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Abstract

Enzyme replacement therapy (ERT) for Pompe disease using recombinant acid alpha-glucosidase
(rhGAA) has resulted in increased survival although the clinical response is variable. Cross
Reactive Immunological Material (CRIM)-negative status has been recognized as a poor
prognostic factor. CRIM-negative patients make no GAA protein and develop sustained high
antibody titers to ERT that render the treatment ineffective. Antibody titers are generally low for
the majority of CRIM-positive patients and there is typically a better clinical outcome. Because
immunomodulation has been found to be most effective in CRIM-negative patients prior to, or
shortly after, initiation of ERT, knowledge of CRIM status is important before ERT is begun. We
have analyzed 243 patients with infantile Pompe disease using a Western blot method for
determining CRIM status and using cultured skin fibroblasts. Sixty-one out of 243 (25.1%)
patients tested from various ethnic backgrounds were found to be CRIM-negative. We then
correlated the CRIM results with GAA gene mutations where available (52 CRIM-negative and 88
CRIM-positive patients). We found that, in most cases, CRIM status can be predicted from GAA
mutations, potentially circumventing the need for invasive skin biopsy and time wasted in
culturing cells in the future. Continued studies in this area will help to increase the power of GAA
gene mutations in predicting CRIM status as well as possibly identifying CRIM-positive patients
who are at risk for developing high antibody titers.
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INTRODUCTION

Pompe disease (Glycogen Storage Disease type 1I; acid maltase deficiency; OMIM#
232300) is an autosomal recessive disorder of glycogen metabolism caused by deficiency of
the lysosomal enzyme acid alpha-glucosidase (GAA) [Hirchhorn and Reuser, 2001;
Kishnani et al., 2006b]. Although the disease presents as a continuum of clinical spectrum, it
can be broadly classified into infantile-onset and late-onset forms, according to the age at
presentation [Kishnani et al., 2006b]. The classical infantile form is rapidly progressive and
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presents with hypertrophic cardiomyopathy by the first few months of life and has a fatal
outcome within the first year of life if left untreated, while the non-classical form progresses
more slowly and has less severe cardiac involvement [Kishnani et al., 2006b]. Late-onset
Pompe disease is variable in age at presentation and extent of organ involvement and
includes a juvenile form with onset any time after first year of life through early childhood,
and an adult-onset form with symptoms appearing in the second to sixth decade of life
[Kishnani et al., 2006b].

Development of recombinant human GAA (rhGAA) enzyme replacement therapy derived
from Chinese hamster ovary (CHO) cells and transgenic rabbit milk led to subsequent
clinical trials which showed a positive response in infantile Pompe patients [Amalfitano et
al., 2001; Angelini and Semplicini, 2011; Kishnani et al., 2006a; Kishnani et al., 2007;
Nicolino et al., 2009; van den Hout et al., 2000; van den Hout et al, 2004]. In 2006, CHO-
derived rhGAA was approved in the USA, Europe, and Canada with subsequent approvals
in many other countries worldwide. However, the clinical response to ERT varies
considerably between patients. Various factors, including age and extent of muscle damage
at initiation of ERT, muscle fiber type, and defective autophagy, have been associated with
varied response to treatment [Hawes et al., 2007; Kishnani et al., 2007; Raben et al., 2007;
Angelini and Semplicini, 2011]. In addition, Cross Reactive Immunological Material
(CRIM) status has been found to be an important predictor of clinical response [Amalfitano
et al., 2001; Kishnani et al., 2006a; Angelini and Semplicini, 2011; Banugaria et al., 2011,
Chakrapani et al., 2010; Kishnani et al., 2010]. CRIM-negative patients are unable to make
any GAA protein, due to the presence of underlying deleterious null GAA alleles, and as a
result their immune system recognizes rhGAA as a foreign protein. Approximately 20% of
classical infantile patients are CRIM-negative (personal experience). Despite being on ERT,
these patients usually fare poorly due to development of a sustained high titer of neutralizing
antibodies to rhGAA that renders the treatment ineffective [Banugaria et al., 2011]. CRIM-
positive patients, in contrast, produce some residual GAA protein, although non-functional
inactive form. They typically have low antibody titers and a better clinical outcome without
the need for immunomodulation. Interestingly, some CRIM-positive infantile patients have
been reported to develop high antibody titers and thus reduced overall benefit from ERT
similar to CRIM negative patients [Banugaria et al., 2011]. These CRIM-positive patients
develop high sustained antibody titers after the first 6 months or so of treatment, just like
CRIM negative patients, which is typically followed by clinical decline concomitant with a
rise in antibodies [Banugaria et al., 2011; Kishnani et al., 2010].

Determining CRIM status is important so that decisions can be made about
immunomodulation therapy prior to or shortly after starting treatment. Recently,
immunomodulation therapy has been shown to be effective in preventing an immune
response in CRIM-negative patients who are naive to ERT or who have had a short exposure
to ERT [Mendelsohn et al., 2009; Messinger et al., in press]. However, attempts to eliminate
anti-rhGAA antibodies in CRIM-negative patients who have been on ERT for an extended
period with an entrenched immune response have failed [Amalfitano et al., 2001; Hunley et
al., 2004]. A delay in treatment even for a short period of time in a rapidly progressive
disease like infantile Pompe is detrimental to clinical outcome, thus methods for determining
CRIM status need to be rapid and accurate [Chien et al., 2009; Kemper et al., 2007].

We present data from 10 years of experience of determining CRIM status from skin
fibroblasts and correlation with underlying GAA mutation data. We have utilized a Western
blot analysis method to determine CRIM status using homogenates from cultured skin
fibroblasts in 243 patients with infantile Pompe disease [Bali et al., 2011; Kishnani et al.,
2006a; Klinge et al., 2005]. This method is currently the only one available, although blood-
based immunological methods are being developed. We then correlated CRIM status,
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determined by Western blot, with pathogenic GAA gene mutations where available (n=140
patients; 52 CRIM-negative and 88 CRIM-positive). As expected, in many cases, it was
possible to predict CRIM status based on GAA mutation data alone. While use of
immunoblotting techniques to confirm CRIM status is still recommended, it may be possible
to determine CRIM status from GAA mutations alone in the future as more data is gathered,
thus circumventing the need for skin biopsies which are invasive and require several weeks
before results are available.

MATERIALS AND METHODS

Samples

Skin fibroblasts (15t or 2" pass) were available from 243 children from diverse ethnicities
including Caucasian (non-Hispanic and Hispanic), Asian (Indian and East Asian), African-
American, and middle-Eastern populations, with a diagnosis of infantile Pompe disease
(onset of symptoms <2 years of age) confirmed by deficient GAA enzyme activity in blood
and/or skin fibroblasts. Sequencing data from all 19 coding exons and surrounding intron/
exon boundaries of the GAA gene were available for 140 of these children (88 CRIM-
positive and 52 CRIM-negative). Some of the patients in this study may have been
previously published. The Duke University Institutional Review Board approved this
retrospective data analysis study.

Western blot analysis

Twenty micrograms of protein homogenate obtained from patient fibroblast cells were
loaded per well onto 4-12% gradient pre-cast SDS-PAGE gels (Invitrogen, CA, USA). In
addition to samples from patients, fibroblast homogenates from a known CRIM-negative
patient (negative quality control), a CRIM-positive quality control (normal human
fibroblast), and a molecular weight marker (Magic Mark XP Western Protein Standard,
Invitrogen, CA, USA) were loaded on each gel. Beta-actin was used as the loading control.
After blotting the gel onto nitrocellulose membrane (BioRad, CA, USA), GAA protein was
detected by probing the membrane with polyclonal anti-GAA antibody (Duke Biochemical
Genetics Laboratory, NC, USA) produced against placental GAA protein [Kishnani et al.,
2007; Kishnani et al., 2010], and/or monoclonal anti-GAA antibody kindly provided by
Genzyme corporation (Genzyme Genetics, Framingham, MA, USA). A total of 70 patient
cell extract samples were analyzed using both polyclonal and monoclonal anti-GAA
antibodies, to determine specificity and compare results. The secondary antibody was horse-
radish peroxidase linked anti-rabbit 1gG (from donkey). After final washing of membrane
with 1 x TBS-T buffer, patient protein bands were visualized using an enhanced
chemiluminescence (ECL) Western Blotting Detection Reagents (Amersham, GE
Healthcare, NJ, USA) and exposure of the membrane on X-ray film. Protein bands were
labeled as 110, 95, 76 or 70 KDa, based on the molecular weight marker.

GAA gene sequencing

GAA mutation analysis was performed through full gene sequencing using genomic DNA
isolated from peripheral blood or from skin fibroblasts of Pompe patients. The coding
regions of the GAA gene and surrounding exon/intron boundaries were sequenced following
PCR amplification, amplicon purification, and loading onto an ABI 3130xI Genetic
Analyzer (Perkin EImer, CA, USA). Sequences were compared to the GAA reference DNA
sequence (GenBank Accession: NM_000152) to identify pathogenic mutations. Sequencing
results were available for 140 children (88 CRIM-positive and 52 CRIM-negative). The
pathogenicity of novel missense mutations was predicted using the PolyPhen-2 program
(http://genetics.bwh.harvard.edu/pph/) [Ramensky et al., 2002], and the effect of splice site
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nucleotide changes was investigated using the Berkeley Drosophila Genome Project splice
site prediction program at http://www.fruitfly.org/seq_tools/splice.html

RESULTS

Comparison of CRIM results using monoclonal versus polyclonal antibody

Western blot analysis gave essentially the same result whether monoclonal or polyclonal
antibodies were used (n=70, Figure 1). Western blots of normal human fibroblasts showed a
band at 95 kDa representing an intermediate form, and 76 kDa and 70 kDa bands
representing the fully functional mature enzyme. A band at 110 kDa representing the
inactive precursor protein of 952 amino acids is rarely seen in the amounts loaded for
normal samples [Bali et al., 2011; Moreland et al., 2005].

Percentage of CRIM negative patients

Out of the 243 patients in this study, 61 (25.1%) were CRIM-negative based on Western blot
analysis. CRIM-negative status was found in subjects from various ethnic backgrounds
including Caucasian (non-Hispanic and Hispanic), Asian (Indian and East Asian), African-
American, and middle-Eastern populations.

Correlation between CRIM-status and GAA gene mutations

GAA gene sequencing results were available on 52 out of 61 patients who tested CRIM-
negative by Western blot. Forty-one different mutations were identified in this group, 24 of
which had been previously cited and 17 of which are novel (Table I; Figure 2). The most
frequently identified mutations were p.Arg854X and c.525del T (32.7% and 4.8% of CRIM-
negative alleles respectively). Consistent with the inability to make GAA protein, most
CRIM-negative patients (44/52) were homozygous or compound heterozygotes for nonsense
and/or frame shift mutations resulting in premature stop codons, or multi-exon deletions
(Table I1). No missense mutations were identified in the CRIM-negative patients. However,
one CRIM-negative patient was homozygous for a point mutation that abolished the initiator
methionine (c.1A>G; p.Met1?). In contrast, most of the CRIM-positive patients (81 out of
88) had one or two missense or in frame deletion mutations that would be predicted to
produce some GAA protein (Table I1). Ninety-two different mutations were found in the
CRIM-positive group, 22 of which are novel (Table I11). One CRIM-positive patient was
homozygous for a previously reported frame shift mutation which created a premature stop
codon in the last exon of the GAA gene (p.GIn914ProfsX30) (Reuser et al., 1995; Hermans
et al., 1998). Surprisingly another CRIM-positive patient was a compound heterozygote for
two previously reported predicted null mutations, a frame shift mutation in exon 7
(p.Glu389ArgfsX3) and a nonsense mutation (p.Arg854X) (Hermans et al., 1993; Kroos et
al., 2008). None of the CRIM-positive patients had the same combination of mutations as
any of the CRIM-negative patients.

DISCUSSION

Based on 10 years of laboratory experience, we report CRIM status determined by Western
blot in a large group of patients with infantile Pompe disease and correlation of the results
with GAA gene mutation data. Firstly, our results show that Western blot analysis of skin
fibroblast homogenate is a reliable method for determining CRIM status in infantile patients
with Pompe disease. We observed essentially the same results regardless of whether an
affinity purified polyclonal antibody, raised in rabbits against human placental GAA, or a
monoclonal antibody (provided by Genzyme; mixture of various protein epitopes) was used
in the 70 patients that were tested by both methods. However, as results with the monoclonal
antibody were cleaner, without any non-specific bands, and the monoclonal antibody is
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easier to produce, it is now the method recommended by our laboratory. Based on our
experience, loading 20 ug protein for the Western blot is optimal. It is possible that loading
less protein may lead to lack of detection of protein in a CRIM-positive patient [Bali et al.,
2011].

Role of GAA gene mutations in determining CRIM status

Although our Western blot method is reliable, it is invasive and the turn-around time is
several weeks owing to culture time for fibroblasts. We therefore sought to correlate the
results of the Western blot with GAA mutations to investigate the possibility of a quicker,
mutation-based method for determining CRIM-status. While we identified a wide range of
different mutations in both the CRIM-negative and CRIM-positive groups, there is a
dramatic difference in the frequency of mutation types in the two groups (Table I1). As
expected, most CRIM-negative patients were homozygous or compound heterozygotes for
alleles that would not be expected to produce any GAA protein including nonsense, frame
shift, and multi-exon deletions (44 out of 52 CRIM-negative patients had two of these
alleles).

Nonsense, frame shift, and multiple exon deletion mutations

With the exception of two CRIM-positive patients, all individuals who had two of these
types of mutations were CRIM-negative. One exception was a CRIM-positive patient who
was homozygous for p.GIn914ProfsX30 [Reuser et al., 1995; Hermans et al., 1998;
Banugaria et al, 2011]. This mutation is expected to result in a premature termination codon
in the last exon of the GAA gene. Although it is known that premature termination codons
result in nonsense-mediated decay of mRNA and production of no protein, however if the
premature termination codon occurs in the last exon of a gene or up to about 50 nucleotides
from the 3’ end of the penultimate exon, the nonsense mediated decay machinery appears to
miss it, and some protein is made [Silva and Romao, 2009]. This mechanism may explain
the CRIM-positive status of this patient. Another patient, determined to be CRIM-positive
by the presence of a clear but weak band on Western blot, surprisingly was a compound
heterozygote for a frame shift mutation (p.Glu389ArgfsX3) and a nonsense mutation
(p-Arg854X), both of which are predicted to be null alleles (Hermans et al., 1993; Kroos et
al, 2008). As the p.Arg854X mutation is known to be a CRIM-negative mutation [Kishnani
et al., 2010], we considered the possibility that the ¢.1165delG (p.Glu389ArgfsX3) allele in
exon 7 could somehow result in protein production. Using a splice site prediction program
(http://www.fruitfly.org/seq_tools/splice.html), we found that the ¢.1165delG mutation
creates a new donor splice site within exon 7. If used, this splice site would cause an in
frame deletion removing the last 33 base pairs of exon 7 and result in a protein missing 11
amino acids but maintaining the normal reading frame. While we have not performed cDNA
sequencing studies to determine if this occurs, it does provide a possible explanation for the
CRIM-positive status of this patient. In summary, the presence of two nonsense or frame
shift mutations is a good predictor of CRIM status, typically resulting in CRIM-negative
status unless the premature stop codon is in the last exon of the gene. However, until further
data are gathered on specific mutations, confirmation of CRIM status using immunological
methods is recommended to identify unusual cases where a predicted null allele may
actually produce some protein, as is in the case described where splicing was unexpectedly
affected by a frame shift mutation. While splice site prediction programs could be used to
look for possible effects of splicing for any sequence variant, we understand that they should
be viewed as a prediction tool and cannot always fully and accurately predict what occurs in
Vivo.

Am J Med Genet C Semin Med Genet. Author manuscript; available in PMC 2013 February 15.


http://www.fruitfly.org/seq_tools/splice.html

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bali et al.

Page 6

Missense mutations

It is predicted that if a patient has at least one missense mutation, some GAA protein will be
produced and therefore the patient would be CRIM-positive, although the amount, level of
processing, and activity of the protein would vary considerably depending on the underlying
mutation [Banugaria et al., 2011; Kishnani et al., 2010; Kroos et al., 2008]. Overall, 77 of
the 88 CRIM-positive patients had at least one missense mutation (Table I1). In fact, all
patients with at least one missense mutation were CRIM-positive. Possessing an in frame
deletion was also predicted to result in CRIM-positive status. For example, a previously
identified deletion of exon 18 was found in six CRIM-positive patients (Table I1) but not in
any CRIM-negative patients. This mutation has been previously reported and shown to
produce GAA protein [Ausems et al., 1996]. Our results therefore suggest that missense
mutations and in frame deletions result in CRIM-positive status. However, it remains
important to confirm CRIM-status by Western blot to ensure that no unusual cases are
missed.

Interestingly, one of the CRIM-negative subjects had a point mutation that abolished the
initiator methionine codon (c.1A>G; p.Met1?). Nucleotide substitutions affecting the
initiator methionine have been reported for many different genetic disorders. When the
initiator methionine codon is altered, a downstream methionine is used in some cases. Of
note, the effect of initiator methionine codon alteration on protein production appears to
depend on the specific gene and ranges from normal protein expression, to N-terminal
deletions (resulting from use of a downstream methionine), to reduced or no detectable
protein. The effect on mRNA levels is also variable [Boneh et al., 2005]. After the initiator
methionine, the next in frame ATG codon in GAA is located at amino acid position 122. An
initiation codon prediction program (ATGpr, http://atgpr.dbcls.jp/) predicts that the
likelihood of this codon being used as an initiation codon is low [Nishikawa et al., 2000].
Even if this codon were to be used as an alternative initiation codon, the amino-terminus of
GAA including the signal sequence required for targeting to the endoplasmic reticulum
would be deleted [Moreland et al., 2005]. If this does occur, we would assume that the
protein is so unstable that it cannot be detected by traditional Western blot analysis. Another
mutation of the initiator codon (c.3G>A) has also been reported in a patient with Pompe
disease [Kroos et al., 2008], and was found in compound heterozygosity with a missense
mutation (p.His308Pro) in one of our CRIM-positive patients. No protein studies have been
performed but the effect of ¢.3G>A was predicted to be very severe [Kroos et al., 2008].

Splicing mutations

About 15% of GAA sequence changes causing Pompe disease are predicted to affect splicing
[Zampieri et al., 2011]. However, the effect of splice site mutations on CRIM status remains
difficult to predict. By virtue of having being found in CRIM-negative patients, the splice
site mutations found in our CRIM-negative patients are expected to be null alleles,
producing no protein (Table I). In CRIM-positive patients, if a splice site mutation exists in
homozygosity, or in compound heterozygosity with a known null mutation, then it is
expected to produce protein. Most of the splice site mutations found in CRIM-positive
patients in this study were found in compound heterozygosity with missense changes, and
thus no conclusion could be made regarding whether these alleles can produce any protein
based on this alone. However, three CRIM-positive patients were homozygous for different
splice site mutations (¢.1195-2A>G, ¢.1327-2A>G, and ¢.1437+1G>A), and two had a
predicted null allele and a splice site mutation (c.1551+1G>T and ¢.2189+3G>C). None of
these splice site mutations were seen in homozygosity in any of our CRIM-negative patients.
Based on these results, these splice site alleles are expected to produce protein. Two of these
mutations, ¢.1195-2A>G and ¢.1327-2A>G, have been cited before [Hamdan et al., 2008;
Kroos et al., 2008; Oba-Shinjo et al., 2009]. A Brazilian patient with severe infantile Pompe
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disease, who died at 8 months of age, was a compound heterozygote for ¢.1195-2A>G and a
second unidentified mutation [Oba-Shinjo et al., 2009]. The patient homozygous for c.
1327-2A>G was treated with ERT from 18 hours of age and reportedly had a favorable
outcome at 10 months. CRIM status and antibody titers were not reported [Hamdan et al.,
2008]. This patient is included in our study and was found to be CRIM-positive by Western
blot analysis of skin fibroblast homogenate. For the other three mutations (c.1437+1G>A, c.
1551+1G>T, and ¢.2189+3G>C) different substitutions in the same splice site have been
reported (c.1437+2T>C, ¢.1551+1G>C, ¢.1551+1G>A, and ¢.2189+1G>A) [Huie et al.,
1994; Kroos et al, 2008; Montalvo et al., 2006; Orlikowski et al.; Pittis et al., 2008;
Stroppiano et al., 2001]. Studies of cDNA have shown that ¢.1437+2T>C and c.
1551+1G>C, cause in frame exon skipping [Huie et al., 1994; Stroppiano et al., 2001;
Zampieri et al., 2011]. A patient who is homozygous for ¢.1551+1G>A, as well as
heterozygous for p.Arg725Trp, has been described with onset of symptoms at 14 years
[Orlikowski et al., 2011] suggesting that c.1551+1G>A allows for production of some
protein, possibly by in frame exon skipping. Although we cannot be sure without performing
cDNA studies, it is possible that in frame exon skipping in our patients could explain their
CRIM positive status. Further studies of specific splice site mutations are needed to
determine their effect on CRIM status.

SUMMARY

Based on the above predictions, CRIM status could be predicted from GAA gene mutation
analysis for 126/140 patients (90%). The remaining patients, for whom we could not easily
predict CRIM status, had splice site mutations (7 CRIM-negative and 5 CRIM-positive), and
an initiator methionine mutation (one CRIM-negative patient). In addition, we predicted that
a patient who was a compound heterozygote for a frame shift and a nonsense mutation
would be CRIM-negative when, in fact, the patient was CRIM-positive, possibly because the
mutation creates a novel splice site. Continued studies in this area will help to increase the
power of predicting CRIM status from GAA gene mutations, and may circumvent the need
for invasive biopsies. Future studies are needed to correlate Western blot banding pattern
and GAA mutations with development of high antibody titers in CRIM-positive patients.
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Figure 1.

Western blot analysis on protein extracts (20ug loaded) from human skin fibroblast and
probed with anti-GAA antibody (Top panel= polyclonal rabbit anti-GAA antibody against
human placental GAA; Lower panel= monoclonal anti-GAA antibody, GAAL provided by
Genzyme). B-actin was used as a protein loading control.

Top panel: Lane 1-Protein molecular weight marker; Lane 2 — CRIM-positive Pompe
disease patient; Lanes 3, 5, 7 and 9 — Empty; Lanes 4, 6, and 8 — CRIM-negative patients;
Lane 10 — Normal human fibroblasts.

Lower panel: Lane 1 — Protein molecular weight marker; Lanes 2 and 3 — Duplicate lanes
for CRIM-negative sample; Lanes 4,7 and 9 — Empty; Lanes 5 and 6 — Duplicate lanes for
CRIM-positive sample; Lane 8 — CRIM-negative control (known CRIM-negative patient);
Lane 10 — Normal human fibroblasts.
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Figure 2.
Pie chart showing number of alleles identified with different mutations in CRIM-negative
patients (see Table | for details).
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