the work presented
here, we establish the framework and demonstrate the first constant pH MD simulations
(CPHMD) for nucleic acids in explicit solvent in which the protonation state is coupled to the
dynamical evolution of the RNA system via λ-dynamics. We adopt the new functional form λNexp

for λ that was recently developed for Multi-Site λ-Dynamics (MSλD) and demonstrate good
sampling characteristics in which rapid and frequent transitions between the protonated and
unprotonated states at pH = pKa are achieved. Our calculated pKa values of simple nucleotides are
in a good agreement with experimentally measured values, with a mean absolute error of 0.24 pKa
units. This work demonstrates that CPHMD can be used as a powerful tool to investigate pH-
dependent biological properties of RNA macromolecules.
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1. INTRODUCTION
An increasing number of experimental studies in recent years have recognized the role of
protonated nucleotides, particularly adenine and cytosine, in RNA structure and function.
Experimental pKa values of the nucleosides have been measured to be 3.50 for adenosine
and 4.08 for cytidine, which become protonated at the N1 and N3 atoms respectively (Figure
1).1 These findings suggest that adenine and cytosine should typically be unprotonated at
physiological pH and their contributions to RNA structure and function was initially
assumed to be minimal. However, recent studies have revealed the prevalence of protonated
adenine and cytosine in a wide variety of nucleic acid structures ranging from DNA triple
helices to the anticodon stem loop of tRNA,2-6 indicating that the pKa value of these
residues may be shifted upwards to near physiological conditions of pH 7. Protonated bases
have been reported to be responsible for a number of non-canonical base pair configurations,
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which suggests their ability to influence RNA structure.7,8 A key example is the wobble
A+•C base pair that has been implicated in stabilizing RNA loop structures9,10 and in the
pH-dependent conformational flexibility of the ribosomal peptidyl transferase center.11

Wobble A+•C base pairs may also form in DNA under biologically relevant conditions,12

where they can have mutagenic and carcinogenic effects.13,14 Apart from these structural
influences, it has been suggested that the elevated pKa of these nucleic acids may play a
significant role in ribozyme catalysis, as these protonated residues may be involved in
general acid-base catalysis, playing an analogous role to histidine residues in proteins.15-19

Some examples of its role in catalysis include hepatitis delta virus ribozyme20-24 and hairpin
ribozyme,25-30 where experimental studies have demonstrated that a loss-of-function
mutation of key residues that have elevated pKa values led to a significant drop in catalytic
activity.

Despite the copious amount of biochemical and structural studies that are available for these
RNA structures, there still remains some ambiguity as to the exact function of these
protonated residues. For example, while experimental studies strongly suggest that adenine
38 (A38) participates in the cleavage and ligation reaction that is catalyzed by the hairpin
ribozyme, its specific role in the catalytic mechanism and the structural dynamics of the
ribozyme remains disputed.25-30 In such situations, in silico modeling of RNA structures
may shed some light on the existing controversy. Walter and co-workers have demonstrated
the usefulness of using molecular dynamics (MD) simulations to clarify the role of the
protonated A38 in the hairpin ribozyme by suggesting that it serves as a general acid in
aligning reactive groups and stabilizing the negative charge.31,32 However, such traditional
MD simulations are limited in the sense that prior knowledge obtained from experiment
about the identity of key catalytic residue(s) and its protonation state(s) is required. In terms
of in silico prediction of pKa values, Honig and co-workers have recently demonstrated the
ability to accurately calculate the pKa values of nucleotides using numerical solutions to the
Poisson-Boltzmann equation from a series of representative static snapshots obtained from
RNA NMR structures.33 While these calculated pKa values may identify the correct
protonation state to be used in a traditional MD simulation, the latter still lacks the ability to
incorporate protonation state information on-the-fly. The ability to perform pH-coupled
molecular dynamics is clearly desirable since it would model realistic pH-dependent
responses to structural fluctuations and provide mechanistic insight to RNA catalyzed
reactions.

In the development of MD simulations, there has been considerable success in calculating
pKa values of protein residues. Warshel and co-workers first demonstrated the feasibility of
using microscopic free energy calculations to determine the pKa values of protein
residues.34-37 Variations of this approach have been developed that couple the protonation
state of a titratable residue with the protein conformation; in these strategies, the atomic
coordinates and the protonation state itself evolve according to the dynamics of the system.
Two distinct classes of implementation for this methodology exist, and differ in the manner
in which the titration coordinates are treated – either discretely or continuously. The discrete
titration variant is typically implemented by combining MD sampling of the atomic
coordinates with Monte Carlo (MC) sampling of protonation states. At regular intervals
during a typical MD simulation, a MC step is performed to determine the change of the
protonation state. Implementation of discrete CPHMD in explicit solvent was first reported
by Bürgi et. al.,38 and Baptista and co-workers,39 and a number of methodological
improvements were made by Baptista and co-workers,40-42 and Stern.43 Discrete CPHMD
has also been implemented with implicit solvent by Dlugosz and Antosiewicz,44,45 and
Mongan et. al.,46 with improvements to achieve better sampling by Meng et. al. 47 and
Williams et. al.48 More recently, Warshel and co-workers developed a more physically
realistic form of pH-dependent MD49 based on the time-dependent MC sampling of the
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proton transfer process,50 which uses the empirical valence bond (EVB) framework to
simulate a single proton transfer from the protein to a surrounding water molecule.51 In
contrast, in the continuous titration variant of CPHMD, the titration coordinate is propagated
continuously between the protonated and unprotonated states. Brooks and co-workers
developed constant pH molecular dynamics (CPHMD) using implicit solvent52-54 which
utilized the λ dynamics approach55-57 to treat the titration coordinates. Recent work by Shen
and co-workers has improved the prediction accuracy of continuous CPHMD,58-60 and it has
been extended to explicit solvent by Grubmüller and co-workers.61 Yang and co-workers
have also reported using orthogonal space random walk, an enhanced sampling technique
based on λ-dynamics, that provided accurate pKa predictions for buried protein residues in
explicit solvent simulations.62 CPHMD has been used by Brooks and co-workers to
investigate numerous pH-dependent conformational changes in proteins,63-65 and other
investigators in the field have reported similar successes as well.66-70 For a more
comprehensive overview of CPHMD, we refer our readers to the following reviews.71

In this article, we will adopt the newer functional forms of λ developed by Knight and
Brooks that have been implemented in Multi-Site λ-Dynamics (MSλD)72,73 as the basis of a
new MSλD-based constant pH molecular dynamics simulation framework (CPHMDMSλD)
and parameterize CPHMDMSλD to investigate protonation events of nucleic acids in explicit
solvent. We will demonstrate the quality of this new CPHMDMSλD model by its ability to
accurately reproduce experimental pKa values of simple mononucleotide systems to a mean
absolute error of 0.24 pKa units. To the best of our knowledge, this is the first constant pH
MD simulation for nucleic acids to be reported in literature.

2. THEORY
We briefly review the theory behind constant pH molecular dynamics (CPHMD) and
highlight the relevant modification in our implementation of CPHMDMSλD. In the original
CPHMD model, the protonation/deprotonation process is simulated as a special case of λ-
dynamics where the λ variables are used to define titration coordinates.55-57 In λ-dynamics,
the simulation is under the influence of a hybrid Hamiltonian and its potential energy is
defined by:

(1)

where Nsites is the total number of titrating residues, X represents the coordinates of the
environment atoms, and xα,1 and xα,2 represent the coordinates of atoms in residue α that are
associated with the protonated and unprotonated states, respectively. The titrating proton and
the other atoms whose charges vary according to the protonation state of the residue (usually
atoms within 2-3 bonds from the titrating proton) are included in both xα,1 and xα,2 and are
defined as a part of the “titrating fragment.” The scaling factor that is associated with the
titrating residue α changes dynamically throughout the simulation and is described by a set
of continuous coordinates that are governed by the following equations:

(2)

The end points define the physically relevant protonated (λα,1 = 1, λα,2 = 0) and
unprotonated (λα,1 = 0, λα,2 = 1) states. In recent work, Knight and Brooks developed the
alternative λNexp functional form of λ:
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(3)

When applied to the two-state system representing the protonated and unprotonated forms
this functional form becomes:

(4)

This new form implicitly satisfies the constraints as required by λ-dynamics:

(5)

The use of the λNexp functional form also expands the future functionality of our
CPHMDMSλD model to titrate between more than two states, such as the tautomeric forms of
nucleic acids.

In CPHMD simulations, the overall free energy of deprotonation of a given residue,
ΔGexp(RNA), is obtained by calculating the difference between the free energy of
deprotonation in the RNA environment, ΔGsim(RNA), compared to that of a model
compound in solvent, ΔGsim(model). By equating this difference of free energies between
the simulated system to that of the experimental system, we obtain:

(6)

which can be rearranged to estimate the experimental free energy of deprotonation of the
RNA:

(7)

The free energy of deprotonation of the model compound may also be expressed as:

(8)

From this perspective, titratable groups in the RNA can be viewed as model compounds that
are perturbed by the introduction of the RNA environment via non-bonded interactions and
this is the fundamental expression that needs to be calibrated for each titratable residue in
our model, in the present study, adenosine and cytidine. For the initial calibration, the free
energy of deprotonation of each isolated model compound calculated using traditional λ-
dynamics provided the ΔGsim(model) value. When ΔGsim(model) is applied to the
simulation as a bias, it results in a zero free energy difference between the protonated and
unprotonated states and this condition is equivalent to pH = pKa. To simulate the system
under different pH environments, equation (8) is used to derive the equivalent ΔGsim(model)
value that should be applied to the simulation. The reference pKa used in equation (8) was
obtained from experimental pKa values that were measured at zero ionic strength.1

In our implementation of CPHMDMSλD, two biases (Ffixed and Fvar) are incorporated into
the potential energy function and the resulting total potential energy function in our CPHMD
simulation may be written as:
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(9)

In this formalism, the fixed biasing potential that is applied to the unprotonated state 
represents the calibrated ΔGsim(model) value. The other fixed biasing potential applied to

the protonated state  is kept at zero. Using this setup, when the titration coordinates
are allowed to propagate dynamically, the two end points that correspond to physical states
may not be well-sampled. Thus, we included the variable biasing potential (Fvar) which
applies an additional bias to encourage sampling of physical states. Identical variable biases
are applied to both protonation states.

(10)

The populations of unprotonated (Nunprot) and protonated (Nprot) states are extracted from
the λ trajectory at each pH value, which are used to derive the unprotonated fraction
(Sunprot):

(11)

Overall pKa values can be calculated by running simulations at different pH values and
fitting the series of Sunprot values to a more generalized version of the Hendenson-
Hasselbach formula:

(12)

where n is the Hill coefficient. In this formalism, n has a theoretical value of one and
deviations from this value indicate the degree of cooperativity (n > 1) or anti-cooperativity
(n < 1) between strongly interacting titratable groups.74,75

3. METHODS
3.1 Generating Input Structures

The input structures of the nucleic acids that were used for the simulations were generated
from CHARMM topology files using the IC facility in CHARMM while hydrogen atoms
were added using the HBUILD facility.76 Model compounds, adenosine and cytidine, were
solvated in a cubic box of explicit TIP3P water molecules77 of length ~20 Å using the
convpdb.pl tool from the MMTSB toolset.78 The test compounds, adenosine monophosphate
(AMP), cytidine monophosphate (CMP) and dinucleotide sequences of CYT-CYT, ADE-
ADE and CYT-ADE were solvated in a cubic box of explicit water molecules of length ~50
Å using the convpdb.pl tool from the MMTSB toolset. The ionic strength was simulated by
adding the appropriate number of Na+ and Cl− ions to match experimentally reported salt
concentrations using convpdb.pl. For the mononucleotides, two isomers in the form of 5′-
phospate and 3′-phosphate were constructed using the patch keywords 5PHO and 3PHO
respectively, in CHARMM. All other nucleic acid structures had hydroxyl groups patched to
the terminal ends via patch keywords 5TER and 3TER. Additional patches were constructed
to represent the protonated forms of adenine and cytosine and all of the associated bonds,
angles and dihedrals were explicitly defined in the patch. Each titratable residue was
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simulated as a hybrid model that explicitly included atomic components of both the
protonated and unprotonated forms. The titratable fragment included the nitrogen atom that
is protonated, the protonated hydrogen and adjacent atoms whose partial charge differed
according to the protonation state (see Table 1 and corresponding Tables S1-S3 in the
supplementary material). The environment atoms were defined as all atoms that were not
included in the titratable fragments.

3.2 Molecular Dynamics (MD) Simulations
MD simulations were performed within the CHARMM macromolecular modeling program
(version c36a6)76 using the CHARMM36 all-atom force field for RNA and TIP3P water.79

The simulation set up for λ dynamics is similar to that reported by Knight and Brooks.72,73

The SHAKE algorithm80 was used to constrain the hydrogen-heavy atom bond lengths. The
Leapfrog Verlet integrator was used with an integration time step of 2 fs. A non-bonded
cutoff of 15 Å was used with an electrostatic force shifting function and a VDW switching
function between 10 Å and 12 Å. λ dynamics was performed within the BLOCK acility
using the MSλD framework (MSLD) and selecting the λNexp functional form for λ (FNEX).
Linear scaling by λ was applied to all energy terms except bond, angle and dihedral terms,
which were treated at full strength regardless of λ value to retain physically reasonable
geometries. Each θα was assigned a fictitious mass of 12 amu•Å2 and λ values were saved
every 10 steps. The threshold value for assigning λα,i =1 was λα,i ≥ 0.8. Variable biases
(Fvar) were added to the hybrid potential energy function and the associated force constant
(kbias) was optimized to enhance transition rates between the two protonation states. Since
identical kbias values were applied to both protonated and unprotonated states, the PMF at
the end-points were not altered and no reweighting scheme was required. The temperature
was maintained at 298K by coupling to a Langevin heatbath using a frictional coefficient of
10ps−1. Prior to the simulation, each system was minimized using 300 steps of steepest
descents (SD), followed by 200 steps of adopted basis Newton-Raphson (ABNR). After an
initial heating of 4 ps and equilibration of 4 ps, a production run of 1 ns was performed,
unless otherwise stated.

3.3 Calculation of pKa value
In our protocol, a single Sunprot value was estimated by combining the populations of Nprot

and Nunprot from 3 independent simulations that used different initial seed values. These
combined Sunprot ratios that were computed at different pH values were then fitted to
equation (12) to obtain a single pKa value. Unless otherwise specified, the reported pKa
value and its error correspond to the mean and standard deviation calculated from 3 sets of
pKa calculations.

4. RESULTS & DISCUSSION
4.1 New CHARMM Parameters for Protonated Adenine and Cytosine

We calculated the partial charges for the adenine and cytosine nucleobases in their neutral
(unprotonated) and charged (protonated) states using the MMFF94 force field.81 The change
in the partial charge was added to the existing partial charge parameters for neutral adenine
and cytosine in CHARMM to assign the charge distribution for the protonated residues. A
summary of the differences for charges and atom types between the protonated and
unprotonated nucleic acids is reported in Table 1. Parameters for the bond, angle and
dihedral energy terms for the protonated nucleic acid were adapted from existing nucleic
acid structures in CHARMM (see Supporting Information). For the protonated adenine, the
respective bonded parameters were obtained from guanine, specifically from the six-
membered ring component that has atoms analogous to that of adenine (N1, H1, C2 and C6).
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For the protonated cytosine, the respective bonded parameters were obtained from a
tautomeric form of neutral cytosine (obtained from patch CYT1).

4.2 Optimization of Model Potential Parameters
Our CPHMDMSλD model was implemented using the recently developed λNexp functional
form for λ in Multi-Site λ-dynamics (MSλD): 73

Knight and Brooks reported setting the coefficient to 5.5 for the optimal balance between
enhancing transition rate and maintaining numerical stability of the integrator in different
environments.73 An identical setup was used successfully in our CPHMDMSλD model. As
with the previous implementation of CPHMD for protein residues,52-54 we have used the
calibrated free energy of deprotonation (Gbias) as the fixed biasing potential value in our
simulation. The free energy of deprotonation was calibrated for each isolated model
compound, i.e., adenosine and cytidine, embedded in explicit solvent using traditional λ-
dynamics. In order to facilitate transitions between the two protonation states, we optimized
the force constant (kbias) on the variable biasing potential that was applied for each model
compound.

It is interesting to note that without the application of the variable bias, no transitions
between the protonated and unprotonated states were observed at conditions pH = pKa,
where one should expect equal population of both states and the maximum transition rate
between the two states (see Figure 2). At values of kbias < 20 kcal/mol, there were very few
transitions in λ phase space between the two states for the entire duration of a 1 ns trajectory.
At values kbias > 40 kcal/mol, transitions were rapid but the end states were not adequately
sampled. The optimal value of kbias for each nucleoside was selected by considering the
competing needs for a high number of transitions and adequate sampling of the end-points
(i.e., maintaining a high fraction of physical ligands (FPL) that were sampled). As illustrated
in Figure 3, these two properties were observed to be anticorrelated to each other and there
is a distinct range of kbias values (between 25 and 35 kcal/mol) that yielded good transition
rates and where more than 80% of the simulation is spent at the physically-relevant end-
points. The optimized parameters for the two model potentials are reported in Table 2.

The variable bias with a relatively large force constant of 28 to 30 kcal/mol that is required
to achieve a reasonable number of transitions in our simulation may be rationalized by
noting that the appearance of a full charge unit when titrating between the two states is
likely to significantly perturb the solvent environment around the nitrogen atom. We suggest
that time is required for the solvent to reorganize and fully accommodate the new charge
distribution as the system titrates from the unprotonated to the protonated state. Figure 4
provides a comparison of the radial distribution function (RDF) of water molecules
surrounding the N1 atom of adenosine in its protonated and unprotonated state and indicates
that considerable rearrangement of the first solvent shell upon ionization of the residue does
occur. For the RDF that describes the distances between N1 and the TIP3P oxygen atoms,
we observed that the charged protonated state had a first solvation shell (2.7 Å) that is
slightly closer than the uncharged unprotonated state (2.9 Å). A more significant change,
however, was observed for the RDF that describes the distances between N1 and the TIP3P
hydrogen atoms in which the protonated state first solvation shell was pushed back (3.4 Å)
compared to that of the unprotonated state (2.0 Å). These observations are consistent with
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the expectation that water molecules would orient their hydrogen atoms towards the partial
negative charge of the nitrogen atom in the unprotonated state and subsequently would flip
their hydrogen atoms “outwards” and orient their oxygen atoms closer towards the partial
positive charge of the protonated hydrogen that is present in the protonated state. Similar
trends were observed for the RDF of water molecules that surround the N3 atom of cytidine
(data not shown). An analogous change in RDF of water molecules around the protonated
N5 atom of the substrate of dihydrofolate reductase was also observed with MD simulations
that sampled different protein conformation that altered the water accessibility of the ligand
pocket.82

4.3 Sampling Efficiency of Explicit Solvent CPHMD simulations
The sampling efficiency as measured by the transition rates between the two protonation
states in our CPHMDMSλD model is quite good with ~50 transitions per ns for our model
compounds at pH = pKa. Given that the solvent reorganization upon the perturbation of a
full charge unit was reported to be on a time scale of up to 3 ps in previous MD
simulations39 and that the mean duration of the physically-relevant protonation states in our
simulations is 20 ps, the sampling characteristics of our system is sufficient to allow solvent
reorganization to occur. However, the transition rate is markedly lower than what has been
observed in CPHMD simulations that are performed using implicit solvent models.52,53 It
should be noted that our model potential parameters, specifically the kbias values as
implemented in CPHMDMSλD have been selected conservatively. For example, the
transition rate can be doubled at the expense of reducing the FPL to 0.6 (Figure 3) which,
provided that simulations are long enough to sufficiently enumerate the relative end-state
populations, may be a better option for simulating full RNA systems where observing
transitions between protonation states may be more challenging.

The more limited sampling efficiency of explicit solvent CPHMD simulations was also
recently reported by Grubmüller and co-workers where the titration of an imidazole model
compound achieved ~100 transitions in a 20 ns trajectory,61 which is a rate of ~5 transitions
per ns. Considering the computational expense of performing explicit solvent simulations,
our rate of ~50 transitions per ns that is achieved with the optimization of our
implementation of explicit solvent CPHMD is clearly advantageous. Finally, in Table 3, we
present a comparison between the sampling characteristics of our simulation to that of
previous work performed in the MSλD framework by Knight and Brooks for modeling
series of inhibitors of HIV-1 reverse transcriptase.72 Using the same force constant for the
variable bias (i.e., kbias = 7) as what was previously reported, we observed a significant drop
in sampling performance with virtually no transitions observed between the two protonation
states at pH=pKa. Our optimization of kbias assisted in improving the sampling
characteristics, but the transition rate still remains about four fold less efficient than previous
work. We note that earlier work performed by Knight and Brooks modeled hybrid ligands in
which the substituents did not differ significantly in terms of their partial charge
distributions. Thus, the introduction of a full charge unit when titrating between the two
states in CPHMDMSλD is likely to be the primary cause for the reduction sampling
efficiency that we observe in the present simulations.

4.4 Convergence and Precision of Calculations
The challenges associated with sampling and convergence for CPHMD simulations has been
reported on several occasions48,54 and these are expected to be an even greater concern in
explicit solvent CPHMD where sampling efficiency is reduced. To validate the robustness of
our CPHMDMSλD model in its ability to achieve adequate convergence, we performed a
series of simulations at pH = pKa for our model compounds. The degree of convergence in
our simulations was determined by calculating the unsigned deviation between the free
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energy of protonation, estimated from subsets of shortened trajectories, and the free energy
of protonation that was estimated from ten 1ns trajectories. Different combinations of
trajectory length and number of independent runs were systematically examined to
determine the most cost effective tradeoff between computational expense and precision of
the calculations. The results are summarized in Figure 5. It was observed that individual
trajectories required at least 100 ps to reliably observe any transitions between protonation
states. In fact, we observed that a minimum simulation time of ~ 500 ps per trajectory was
required to obtain a precision of ~0.20 kcal/mol in our calculations (Figure 5a) and running
multiple shorter independent runs would not produce converged results unless the 500 ps
threshold was crossed. Our results indicate that good precision can be achieved by using a
total simulation time of 3 ns in the form of 3 independent runs of 1 ns each, where the
unsigned deviations for the free energy of deprotonation was 0.05 kcal/mol for adenosine
(Figure 5b). It should be noted, however, that this level of precision was achieved in
previous work three times more quickly for hybrid ligands whose charge distributions were
similar. All subsequent calculations of pKa values in this paper were estimated using three
independent runs of 1 ns each.

The performance of the multi-site λ-dynamics (MSλD) approach, on which CPHMDMSλD is
based, has been evaluated in comparison to traditional FEP calculations by Knight and
Brooks.72 For substituents with similar charge distributions, it has been established that
relative hydration and relative binding free energies calculated from both MSλD and FEP
are in good agreement with each other and MSλD was three times more efficient than
regular FEP. Our current work involves substituents that have significantly different charge
distributions from one another, i.e. the charges associated with the protonated and
deprotonated states respectively, and consequently CPHMDMSλD takes longer to converge.
Analogously, we expect that FEP calculations will also take longer than what was reported
in Knight and Brooks, but would still be less efficient in their convergence than MSλD
calculations. In addition, traditional FEP calculations are not well-suited for simultaneously
exploring multiple titrating sites or multiple tautomers, and so the MSλD-based approach of
CPHMDMSλD is more generalizable than FEP methods to model these more complex
situations.

4.5 Calibration Curve of Model Systems: Adenosine and Cytidine
We calibrated our CPHMDMSλD model at 298 K using zero salt concentration. The
reference pKa that was used in the calibration was the experimental pKa that was measured
under similar conditions (25°C at zero ionic strength).1 The titration curve of the model
nucleoside compounds, adenosine and cytidine, are shown in Figure 6. The best-fit
Henderson-Hasselbalch curve has a near ideal Hill coefficient for adenosine (n = 0.94) and
cytidine (n = 0.93). The calculated pKa value of 3.50 for adenosine was in excellent
agreement with experimental values and the pKa of 4.22 for cytidine is only slightly higher
than the reference value by 0.14 pKa units. The accuracy of the calculated pKa values is
determined primarily by the sampling efficiency at pH = pKa and the quality of the
calibration of the Gbias values that are used to simulate distinct pH conditions. Our results
demonstrate that a series of 3 × 1 ns simulations is sufficient to provide reasonably accurate
results, which is significantly less than the 20 ns trajectory employed by Grubmüller and co-
workers in their explicit solvent CPHMD model.61

4.6 Quantitative pKa value calculations for simple nucleotides
First, we tested our CPHMDMSλD model on single nucleotide test compounds, adenine
monophosphate (AMP) and cytosine monophosphate (CMP), at zero ionic strength and the
results are summarized in Table 4. The calculated pKa values for AMP-5 and β-AMP-3
were 4.08 and 4.20 respectively. Compared to adenosine, the pKa values of these nucleotide
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counterparts were slightly elevated by ~0.5 pKa units. Similarly, the nucleotide counterparts
of cytidine with pKa values for CMP-5 and β-CMP-3 of 4.90 and 4.77, respectively, had
slightly elevated pKa values by ~0.5 pKa units compared to cytidine. The calculated pKa
values for both 5′-phosphate and 3′-phosphate isomers of adenosine and cytosine are not
statistically different at the 95% confidence interval. The increase in the calculated pKa
values from their nucleoside counterparts is expected, since the presence of the negative
charge from the phosphate group may interact with the positively charged protonated base
and weakly stabilize it, thus increasing the population of the protonated state and causing a
corresponding increase in the calculated pKa value.

In order to compare our calculated pKa values with experimental results, we performed
simulations that mimicked the ionic strength of the environment (i.e., 100-150mM NaCl) in
which the experiments were performed.83,84 By explicitly incorporating the salt
environment, the calculated pKa values are systematically lowered relative to those obtained
from the zero ionic strength simulations. This shift in pKa values is to be expected since the
presence of Na+ ions screens the electrostatic effects of the phosphate group. The results in
Table 4 indicate that our pKa predictions had an average absolute error of 0.24 pKa units
compared to experiment and we conclude that our CPHMDMSλD model is capable of
making accurate quantitative predictions of pKa values for simple nucleotides. These results
also indicate that our model is capable of accounting for the differences between zero and
non-zero ionic strength environments and highlights the importance of simulating the system
at the appropriate ionic strength to mimic experimental conditions.

4.7 Modeling Interactions between Adjacent Titrating Residues
Finally, we tested our CPHMDMSλD model on dinucleotide sequences ADE-ADE, CYT-
CYT and CYT-ADE at zero ionic strength, where both nucleotides were titrated
simultaneously in the same simulation. The pKa values were shifted upwards compared to
the nucleoside model compounds for all sequences, ADE-ADE (4.08 ± 0.20 and 4.06 ±
0.16), CYT-CYT (4.93 ± 0.05 and 4.76 ± 0.09) and CYT-ADE (5.06 ± 0.07 and 3.85 ±
0.26), and were similar to the corresponding mononucleotide pKa values. For some of the
sets of pKa calculations for the dinucleotide sequences, the Hill coefficient had more
significant deviations from one compared to the monomeric compounds. Specifically, the
value was lowered (n < 0.8) for 5 of the 9 sets of pKa calculations. When the Hill coefficient
deviates from one, it suggests that adjacent residues are interacting with each other in either
a cooperative (n > 1) or anti-cooperative (n < 1) fashion. Cross-correlation analysis of the
protonation states (data not shown) however, indicates only weakly correlated behavior,
which suggests that the interaction between adjacent residues is not strong. The second set
of pKa calculations on CYT-ADE exhibited the lowest Hill coefficient (n = 0.60) indicating
the strongest anti-cooperative behavior. Analysis of the individual titration curves as shown
in Figure 7 indicate that the Sunprot ratio shows the greatest deviation between the second set
and the other two sets at pH 3. We analyzed the mean distance between the nitrogen atom
that is protonated in CPHMD (i.e., N3 CYT and N1 ADE) of adjacent residues at pH 3 and
the results are shown in Figure 7. In one simulation of the second set, the mean distance
sampled was about 4 to 6 Å, in comparison to the typical values of 8 to 16 Å for all other
simulations. We suggest that this simulation contributed significantly to the higher Sunprot

ratio for the second set that in turn gave rise to the lower Hill coefficient. The lack of strong
interactions between adjacent titrating residues in the other two sets of pKa calculations of
CYT-ADE is apparently due to the result of the lack of sampling of configuration space in
which these two residues are close enough to influence each other’s protonation state. We
suggest that stronger cooperative or anti-cooperative effects are likely to be observed when
modeling RNA structures with stable conformations in which the nucleobases are held in
close proximity to one another.
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4.7 Moving towards CPHMD of full RNA systems
The remarkable agreement of our calculated pKa values to experiment is encouraging;
however, several challenges may be anticipated when applying our CPHMDMSλD model to
full RNA structures.

First, instead of isolated monomeric compounds, the titratable residues of interest in RNA
macromolecules are nucleotides that are buried in the interior of the RNA which interact
with multiple residues (e.g. via base-pairing interactions). Therefore, the increased
perturbation of the titrating residue’s local environment and the increased complexity arising
from non-bonded interactions with adjacent residues is likely to reduce sampling efficiency
in full RNA structures. We illustrate this claim with a hypothetical example of a residue
whose pKa value varies with RNA conformation. The formation of a Watson-Crick A-T
base pair involves the N1 atom of adenine and this results in a depression of its pKa value
relative to the isolated base since the nitrogen atom (that would be protonated in CPHMD) is
now serving as a hydrogen bond acceptor. Conformational fluctuations, such as helical
unwinding motions, may expose these buried nucleotides to the solvent and cause a
corresponding increase in their respective pKa values. In order to reproduce experimentally
measured pKa values from NMR studies in the above example, it may be necessary to
sample these two conformational states that are observed at the timescale of which the
measurements were taken. The use of advanced sampling methods such as replica exchange
has been previously implemented in protein CPHMD by Brooks and co-workers to improve
sampling performance,54 and when used with CPHMDMSλD may be expected to yield
similar improvements in model performance. Similarly, accelerated molecular dynamics85

has been implemented with CPHMD and it has yielded improvements in conformation
sampling.48 Other sampling methods developed to sample long timescale conformation
changes such as self-guided langevin dynamics86,87 may also achieve a similar effect.

Another challenge may arise from the sampling in λ phase space in the presence of many
interacting titratable groups. Under the physiologically relevant pH range, protein residues
typically have 4 titratable residues out of 20 amino acids. In contrast, half of the nucleic acid
building blocks are titratable in our current CPHMDMSλD model. While it may be common
that titratable residues on a protein are seperated from one another in terms of spatial
proximity, and thus the state of one titratable residue is unlikely to influence the others, this
is not the case for RNA. In the absence of prior information about which residues will likely
be in which protonation states, all adenosine and cytosine residues in the macromolecule
could be modeled as titratable. However, in this case, the cooperative or anti-cooperative
effect that these simultaneously titrating residues have on one another could be significant.
Such a situation may lead to hidden barriers in adjacent λ phase spaces, in which the λ
values of residue i are restricting the propogation of the λ values of residue j. Thus, the
efficiency of sampling in λ phase space would need to be improved and a lower FPL without
compromising the physical accuracy of the model may be necessary in order to maintain a
reasonable minimum transition rate between the two protonation states. A recently
developed enhanced sampling technique, orthorgonal space random walk (OSRW) has been
developed to address such sampling challenges associated with strongly coupled hidden free
energy barriers, and it has been successfully applied to predict the pKa values of buried
protein residues that are typically not accurately reproduced in conventional CPHMD
approaches. The implementation of OSRW with CPHMDMSλD could potentially model
strongly coupled titrating residues with better accuracy.62,88

For MS-CPHMD to successfully investigate pH-dependent properties of RNA structures
over a longer timescale (μs and beyond) or pH-dependent properties of large RNA structures
such as a ribosomal subunit, a reduction of the computational expense that is associated with
explicit solvent CPHMD is desirable. Greater computational efficiency may be achieved by
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using hybrid explicit/implicit solvation models, in which a few layers of explicit solvent
water molecules are placed near the RNA surface with the rest of the environment described
by an implicit solvation model.89-91 Other models reduce the number of explicit waters in
the simulation by using a thin shell of explicit water and hold these waters near the RNA
surface with a restraining force,92,93 The use of the surface constrained all atom solvent
(SCAAS) model that requires fewer explicit water molecules than the periodic boundary
conditions (PBC) implementation in MD simulations94,95 has also been validated on a
number of pKa calculations performed on protein residues.37,96 Multiscale modeling
approaches that use a coarse-grained model to provide the reference potential for the
thermodynamic cycle that can be used to speed up the free energy calculations of
protonation events to simulate pH-dependent dynamics have also been reported
recently.49,97 Alternatively, we have seen considerable advances in implicit solvent models
in recent years98 and they been been successfully implemented with protein CPHMD.52-54

Established work in parameterizing implicit solvation models for RNA is encouraging,99 but
ongoing work in our lab (unpublished results) indicates that implicit solvent models do not
accurately reproduce explicit solvent simulations results when simulating RNA. Therefore,
the successful implementation of an implicit solvation model to CPHMDMSλD would be an
avenue for future development.

Finally, while the use of NaCl may serve to reproduce the ionic strength environment at
which experimental studies are conducted, divalent ions such as Mg2+ play functional roles
in many RNA structures and current parameters would need to be examined to ensure their
ability experimental observables in RNA macromolecules. Our CPHMDMSλD model may
also be expanded to include titratable residues of guanine, uracil and thymine. Although the
bulk of experimental studies have implicated adenine and cytosine as key protonated
residues in RNA, there is some evidence that suggests that the presence of protonated
guanine, such as the G8 residue in the active site of the hairpin ribozyme, may also play a
mechanistic role.100 The adoption of the λNexp functional form for lambda in our
CPHMDMSλD model also allows us to expand the representation of the titratable fragments
to include tautomeric forms of nucleotides in both the unprotonated and protonated states.
Recent theoretical studies have also suggested that stable tautomers may exist under specific
conditions.101-103 Thus, the ability to titrate among four states (unprotonated, unprotonated
tautomer, protonated and protonated tautomer) may assist in clarifying the structural or
mechanistic roles that involve tautomeric forms in RNA.

5. CONCLUSION
In conclusion, we have parameterized a protonated adenine and protonated cytosine for use
in the first reported constant pH molecular dynamics (CPHMD) for nucleic acids. We have
adopted the new functional form λNexp for λ that was recently developed for Multi-Site λ-
Dynamics (MSλD) and demonstrate good sampling characteristics in which rapid and
frequent transitions between the protonated and unprotonated states at pH = pKa are
achieved, while sampling the physically-relevant protonation states for more than 80% of
the trajectory. Compared to existing implementations of explicit solvent CPHMD, the
sampling in our method sees a 10-fold improvement, while maintaining sufficient residency
time of the physical protonation states to ensure proper solvent reorganization. A series of 3
independent runs of 1 ns each was determined to be sufficiently precise for calculating the
pKa values for simple nucleotide systems. pKa values calculated for simple nucleotides are
in a good agreement with experimentally measured values with a mean absolute error of
0.24 pKa units, affirming that our CPHMDMSλD model has the ability to make accurate
quantitative predictions for simple nucleotide systems. Our work paves the way for the
deployment of CPHMD as a powerful tool to investigate pH-dependent biological properties
of RNA macromolecules.
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Figure 1.
Protonation site of (a) adenosine and (b) cytidine and their respective pKa values.
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Figure 2.
Transitions between the protonated and unprotonated state of adenosine in λ phase space at
pH = pKa for a 1 ns trajectory with varying kbias values of (a) 20, (b) 30 and (c) 40.
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Figure 3.
Effect of increasing kbias on the transition rate and fraction physical ligand (FPL) for (a)
adenosine and (b) cytosine. Sampling characteristics were obtained from 5 independent MD
runs of 1 ns each.
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Figure 4.
RDF of water molecules for (a) N1(ADE)-O(TIP3P) distances and (b) N1(ADE)-H(TIP3P)
distances within a sphere of 10 Å from the N1 atom of adenosine in both protonated and
unprotonated states.
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Figure 5.
Unsigned deviation for the free energy of deprotonation of adenosine as a function of (a)
total simulation time from all N trajectories and (b) individual simulation time of each of the
N trajectories.
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Figure 6.
Sample titration curves for model nucleoside compounds, (a) adenosine and (b) cytidine.
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Figure 7.
(a) Titration curves for CYT-ADE and (b) time series of distance between N3 CYT and N1
ADE atoms at pH 3 for all 3 sets of pKa calculation.
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Table 2

Parameters for the model potential. Gbias was assigned to be the free energy of deprotonation of adenosine or
cytidine at zero ionic strength. kbias was optimized to achieve a maximum transition rate while maintaining
physical states for more than 80% of the entire trajectory.

Nucleotide Gbias (kcal/mol) kbias (kcal/mol) Reference pKaa

Adenine 19.39 29.75 3.50

Cytosine 75.24 27.75 4.08

a
The reference pKa is the experimental pKa values for the model compounds that were measured at zero ionic strength.1
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Table 4

Calculated and experimental pKa values of test compounds.

Compound [NaCl] (M) Calculated Experimental Abs. Error

β-AMP-3 No salt 4.20 ± 0.06 - -

β-AMP-3 0.15 3.79 ± 0.11 3.65 0.14

AMP-5 No salt 4.08 ± 0.03 - -

AMP-5 0.15M 3.89 ± 0.16 3.74 0.15

β-CMP-3 No salt 4.77 ± 0.05 - -

β-CMP-3 0.15M 4.56 ± 0.10 4.31 0.25

CMP-5 No salt 4.90 ± 0.07 - -

CMP-5 0.10M 4.67 ± 0.08 4.24 0.43
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