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Abstract
Genetic Analysis Workshop 17 (GAW17) focused on the transition from genome-wide association
study designs and methods to the study designs and statistical genetic methods that will be
required for the analysis of next-generation sequence data including both common and rare
sequence variants. In the 166 contributions to GAW17, a wide variety of statistical methods were
applied to simulated traits in population- and family-based samples, and results from these
analyses were compared to the known generating model. In general, many of the statistical genetic
methods used in the population-based sample identified causal sequence variants (SVs) when the
estimated locus-specific heritability, as measured in the population-based sample, was greater than
about 0.08. However, SVs with locus-specific heritabilities less than 0.03 were rarely identified
consistently. In the family-based samples, many of the methods detected SVs that were rarer than
those detected in the population-based sample, but the estimated locus-specific heritabilities for
these rare SVs, as measured in the family-based samples, were substantially higher (>0.2) than
their corresponding heritabilities in the population-based samples. Substantial inflation of the type
I error rate was observed across a wide variety of statistical methods. Although many of the
contributions found little inflation in type I error for Q4, a trait with no causal SVs, type I error
rates for Q1 and Q2 were well above their nominal levels with the inflation for Q1 being higher
than that for Q2. It seems likely that this inflation in type I error is due to correlations among SVs.
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Introduction
Genetic Analysis Workshop 17 (GAW17) focused on the transition from study designs and
methods for a genome-wide association study (GWAS) to the study designs and statistical
genetic analysis methods that will be required for the analysis of next-generation sequence
data. Several elements make up a statistical genetic analysis study: the density of the
markers (ranging from single-nucleotide polymorphism [SNP] panels to whole-genome
sequences), the study design (population- or family-based), and the type of trait (qualitative
or quantitative). The recent focus on genome-wide association studies has often precluded
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other methods and study designs, and the term GWAS has come to commonly refer to a
population-based study of unrelated individuals with high-density SNP panels in case-
control or cohort study designs. This focus has been driven largely by the available
genotyping technology, the ease of obtaining population-based samples of unrelated
individuals, the focus on categorical disease, and the computational speed and simplicity of
the analysis. One of the major strengths of next-generation sequence technology is that it can
identify both common SNPs with minor allele frequencies greater than about 5% and rare
sequence variants with minor allele frequencies of less than about 1–5%. These SNPs and
rare sequence variants are collectively referred to here as sequence variants (SVs).

In a GWAS, the SNPs on the high-density genotyping platform are selected to be relatively
common; the inclusion of rare variants in next-generation sequence data is problematic
because variants with low minor allele frequencies are often removed during data cleaning
and present difficulties in terms of traditional statistical analyses. It is clear that rare SVs
require different study designs and methods of statistical analysis, including linkage analysis
and intrafamilial tests of association, to identify the variants responsible for the phenotypic
variation of quantitative traits and the susceptibility to qualitative disease. However, there is
considerable discussion over the most appropriate study designs and methods. To provide a
public forum for this discussion, the participants in GAW17 focused specifically on the type
of data that would typically be seen from a “mini” exome next-generation sequencing
project that included both common and rare SVs. The 166 contributions to GAW17 are
organized into the 15 thematic summaries presented in this volume. Here, we briefly review
the model underlying the simulations and reinterpret the causal SVs in terms of their locus-
specific heritabilities; we also summarize the lessons learned from the group presentations at
the GAW17 meetings in Boston, Massachusetts (October 2010), the group summaries [this
issue], and the individual papers published in BMC Proceedings [v 5 (suppl 9), 2011]. We
focus on the themes that span many of the group reports and the take-home lessons gleaned
from GAW17 in terms of what matters and why.

Methods
The underlying simulation model is described in detail by Almasy et al. [2011]. In that
report, the frequency of the minor allele and its effect size were given for all the causal
variants for quantitative traits Q1 and Q2 and for the liability underlying the discrete trait
(D); Q4 had no causal variants. The allele frequency and effect size can be combined into a

more interpretable measure, the locus-specific heritability ( ), at least for the quantitative
traits and the underlying liability of the qualitative trait. For a specific locus L, it was
assumed that there was no dominance such that:

(1)

where p is the frequency and a is the additive effect of the minor allele. For the population-

based sample,  was estimated for quantitative traits Q1 and Q2 [Falconer and Mackay,
1996] for each causal SV in each replicate, and the estimates were averaged over all 200
replicates. Results are presented in Table I. Similarly, the estimated locus-specific
heritabilities for Q1 and Q2 for the family-based sample are presented in Table II. Two

methods were used to estimate  in the family-based sample—the regression of offspring
on mid-parent [ROMP] method [Pugh et al., 2001; Roy-Gagnon et al., 2005] and the
traditional method—but in the traditional method, all individuals were included and familial
dependencies were ignored.
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Given that the number of causal SVs and their effect sizes for Q1 were fewer and larger than
those for Q2 and that the underlying liability for the disease trait D was based on SVs
involved in Q1 and Q2, we focus primarily on results from Q1, with commentary on Q2,
Q4, and D where appropriate. A comparison of the results in Tables I and II illustrates the
difference between the estimated locus-specific heritability in population- and family-based
study designs. In the population-based sample, the causal SVs with the highest locus-
specific heritabilities were in FLT1: C13S523, C13S522, and C13S524, with locus-specific
heritabilities of 0.15, 0.08, and 0.04, respectively. The next highest were in KDR: C4S1877
and C4S1889, both with heritabilities of 0.03. However, the highest locus-specific
heritabilities in the family-based sample determined with the ROMP method were in
VEGFC and VEGFA, namely, C4S4935 and C6S2981 with heritabilities of 0.25 and 0.23,
respectively, followed by SVs in FLT1 and KDR (C13S523, C4S1878, and C4S1884, with
heritabilities of 0.046, 0.044 and 0.018, respectively). Estimates of -based sample, the causal

SVs with the  for SVs and their ranks were similar to those obtained with the traditional
method.

For Q2, the estimated locus-specific heritabilities were considerably lower than those for
Q1. Only C6S5380 (VNN1) had a locus-specific heritability greater than 0.01 in the
population-based sample, and only C10S3109 (SIRT1) and C9S444 (VLDLR) had locus-
specific heritabilities greater than 0.05 in the family-based sample. For most of the other
causal SVs in Q1 and Q2 the confidence intervals included zero (the null hypothesis).

Summary of Results
The Simulation Model Matters

Comparison of empirically obtained results with that of a known simulation model that
reflects the true state of nature is a powerful tool for evaluating methods and approaches in
statistical genetics. Simulation studies can provide insight into the statistical validity, the
type I error rate and power, and the large- and small-scale sample properties of new
statistical methods. However, it is important to realize that building a simulation model that
mimics large portions of the genome is problematic. Because the characteristics of the
genome are neither fully measured nor understood, particularly in terms of all the
correlations and interactions between millions of SVs, the most prudent approach is to use
actual sequence data as the basis for the underlying model. With this approach, the known
(and unknown) structure in the genome can be incorporated without having to create a
model with assumptions that may not accurately reflect the true state of nature. As described
by Almasy et al. [2011], complex trait phenotypes based on actual SVs can then be modeled
as desired. However, in the simulated data, replications based on the same underlying
sequence data were not independent, and the genotypes were identical over all the replicated
samples. Thus the replicates were completely correlated with respect to genotype, and
because at least some of the variation inherent in the phenotypes was generated on the basis
of causal SVs, the phenotypes were correlated across replicates as well.

Cost and Sample Size Matter
The cost for next-generation sequencing is decreasing on a continuing basis. At present, a
high-density SNP panel costs about $500, a whole-exome sequence costs about $2,500, and
a whole-genome sequence with 30× coverage costs about $5,000. The cost to genotype one
replicate of 697 individuals with a high-density SNP panel would be about $348,500; the
cost to perform whole-exome sequencing for one replicate of 697 individuals would be
about $1,742,500, and the cost for all 200 replicates would be about $350 million. Although
the sample size of the data provided for GAW17 was fairly typical of what can be obtained
or afforded at this point in time in terms of sequencing data, it was quite small compared to
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sample sizes for genome-wide association studies. Until the cost of sequencing approaches
the cost of a GWAS, the detectable effect size for rare SVs that contribute to trait variation
will remain high. Samples large enough to detect small effect sizes may be prohibitively
expensive in the near future, although this will be less of a problem as sequencing costs
continue to decline. Several contributors to GAW17 pooled replicates to increase the sample
size, but at least in the near term, because of the cost to replicate even one sample, caution
must be used in making generalizations about methods that pool replicates to expand the
sample size. However, it is important to note that for most of the causal rare SVs, the
estimated locus-specific heritabilities were so small that even pooling replicates did not
substantially increase the power of these tests.

Minor Allele Frequency and Effect Size Matter
Rare or common, SVs have two main attributes: the frequency of the allele(s) of the variant
and the size of the effect of the variant allele(s). Although much debate has focused on
common versus rare alleles, what is most important is the size of the allelic effect of the
variant and at what level the effect is measured (the individual, the family, or the
population). The variant for familial hypercholesterolemia, for example, has a large effect in
individuals with two copies of the variant, less of an effect in relatives who carry only one
copy of the variant, and virtually no effect at the population level because the allele is so
rare. Unless population studies are very large, rare causal variants with large effect size will
be difficult to detect in population-based studies. However, in a family-based sample,
because of the increased presence of a specific causal SV in relatives, the effect size will no
longer be overwhelmed by its low population frequency and the ability to detect a rare
variant will be amplified.

Data Quality Matters
The quality of the SV data is critical to the interpretation of the results. A number of data
quality issues were raised at GAW17, some of which were identical to those for a GWAS
and some of which were unique to next-generation sequence data. In terms of concordance
with known SNP genotyping, Stram [2011] and Hemmelmann et al. [2011] noted that the
concordance rate was only 88.5% for SVs shared by both the mini-exome data and HapMap
genotyping calls for those individuals genotyped on both platforms. Furthermore, some SVs
in the simulated mini-exome sequence data exhibited strong correlations with SVs on
different chromosomes [Thomas et al., 2011; Tintle et al., 2011]. Again, these
interchromosomal correlations may be due to sequence misalignment or chance. When the
data contain a large number of rare SVs and a relatively small number of individuals,
correlation between SVs can be substantial, and sometimes even complete correlation occurs
simply by chance alone.

The amount of missing data and the call rates are critical measures of data quality in a
GWAS. With well-characterized high-density SNP genotyping platforms, markers are often
dropped if the proportion of missing data exceeds a specified threshold. Individuals can be
dropped if the proportion of genotyping calls fails to reach some minimal threshold as well.
This is considerably more difficult with next-generation sequence data, because, by
definition, the rare SVs can be quite rare. In this situation, it is difficult to distinguish
between a rare SV and a sequencing error. Family-based samples provide the opportunity
for Mendelian consistency checking, which can help to distinguish between a real
segregating variant and a sequencing error. Finally, cryptic relatedness (unknown relatives
in the sample) remains an issue for both high-density SNP genotyping and sequence
variants.
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Nonindependence of Sequence Variants Matters
It is important to note that the lack of independence between SVs is a larger issue in next-
generation sequencing studies than in a GWAS because of the increased density of the SVs.
As in a GWAS, nonindependence between SVs in linkage disequilibrium blocks is common,
although in next-generation sequence data the density of SVs is increased and thus the
number of highly correlated SVs is increased as well. In these data, however,
nonindependence in SVs across linkage disequilibrium blocks also occurred. This was a key
finding in both the Group 9 and Group 7 summaries [Thomas et al., 2011; Tintle et al. 2011,
respectively]. These summaries noted that failure to address correlations between SVs
increased the type I error rate over a wide variety of methods. Unlike typical analyses in a
GWAS, Thomas et al. [2011] noted that single-SNP tests are not reliable for association.

Enrichment for Phenotype and Genotype Matters
At GAW17, investigators presented a number of strategies to enrich the samples to be
analyzed for the presence of rare SVs. On the phenotyping side these strategies included
selection for discordant relative pairs, extreme phenotypes, and distributional extremes. For
the population-based samples, Bailey-Wilson [2011], in the Group 14 summary, reported
that the power to detect association was increased when subsamples were selected for
extreme phenotypes [Lamina, 2011]. On the genotyping side the strategies included the use
of families and rare variant counts in a case-control framework. In the Group 10 summary,
Melton and Pankratz [2011] described methods that used the joint analysis of multiple
correlated phenotypes to reduce the phenotypic dimensionality and methods that reduced the
genotypic dimensions.

Families Matter
It is important to realize that the use of families is an enrichment strategy for both phenotype
and genotype. The selection of highly loaded families focuses on those families with a high
proportion of affected individuals or large trait variation. The selection of extended families
will overrepresent some rare causal variants if they are present in the founders or in
individuals who marry into the family, and then segregate throughout the extended family.
By the same token, some rare causal variants will be lost if they are not present in the set of
founders or individuals who marry into the family or if they segregate out of the family in
subsequent meioses. The amplification of a rare SV was particularly relevant in Family 7, in
which a rare causal SV in the VEGFC pathway was present in the founders and then
segregated throughout the entire extended family. A number of contributors were able to
identify causal SVs in the VEGFC and VEGFA genes because the estimated locus-specific
heritabilities were higher in the family samples than in the population-based samples.

Family data can also provide other relevant information, such as estimates of locus-specific
heritability and candidate regions based on linkage analysis. In the Group 11 summary,
Hinrichs and Suarez [2011] noted that information from family-based samples could be used
to identify candidate regions, identify individuals for sequencing, and provide weights for
intrafamilial tests of association.

How You Treat Rare Variants Matters
When the SVs are rare, it becomes necessary to collapse rare variants into new derived
variables in order to analyze them. Many different methods were used to collapse or
aggregate SVs at GAW17, and these methods are summarized by König et al. [2011],
Melton and Pankratz [2011], Sun et al. [2011], Sung et al. [2011], Tintle et al. [2011], and
Ye and Engelman [2011]. In general, the analysis of collapsed variants had somewhat better
power than that of uncollapsed variants, although the performance of collapsing and
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aggregating methods depended to a large extent on the underlying genetic structure and the
use of unrelated individuals or family data. Summarizing a somewhat different approach,
Kent [2011] noted that using common variants to tag rare variants can work, but not very
reliably.

The performance of the collapsing methods is tempered somewhat by the fact that all the
causal variants in the underlying simulation model had allelic effects in the same direction,
which is most likely not the case in the real world [Bickeböller et al., 2011].

The methods described by Ye and Engelman [2011] and by Tintle et al. [2011], for example,
illustrate a number of collapsing schemes, some previously proposed and some novel. For
the most part, these methods focused on the sample of unrelated individuals. Not
unexpectedly, results from these methods identified genes containing SVs with the highest
locus-specific heritability, for example, SVs in FLT1 and KDR in trait Q1. Ye and Engelman
[2011] noted that the number of SVs in the derived collapsed variants was problematic
because some genes had many SVs, whereas others only had one. Taking this one step
further, Cantor and Wilcox [2011] reported a variety of methods for aggregating SVs into
haplotypes and multiallelic genotypes in the Group 13 summary.

Results Matter
Based on the estimated locus-specific heritabilities for Q1 (Tables I and II), it was not
surprising that many methods found causal SVs in the FLT1 and KDR genes in most
replicates in both the population-based and the family-based study designs. The estimated
locus-specific heritabilities for SVs in these genes were greater than 0.03 and 0.02 in the
population- and family-based samples, respectively. Melton and Pankratz [2011] and
Bailey-Wilson et al. [2011], for example, reported that most of the methods considered were
able to detect the SVs in FLT1 and KDR in the population-based sample, but, as in other
methods, a substantial increase in type I error over the nominal rate was observed. In the
family-based sample, however, SVs in VEGFC and VEGFA had the highest locus-specific
heritabilities (>0.2) followed by SVs in FLT1 and KDR (Table II). This was primarily due to
founder effects and the subsequent segregation of the SVs in the families, both largely the
result of chance. The locus-specific heritabilities for most of the other causal variants were
quite low, generally less than about 0.003, because either the allele frequency was low or the
allelic effect size was low, or both.

In Q2, the estimated locus-specific heritabilities were nearly all less than 0.01 in the
population-based sample and, except for SVs in SIRT1 and VLDLR, all less than 0.001 in the
family-based sample. In general, SVs with locus-specific heritabilities less than 0.01 were
not detectable with any substantial degree of power. There were no causal SVs in Q4.

Power and Type I Error Matter
Many of the proposed new methods were evaluated by counting the number of times a true
causal variant was identified as a causal variant over all replicates. It should be emphasized
that, because of the nonindependence of the samples, this estimate was a surrogate for power
(i.e., the proportion of samples that identified the variant as causal) rather than a true
estimate of the power of the test. Furthermore, the confidence intervals on these estimates
for 200 replicates were quite large, making comparisons across methods problematic, and
the confidence intervals would be even larger for smaller critical values.

Similarly, just as the estimate of the proportion of samples that identified a true causal
variant as a causal variant was taken to be a surrogate for power, the proportion of samples
that identified a noncausal variant as a causal variant was taken to be a surrogate for type I
error. There are, however, two null hypotheses that can be tested. Under the null hypothesis
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of no genetic component, no variants influence the phenotype; that is, the phenotype is
essentially a normally distributed random variable (i.e., trait Q4). Under the alternative null
hypothesis, no causal variants are among the set of variants considered; however, other
unknown causal variants do, in fact, influence the phenotypic distribution (e.g., Q1, Q2, and
the underlying liability of the discrete trait). These variants affect the correlation structure of
the phenotypes and can be correlated with other known or unknown variants.

In general, the estimate of the type I error rate was elevated over a broad range of methods
and in both the family and unrelated individuals data for traits Q1 and Q2. Even stringent
critical values resulted in more observed type I errors than expected at the corresponding
nominal critical value. This is relevant for the estimates of power as well, because the power
of a test is related to its type I error rate (i.e., the power of the test at the null hypothesis is,
in fact, the type I error rate). This may be due to the alternative null hypothesis problem,
with SV correlations inflating both the type I error and power. König et al. [2011], Sun et al.
[2011], and Sung et al. [2011] noted that the expected type I error rate for Q4, a trait with no
causal variants, was close to its expected nominal rate. When there was no genetic
component in the simulated model, most of the methods appeared to be statistically valid
such that the estimated type I error rate was close to the nominal rate. This was clearly not
the case for traits Q1 and Q2. This suggests that the inflated type I errors are due to
correlations in the data when there is any underlying genetic component in the model. These
correlations may be due to chance, the quality of the sequence alignment, linkage
disequilibrium, gametic disequilibrium, or other unknown structural genetic relationships.
Bailey-Wilson et al. [2011], Cantor and Wilcox [2011], Sun et al. [2011], Tintle et al.
[2011], and Ye and Engelman [2011] all noted that in the population-based samples, the
power to detect associations was not high, even for those SVs with the highest locus-specific
heritabilities (e.g., FLT1 and KDR in trait Q1), and that the type I error rate was inflated,
sometimes markedly so. Tintle et al. [2011] postulated that the elevation in type I error rates
could be due to either population stratification or correlations between SVs on different
chromosomes. They noted that principal components analysis helps to ameliorate population
stratification, although it also resulted in the loss of rare SVs. In general, methods that
analyzed the population-based samples found some of the causal SVs, often those with the
higher locus-specific heritabilities, but the power to detect associations with rare SVs was
quite low, and the proportion of type I errors was substantially elevated over the nominal
levels.

Study Design Matters
Because the simulation study provided both population- and family-based samples, the
GAW17 participants used a wide range of sampling strategies. Study designs ranged from
population-based case-control studies for the disease to loaded family-based designs with
extended families for the quantitative traits. Methods of analysis ranged from simple linear
regression, to intrafamilial tests of association in parent-offspring trios and in nuclear and
extended families, to linkage analysis in nuclear and extended families. Kazma and Bailey
[2011] presented the difference in results obtained from different sampling strategies and
methods of analysis. Although both population- and family-based studies found SVs in
FLT1 and KDR for trait Q1, only the family-based intrafamilial tests of association and the
linkage method found SVs in VEGFC and VEGFA. The estimated locus-specific
heritabilities in the family-based sample were about 0.2 for both VEGFC and VEGFA and
were considerably larger than for the SVs in FLT1 and KDR; these are, in fact, the top seven
SVs in Table II. It is clear that family-based designs are more effective for detecting rare
variants with large effects in families.
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Incorporating Prior Information Matters
Not unexpectedly, including prior information when it is, in fact, involved in the etiology of
a trait helps to identify causal SVs. This information includes relevant covariates,
correlations among SVs, and external knowledge of genes and pathways involved in the
expression of the trait. As in a GWAS, incorporating information about population
substructure and linkage disequilibrium can also help to identify causal SVs. For example,
information about coding regions for proteins and nonsynonymous versus synonymous base
substitutions can be used to help formulate collapsing strategies that could increase the
power to detect rare variants. Similarly, information from noncoding elements, alternative
splice sites, and gene pathways can help to identify functional domains or gene sets that can
be used to increase the power to detect causal variants. In the Group 3 summary, Chen et al.
[2011] reported that considering only nonsynonymous SVs, for example, increased the
power of the test. Both Chen et al. [2011] and Namkung et al. [2011] reported that using
different types of information improved the detection of some of the causal SVs and that in
at least some situations, the power to detect associations was somewhat better for genes and
pathways than for individual SVs.

Multiple Testing Still Matters
As noted by König et al. [2011], problems associated with multiple testing are magnified in
next-generation sequence data because the number of SVs greatly exceeds the number of
SNPs in a GWAS. The GAW17 contributors considered several approaches to adjust for
multiple tests, including the traditional Bonferroni test, resampling methods, and reduction
of dimensionality. Other contributors focused on model fitting (e.g., machine learning
approaches) rather than on adjusting for multiple tests. Although some of the methods were
quite innovative, no single method performed substantially better than the others or better
than the methods used in genome-wide association studies.

Computational Issues Matter
It should be acknowledged that there is substantial additional computational burden for
methods that use families, maximum-likelihood estimation, any form of penalized
regression, and machine learning. Any method that uses an iterative process, a process with
high dimensionality, or permutation testing will increase the computational time, perhaps
only marginally for each SV, but the cumulative computational burden over millions of SVs
may make the analysis impractical with present-day hardware and software [Bickeböller et
al., 2011]. Extremely computationally intensive methods may not be feasible with today’s
current infrastructure, and analysis of whole-exome sequence data will have to be able to be
completed in hours, days, or weeks, not years. Other bottlenecks include data storage
capacity and data transfer rates. Care must be taken to ensure that proposed new methods are
computationally tractable, and there may have to be a trade-off in terms of the
appropriateness of the method and the computational time required to analyze all the
sequence variants in the entire genome.

Discussion
The contributions from the GAW17 participants encompass a wide variety of study designs,
approaches, and statistical methods with the primary focus on detecting effects in SVs
generated from next-generation sequencing data. In general, many of the statistical genetic
methods used in the population-based sample consistently found causal SVs when the
estimated locus-specific heritability, as measured in the population-based sample, was
greater than about 0.08; and sometimes, SVs with heritabilities as low as 0.03 were
identified. However, virtually no SVs with locus-specific heritabilities less than 0.03 were
consistently identified. It is important to note that, as the locus-specific heritability
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approached 0, the power to detect an allelic effect approached the type I error rate. Thus it
should come as no surprise that the power to detect SVs with locus-specific heritabilities
less than about 0.03 was not substantially greater than the type I error rate and that these
SVs were, for the most part, undetectable using population-based samples.

In the family-based samples, many of the methods consistently detected SVs that were much
rarer than those detected in the population-based samples, but the locus-specific
heritabilities for these rare SVs, as measured in the family-based samples, were substantially
higher than their corresponding locus-specific heritabilities in the population-based samples.
For example, the locus-specific heritability for C4S4935 in VEGFC was 0.25 in the family-
based samples but was only about 0.01 in the population-based samples. Although this SV
was consistently detected using the family-based samples, it was rarely detected in the
population-based samples. It is clear that in order to detect rare SVs, enrichment for the rare
SVs is required, as demonstrated in GAW17 with a study design based on large, highly
loaded families.

The persistent inflation of the type I error rate over a wide variety of statistical methods is
more troublesome. Although many of the contributors found little inflation in type I error for
Q4, a trait with no causal SVs, type I error rates for Q1 and Q2 were well above their
nominal levels with the inflation for Q1 being higher than that for Q2. It seems likely that
this inflation in type I error is due to correlations among SVs, both causal and noncausal,
either within linkage disequilibrium blocks or across chromosomes.

Finally it should be remembered that we are in the early days of the development of
statistical genetic analysis methods that are appropriate for SVs from next-generation
sequencing data and that the challenges, problems, and pitfalls raised by these methods are
eerily similar to those from the early days of the analysis of protein polymorphisms,
restriction fragment length polymorphisms, short tandem repeat polymorphisms, and SNPs.
What is clear is that further development is necessary for sampling methods that enrich rare
SVs (e.g., family-based methods or the ClinSeq approach, which uses a population-based
approach with the ability to recruit family members of individuals with rare SVs [Biesecker
et al., 2009]), for strategies that collapse or aggregate rare variants into biologically
meaningful derived variables, for statistical methods that are robust with respect to
correlations between SVs [e.g., Sung et al., 2011], for methods that are robust with respect
to causal SVs that act as outliers, and for methods that incorporate information from both
families and unrelated individuals.
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Table I

Estimates of mean locus-specific heritability ± standard deviation for the population-based samples averaged
over all 200 replicates for Q1 and Q2 in descending order

Trait Causal sequence variant Gene

Q1 C13S523 FLT1 0.152 ± 0.025

C13S522 FLT1 0.083 ± 0.018

C13S524 FLT1 0.037 ± 0.013

C4S1877 KDR 0.031 ± 0.013

C4S1889 KDR 0.031 ± 0.013

C13S431 FLT1 0.028 ± 0.011

C4S1884 KDR 0.025 ± 0.011

C1S6533 ARNT 0.021 ± 0.009

C4S1878 KDR 0.020 ± 0.008

C14S1734 HIF1A 0.017 ± 0.008

C4S4935 VEGC 0.011 ± 0.007

C5S5133 FLT1 0.007 ± 0.005

C6S2981 VEGFA 0.005 ± 0.005

C4S1861 KDR 0.005 ± 0.004

C4S1887 KDR 0.004 ± 0.004

C4S1874 KDR 0.004 ± 0.004

C4S1873 KDR 0.004 ± 0.003

C1S6542, C4S1890, C14S1729, C19S4831, C1S3181, C13S479, C13S514, C1S6537, C5S5156,
C19S4815, C13S505, C4S1879, C13S320, C14S1718, C1S3182, C19S4799, C1S6561, C1S6540,
C13S547

≤0.003 ± ≤0.003

Q2 C6S5380 VNN1 0.016 ± 0.008

C6S5449 VNN3 0.010 ± 0.007

C10S3050 SIRT1 0.010 ± 0.007

C8S442 LPL 0.010 ± 0.007

C6S5441 VNN3 0.009 ± 0.006

C11S5292 PDGFD 0.009 ± 0.006

C3S4875 BCHE 0.007 ± 0.006

C2S354 GCKR 0.006 ± 0.008

C3S4859 BCHE 0.006 ± 0.005

C12S211 VWF 0.006 ± 0.007

C3S679 RARB 0.005 ± 0.005

C10S3048 SIRT1 0.005 ± 0.005

C17S1024 SREBF1 0.005 ± 0.005

C3S4873 BCHE 0.004 ± 0.005

C6S5378 VNN1 0.004 ± 0.004

C8S1741 PLAT 0.004 ± 0.004

C9S377 VLDLR 0.004 ± 0.004

C9S376 VLDLR 0.004 ± 0.005
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Trait Causal sequence variant Gene

C17S1046 SREBF1 0.004 ± 0.004

C8S530 LPL 0.004 ± 0.004

C10S3092, C3S4836, C11S5301, C8S476, C6S5446, C3S4869, C8S1758, C3S635, C3S4876,
C9S444, C17S1007, C17S1055, C6S5448, C17S1043, C11S5302, C12S181, C3S4874, C8S1742,
C11S5299, C3S4862, C8S1799, C9S497, C9S430, C10S3110, C3S4867, C10S3107, C8S1772,
C17S1045, C17S1056, C9S443, C17S1009, C9S367, C17S1030, C3S4880, C9S391, C6S5412,
C3S4856, C3S4860, C8S1811, C17S1048, C8S1770, C10S3108, C6S5426, C10S3093, C8S1773,
C10S3058, C10S3109, C7S5133, C7S5144, C7S5132, C3S4834

≤0.003 ± ≤0.004
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Table II

Estimates of mean locus-specific heritability ± standard deviation for the family-based samples averaged over
all 200 replicates for Q1 and Q2 in descending order based on ROMP result

Causal SV Gene

 (ROMP)

Q1 C4S4935 VEGFC 0.250 ± 0.066 0.182 ± 0.040

C6S2981 VEGFA 0.230 ± 0.057 0.173 ± 0.036

C13S523 FLT1 0.046 ± 0.018 0.042 ± 0.014

C4S1878 KDR 0.044 ± 0.026 0.030 ± 0.014

C4S1884 KDR 0.018 ± 0.016 0.020 ± 0.011

C13S431 FLT1 0.017 ± 0.018 0.019 ± 0.012

C13S522 FLT1 0.008 ± 0.008 0.014 ± 0.008

C19S4831 HIF3A 0.001 ± 0.007 0.004 ± 0.004

C13S514 FLT1 0.000 ± 0.003 0.002 ± 0.002

C4S1861 KDR 0.000 ± 0.003 0.002 ± 0.002

C4S1873 KDR 0.000 ± 0.004 0.002 ± 0.002

C1S6533 ARNT −0.001 ± 0.007 0.003 ± 0.004

C1S6540 ARNT −0.001 ± 0.003 0.001 ± 0.002

C13S320 FLT1 −0.001 ± 0.005 0.002 ± 0.002

C1S3181 ELAVL4 * 0.002 ± 0.002

C4S1890 KDR * 0.001 ± 0.002

C14S1734 HIF1A * 0.001 ± 0.002

Q2 C10S3109 SIRT1 0.104 ± 0.037 0.017 ± 0.012

C9S444 VLDLR 0.058 ± 0.022 0.012 ± 0.009

C8S442 LPL 0.008 ± 0.010 0.026 ± 0.014

C17S1045 SREBF1 0.008 ± 0.012 0.004 ± 0.006

C6S5380 VNN1 0.005 ± 0.012 0.025 ± 0.014

C17S1043 SREBF1 0.005 ± 0.008 0.013 ± 0.010

C6S5441 VNN3 0.003 ± 0.008 0.014 ± 0.009

C17S1024 SREBF1 0.003 ± 0.007 0.003 ± 0.004

C11S5292 PDGFD 0.002 ± 0.005 0.003 ± 0.004

C6S5449 VNN3 0.001 ± 0.006 0.006 ± 0.006

C6S5378 VNN1 0.001 ± 0.005 0.005 ± 0.005

C9S376 VLDLR 0.000 ± 0.007 0.009 ± 0.009

C3S4880 BCHE 0.000 ± 0.003 0.004 ± 0.004

C10S3093 SIRT1 0.000 ± 0.004 0.002 ± 0.002

C6S5426 VNN3 0.000 ± 0.005 0.002 ± 0.003

C2S354 GCKR 0.000 ± 0.003 0.002 ± 0.002

C6S5439 VNN3 0.000 ± 0.003 0.001 ± 0.002

C3S4874 BCHE −0.001 ± 0.003 0.006 ± 0.006

C8S476 LPL −0.001 ± 0.004 0.003 ± 0.003

C3S4834 BCHE −0.001 ± 0.003 0.001 ± 0.002

C8S1811 PLAT −0.001 ± 0.005 0.002 ± 0.003
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Causal SV Gene

 (ROMP)

C10S3050 SIRT1 −0.002 ± 0.006 0.004 ± 0.004

C3S4856 BCHE * 0.001 ± 0.002

C8S1773 PLAT * 0.002 ± 0.003

C10S3108 SIRT1 * 0.002 ± 0.002

C12S181 VWF * 0.002 ± 0.003

C12S211 VWF * 0.002 ± 0.003

C17S1009 SREBF1 * 0.002 ± 0.002

C17S1048 SREBF1 * 0.001 ± 0.002

*
Insufficient variation to calculate the locus-specific heritability.
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