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Abstract
Using the data on all live births (~400,000) and criteria pollutants from the Chicago Metropolitan
Statistical Area (MSA) between 2000 and 2004, this paper empirically demonstrates how
mismatches in the spatiotemporal scales of health and air pollution data can result in inconsistency
and uncertainty in the linkages between air pollution and birth outcomes. This paper suggests that
the risks of low birth weight associated with air pollution exposure changes significantly as the
distance interval (around the monitoring stations) used for exposure estimation changes. For
example, when the analysis was restricted within 3 miles distance of the monitoring stations the
odds of LBW (births < 2500g) increased by a factor of 1.045 (±0.0285 95% CI) with a unit
increase in the average daily exposure to PM10 (in μg/m3) during the gestation period; the value
dropped to 1.028 when the analysis was restricted within 6 miles distance of air pollution
monitoring stations. The effect of PM10 exposure on LBW became null when controlled for
confounders. But PM2.5 exposure showed a significant association with low birth weight when
controlled for confounders. These results must be interpreted with caution, because the distance to
monitoring station does not influence the risks of adverse birth outcomes, but uncertainty in
exposure increases with the increase in distance from the monitoring stations, especially for coarse
particles such as PM10 that settle with gravity within short distance and time interval. The results
of this paper have important implications for the research design of environmental epidemiological
studies, and the way air pollution (and potentially other environmental) and health data are
collocated to compute exposure. The paper also calls for time-space resolved estimate of air
pollution to minimize uncertainty in exposure estimation.
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INTRODUCTION
We have made great strides in developing an understanding of the mechanism through
which air pollution retards respiratory and cardiovascular health (Basu and Samet, 2002;
Peters et al., 2001; Pope et al., 1999) and fetus growth (Jedrychowski et al., 2004). But we
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have often failed to precisely quantify the burden of disease and health risks associated with
air pollution for two important reasons. First, most epidemiological studies rely on
secondary (observational) data and trace exposure retrospectively at the location and time
that might have been responsible for the health response(s) in question. The direct exposure
estimates at the spatiotemporal scales of health data are rarely available (with the exception
of personal exposure in cohort-based prospective studies) and there are subtle mismatches in
the spatial-temporal resolutions, scales and intervals at which health and air pollution data
are made available and aggregated. Air pollution is monitored at sparsely distributed sites
and data from these sites are generally aggregated at coarse spatiotemporal scales to match
the spatiotemporal scales of health data: for example, researchers average the values from all
monitoring stations within a county and assign it to all mothers within that county on the
same day (Bell et al., 2007; Parker et al., 2005). However, recent literature suggests that
there are subtle spatiotemporal variations in air pollution concentrations in urban areas: for
example, on January 1, 2000, the concentration of airborne particulates ≤ 2.5μm in
aerodynamic diameter (PM2.5) ranged from 22.7μg/m3 to 34.407μg/m3 within Cook County,
IL (EPA, 2008) and the value of PM2.5 ranged from 1.6 μg/m3 to 49.1μg/m3 on February 29,
2008 across six sites in Cleveland MSA, OH (Kumar et al., 2011). Therefore, aggregation of
air pollution at coarser spatiotemporal scale results in generalization and exposure
misclassification. This, in turn, is likely to result in uncertainty in the health risk estimated
using such exposure data. Second, the uncertainty can also result from sampling bias (as a
consequence of limited number of observations (or data points) at the chosen spatiotemporal
intervals and scales of health data), and the lack of control for confounding factors.

Utilizing air pollution data on the criteria pollutants and ~ 400k live births in the Chicago
MSA from 2000 to 2004, this paper evaluates how the mismatch in the spatial-temporal
resolution of air pollution and health data result in differential risks of adverse birth
outcomes associated with air pollution (Fig. 1). The findings of this research are likely to
have important implications for future research design to study the linkages between air
pollution and health, and the ways environment and health data are collocated. The
remainder of this paper presents methodology, results, and a discussion of our findings
within the relevant literature.

MATERIALS AND METHODS
Study Area

Metropolitan Chicago is ideally suited to evaluate health effects of air pollution, because it is
a highly diverse city in terms of the spatial distribution of air pollution (Fig. 1), and socio-
economic and demographic characteristics. According to the 2000 US Census, about 20% of
the population in the study area was white, 39% Hispanic, and 20% African American; the
average PM2.5 exposure during the complete gestational period ranged from as low as 10 μg/
m3 to as high as 31μg/m3 (Fig. 1). Likewise, exposure to other criteria pollutants varied
significantly (Supplemental Fig. 1a through 1f and Table 1).

Birth data
Birth data for mothers residing in Chicago Metropolitant Statistical Area, whose entire
pregnancy occurred during the study period (January 1, 2000 to December 31, 2004), were
extracted from the Illinois Department of Public Health annual birth certificate records for
all live births occurring to residents of Cook, DuPage, Kane, Lake, McHenry, and Will
counties. A total of 398,120 live births were included in the analysis (Fig. 1). Each record
included a clinical estimate of gestational age, birth weight, date of birth, gender, street
address, census tract (Chicago residents only), zip code, city and county of residence at the
time of birth, prenatal care (measured by Kessner’s Adequacy of Prenatal Care Index),
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maternal age, maternal race/ethnicity, marital status, maternal education and country of
origin, maternal alcohol and tobacco use during pregnancy, parity, time interval between
pregnancies, maternal weight gain, delivery method, maternal medical risk factors, and
congenital anomalies in the newborn. We excluded records with plural births (3.9%),
gestational periods less than 37 weeks (pre-term delivery (PTD)) and greater than 44 weeks
(11.0%), birth weight less than 500 grams (0.3%), or impossible clinical estimates of
gestational age and weight combinations (1.0%) (Parker et al., 2005). Since PTD is a well-
known pathophysiological process which results in low birth weight due to less time for
fetal growth (Salam, 2008), it was necessary to exclude PTDs from the final analysis to
separate the influence of air pollution exposure on low birth weight from those resulting
from PTD. To demonstrate this point, the preliminary analysis compared the risk factors of
LBW with and without PTDs.

Chicago resident births with unknown or out-of-range census tract information (n = 1,794)
were geocoded by address and zip code using ESRI ArcInfo 9.3 and geocoding services
administered by the City of Chicago Department of Information Technology’s GIS Division.
Almost all non-Chicago resident births were geocoded by address, city, and zip code using
ESRI ArcInfo 9.3 and the geocoding service StreetMap USA packaged with ArcInfo 9.3
(TeleAtlas North America, Inc./Geographic Data Technology, Inc., ESRI, Series Issue
2005). The final study population was composed of 398,120 newborns in the Chicago MSA
(Fig. 1), excluding 9% of new births that were not geocoded or were outside the census tract
range of the study area.

Census and other data
The Census data were available for a variety of socio-economic and demographic
characteristics by census tract and other census units. In the final analysis, however, we
included only the percentage of households (in the census tract) receiving public assistance
(U.S. Census, 2000). Not only did this variable observe a significant association with many
other socio-economic and demographic variables, including vehicles per households, real
estate taxes, income, % owner-occupied housing units, % white population, and median
number of rooms in the household, but also showed the strongest (among the rest of census
variables) association with the risks of low birth weight. The residential locations of the
study subjects derived by the geocoding process were aggregated by spatial-join to the
corresponding census tract, allowing us to collocate the Census data with the birth data.

Pollution data
We utilized the clinical estimate of gestational age directly listed on the birth certificate to
estimate the average air pollution exposure for each newborn by trimester (1–13 weeks, 14–
26 weeks, and 27 weeks to birth) and total pregnancy. Criteria pollutants were monitored at
spatially dispersed sites k =1,…,K (Supplemental Fig. 2). Daily estimates of these data were
acquired from the EPA (EPA, 2008). Each monitoring site was a point location on the two-
dimensional geographic space, represented by a pair of coordinates. The geocoded birth
outcome data were point locations i = 1,…,N represented by pair of coordinates of the
centroid of the census tract of residence (Supplemental Fig. 1a through 1f and 2), because
exact location of residence was not available due to confidentiality issue. It is important to
note that there were several monitoring stations in some Census Tracts and none within
three or six mile distance from the centroid of many Census Tracts (Supplemental Fig. 3).
The number of data points used in calculating exposure and the sample size within each of
the five selected intervals vary significantly (Table 1 and Supplemental Table 2). Under the
distance decay hypothesis, we assume that the exposure of mothers, who resided in the
census tracts which had two or more monitoring stations within the specified distance
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thresholds, is likely to be more robust and reliable than the exposure of mothers computed
using values from a distant monitoring station(s).

The location of air pollution, monitored at sparsely distributed sites, does not overlap (or
correspond) with the locations of mothers’ residence (Fig. 1 and Supplemental Fig. 3).
Therefore, indirect method was used to interpolate exposure at mothers’ residence during the
gestation period. Interpolation method involves an important decision about time-space
intervals (or areal unit of aggregation) for searching for sample data. This paper
demonstrates how the selection of different distance intervals can result in differential risks
of adverse birth outcomes associated with air pollution.

Exposure was computed using different distance intervals (3, 6, 9, and 12 miles) between
mother’s residence and air pollution monitoring stations. In order to facilitate the
comparison of the results of this study with the other epidemiological studies, exposure was
also computed by counties by averaging the values available at all monitoring stations
within the county. The time interval for exposure computation remained constant, i.e.
different trimesters and the entire gestation. The procedure to compute exposure is detailed
below.

Let Aktc denote criteria pollutants c=1,…,C monitored on days t={1,…,T} at spatially
dispersed sites k={1,…,K} and Aij(t-l)c, exposure of mothers i = {1,…,n} who gave births on
tth days, to cth criteria pollutants, and lived in census tracts j ={1,…,J} during the gestational
length (in days) l={1,…,L}. Then their average daily exposure (Aij(t-l)c) to a criterion
pollutant in the census tract of their residence was calculated as

(1)

Where l = days before the birth date (t): ∀jk = 1 if the distance between jth census tract
centroid and kth monitoring site is ≤ h, 0 otherwise. Since the extent of uncertainty in
exposure is likely to increase with the increase in distance from the monitoring site, h must
be chosen with caution, because setting a low value of h will result in many cases without
exposure estimate, and setting h to a high value will increase uncertainty in exposure (Table
1; and Supplemental Table 1 and 2 with details for each trimester).

Linear and logistic regressions were used to model birth weight and odds of LWB,
respectively, with the cluster options in STATA (2010). The cluster option specifies that the
standard errors allow for intra-group correlation. That is, the observations are independent
across groups (clusters) but not necessarily within groups. This option was required because
the matrix X′ij consisted of variables at two different geographic scales: individual and
census tract. Census tract variables were likely to be the same for all mothers within the
same tract, and specifying clusters allowed for intra-tract correlation within the Census
variables. Linear regression was also employed to model birth weight (as a continuous
variable) with respect to the same covariates and the criteria pollutants.

RESULTS
Descriptive statistics – birth outcomes

Descriptive statistics of exposure and birth outcomes are presented in Table 1 and Table 2,
respectively; detailed results of the summary statistics of exposure for each trimester and
entire pregnancy are presented in Supplemental Table 1, and the estimate of birth weight
with respect to individual covariates, such as age, smoking, race/ethnicity and education, are
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presented in Supplemental Table 3). The average birth weight (in Chicago and its
surrounding counties) was 3344.8±1.7g (95% CI); the value for the city of Chicago was
113g less than that for its surrounding counties. The results are in agreement with the
previous literature: birth weight and odds of LBW vary significantly by marital status,
smoking, alcohol consumption during pregnancy, congenital anomaly, race/ethnicity,
maternal age at birth, educational level, and pregnancy interval (Table 2; Supplemental
Table 3) (American College of Obstetricians and Gynecologists, 2000; Bell et al., 2007;
Berghella, 2007; U.S. Department of Health and Human Services, 2004; Woodruff et al.,
2003). The incidence of low birth weight (i.e. < 2500g) in the study area was 5.8%. Most
known risks factors, including smoking, race, medical risk factor, Kessner index, and
mother’s education, emerged as significant predictors for LBW (Table 3).

Distance interval used for computing exposure and sampling bias
It is important to note the sample size varied significantly with respect to distance interval
chosen for computing exposure. For example, there were only 10,250 mothers who lived
within three miles of PM10 monitoring stations. Given this constraint it was not possible to
compute exposure for those who lived beyond 3 miles distance of monitoring station(s)
(Supplemental Table 1). Therefore, the analysis within 3 miles distance interval included
only 10,250 mothers. The sample size increased to 64,701 mothers when PM10 exposure
was computed by county. Likewise the sample size varied for other criteria pollutants for
different distance intervals and by county level exposure estimation (Table 1; Supplemental
Table 1). Because some counties did not have any monitoring stations, exposure of mothers
lived in these counties could not be computed. Therefore, even in the county level analysis
we were unable to include all live births. The sampling bias (due to lack of air pollution data
outside the chosen distance intervals) have important implications for exposure estimation
and interpretation of the results of this paper for several reasons. First, the uncertainty in
exposure is likely to increase as the distance from the monitoring sites increases. Second,
sample size and its composition in terms of socio-economic and demographic characteristics
may vary with respect to different distance intervals from the monitoring stations. However,
the exploratory analysis did not suggest any systematic change in birth weight, incidence of
low birth weight respect to change in distance interval to monitoring stations (Supplemental
Table 4).

From the visual inspection of Supplemental Fig. 1a through 1f two important findings
emerge. First, most monitoring stations that record criteria pollutants are concentrated in and
around the City of Chicago, and some of the counties in the study area (i.e. Chicago
Metropolitan Statistical Area) do not have a single monitoring station. Moreover, all
monitoring stations do not record data on all criteria pollutants (Supplemental Fig. 2).
Second, most criteria pollutants show a spatial gradient. For example, PM2.5 ranges from
13μg/m3 to 18μg/m3. The concentration of PM2.5 in the City of Chicago is relatively high
with the exception of a few pockets of low concentration in the western parts of the city.
PM10 ranges from 16μg/m3 to 40μg/m3. Because most PM10 monitoring stations are at the
peripheral parts of the city, it is difficult to generalize spatial distribution of PM10 for the
entire city. NO2 concentration in the City and near the airport was relatively high (~42ppb).
Central parts of the City also show high concentration of O3 (~31ppb). Since all criteria
pollutants are not monitored at the same location (Fig. 1; Supplemental Fig. 2), it was not
plausible to model the combined (or synergistic) effects of all criteria pollutants on birth
outcomes. Therefore, the effect of each criteria pollutant was modeled separately with and
without the confounding factors.
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Air pollution exposure – descriptive statistics
The average exposure to criteria pollutants was calculated for all three trimesters and the
entire gestation separately for each mother. The average daily exposure during the entire
gestation was within the National Ambient Air Quality Standards (EPA, 2010). For
example, the average daily concentrations of PM2.5 and PM10 for all mothers who resided
within 3 miles of monitoring stations were 18.0μg/m3 and 26.5μg/m3, respectively (Table 1;
results of exposure by trimester and total pregnancy are in Supplemental Table 1).

Air pollution exposure and birth outcomes
Birth weight as continuous variable and discrete variable (>=2,500 = 1, 0 otherwise) was
modeled with respect to air pollution exposure (during all trimesters and for the entire
gestational period) with and without the confounding factors. The results for the entire
gestation period are presented in Table 4, and detailed results by each trimester are presented
in Supplemental Tables 5a and 5b. The analysis was performed separately for different
distance intervals and by county. From this analysis, two important findings emerge. First,
the association between birth weight and exposure to different criteria pollutants changes
significantly as the distance threshold changes (Table 4; Fig. 2). For example in the analysis
that did not control for confounders, a unit increase in the daily average PM10 exposure
during the entire gestation was associated with 5.3g decline in birth weight when analysis
was restricted within 3 miles distance of PM10 monitoring stations; regression coefficients
were significant for all three trimesters. When analysis was restricted within 6 miles of
PM10 monitoring stations, the effect of PM10 exposure on birth weight dropped
significantly, and its effect became statistically insignificant when analysis was extended to
9 miles around the monitoring stations. The effect of PM10 became positively significant
when analysis was conducted by county: a unit (i.e. 1μg/m3) increase in the average daily
PM10 was significantly associated with 0.76g increase in birth weight, which is counter-
intuitive, i.e. higher exposure to PM10 and higher birth weight and vice-versa, and
contradictory to fetus growth retardation assumption. Likewise in the that analysis that did
not control for confounders, the average daily increase in SO2 and NO2 exposure (when
distance to the monitoring station was within 6 miles of mothers’ residence) was associated
with the highest decline in birth weight, and the values of the regression coefficients
dropped as the distance interval increased further (Fig. 2). While PM10 was associated with
an increased risk for LBW in the model with the air pollutant alone, PM2.5 showed the
reverse trend, i.e. a decrease of risk for LBW with increasing exposure.

Second, when adjusted for confounders (including age, gender, smoking, medical risks,
education, race, city, and neighborhood contexts), only PM2.5, NO2, and O3 emerged as
significant predictors of birth weight. Unlike PM10 alone (without the confounding factors),
a unit (i.e. 1μg/m3) increase in the average daily PM2.5 exposure (when analysis was
restricted to mothers resided within 9 miles of the PM2.5 monitoring stations) during the first
trimester showed the highest decline on the birth weight. The average daily NO2 exposure,
however, was associated with the most significant decline in birth weight when analysis was
restricted within 3 miles distance of the monitoring stations: its impact on birth weight
gradually declined with the increase in distance from the monitoring stations (Supplemental
Table 4). In the county level analysis, the effect of NO2 exposure was lowest, though still
statistically significant. A unit increase in the average daily O3 exposure during the third
trimester was associated with the highest decline in the birth weight when analysis was
restricted within 3 miles of the monitoring stations (Supplemental Table 5b).

The risks of LBW associated with exposure to criteria pollutants were examined separately
and with the selected confounding factors. In the model with the air pollution exposure
(alone), PM10, NO2, and CO showed a significant association with the birth outcomes. A
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unit (i.e. 1μg/m3) increase in the average daily PM10 exposure during the entire pregnancy,
and for all three individual trimesters, was associated with a significant increase in the risks
of being LWB. When analysis was restricted to mothers who resided within 3 miles of the
monitoring stations, the risk of LBW increased to 4.5% with a unit increase in the average
daily exposure to PM10. But when controlled for confounding factors, the PM10 exposure
did not show any significant risks of LBW.

Distance to monitoring stations and sampling bias
As discussed earlier the sample size increased with the increase in distance to monitoring
stations. Thus, we evaluate whether increase in the sample size influences characteristics of
the sample. We examined the selected socio-demographic characteristics of the samples and
incidence of low birth weight within the selected distance intervals: 3, 6, 9 and 12 miles, and
County. The incidence of low birth weight was not significantly different with 3 and 6 miles
distance interval; likewise other socio-demographic characteristics (such as race/ethnicity,
education and income values) did not show significant differences within 3 and 6 miles
distance intervals. But income level was significantly higher within 12 miles as compared to
the income for the sample within 3 miles (Supplemental Table 4). But the incidence of low
birth weight was insignificant for the samples across all distance intervals.

DISCUSSION
While the experimental research provides insight into the causal mechanism of the adverse
effects of air pollution, it has been increasingly difficult to quantify precise health risks and
burden of disease associated with air pollution, especially through the observational and
retrospective studies. Mismatch in the spatiotemporal scales of air pollution and health data
that results in uncertainty in exposure computation is one of the major reasons behind
uncertainty and inconsistency in the linkages between air pollution and health outcomes. As
evident from Fig. 1 and Supplemental Fig. 2, air pollution data are monitored at sparsely
distributed sites and there are significant spatial and temporal gradients in the distribution of
air pollution. Aggregating data from these sparsely distributed sites alone at a coarser spatial
resolution, such as county, may not adequately represent the population exposure.

Our analysis suggests that the risks of low birth weight associated with air pollution
exposure changes significantly as the distance interval (around the monitoring stations) used
for exposure estimation changes. For example, when the analysis was restricted within 3
miles distance of the monitoring station the sample size was 10,250 mothers and the risk of
LBW (without the control for confounding factors) increases 5% with a unit increase in the
average daily exposure to PM10 during the entire gestation. The number of cases increased
to 18,711 when analysis was restricted to 6 miles distance around the monitoring stations,
and the risk of LBW for PM10 exposure dropped to 2.8%. According to the positivist
ideology, the true health risks associated with air pollution exposure must be consistent for
the same population, irrespective of the spatial-temporal resolutions of exposure data.
Therefore, the above conclusion should be interpreted with caution, because it does not
suggest that the distance to monitoring station influences health risks as demonstrated in the
result section. But it does communicate three important messages. First, uncertainty in
exposure, estimated using the data from distantly located monitoring stations, is likely to
increase. Second, imposing distance constraints results in sampling biases, because exposure
computation is not possible for the population residing outside the chosen distance
threshold, and a sub-set of population is included in the analysis. Third, population
composition and its characteristic may change with respect to distance from the monitoring
station. To verify the role of the second and third, birth weight and covariates were
examined with respect to different distance intervals to monitoring stations. The sample size
increased with the increase in distance to monitoring stations, but there were little
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differences in the birth weight and incidence of low birth weight and most socio-economic
and demographic characteristics within different distance intervals with the exception of
income and race/ethnicity. Therefore, the changing risks of adverse birth outcomes analyzed
within different distance intervals from the air pollution monitoring stations can largely be
attributed to change in uncertainty in exposure estimation, especially for the coarse particles,
such as PM10 because the coarse particles settle with gravity more quickly and within
shorter distance and time intervals as compared to fine particulate (PM2.5) and gaseous
pollutants

With regard to traditionally used (and well-identified) socio-economic and demographic
covariates, the general trends of our findings are consistent with previous studies: the
selected covariates, including mother’s age, alcohol consumption, smoking, marital status,
etc., emerge as significant risk factors for LBW (American College of Obstetricians and
Gynecologists, 2000; Bell et al., 2007; Berghella, 2007; U.S. Department of Health and
Human Services, 2004; Woodruff et al., 2003). Although the reliability and robustness of the
results reported in this paper and in many other studies can be questioned because of
uncertainty in the air pollution exposure and a comparison of our results with other studies
substantiate the main thesis of this research, i.e. mismatches in the spatial-temporal
resolution, scale and interval at which health and air pollution data are aggregated and
analyzed, sampling bias, and lack of control for confounding factors, are partly responsible
for uncertainty and inconsistency in the linkages between air pollution and birth outcomes
(and other related health outcomes). For example, Bell and others also concluded that
African-American mothers were more likely to have a LBW baby as compared to white
mothers. Their analysis included PTD, which is likely to bias the risk (upward or downward)
associated with SES, other covariates, and air pollution exposure. For example, in our
analysis the risk of LBW was 3.03 times greater for an African American mother than for a
white mother when cases of PTD were included, and this risk increased to 3.67 when PTD
was excluded from the analysis (Table 2) (Bell et al., 2007). Since the spatiotemporal scale
of air pollution data and methods of aggregation and exposure computation have been the
same for other health effect studies, the findings of this research (about how mismatch in the
spatiotemporal scales and location of air pollution and birth data) may be extrapolated to
other health effects studies.

Several studies have documented the association between birth outcomes and exposure to
PM2.5 and PM10 during the gestational period in different parts of the world, including Sao
Paulo, Brazil (Gouveia et al., 2004), Sydney, Australia (Mannes et al., 2005), Massachusetts
and Connecticut (Bell et al., 2007), and Los Angeles, California, USA (Parker et al., 2005;
Wilhelm and Ritz, 2005). Likewise, other pollutants, namely CO, (Bell et al., 2007; Gouveia
et al., 2004; Ha et al., 2001; Liu et al., 2003; Maisonet et al., 2001; Mannes et al., 2005; Ritz
and Yu, 1999; Wang et al., 1997; Woodruff et al., 2003) SO2 (Bell et al., 2007; Bobak,
2000; Bobak and Leon, 1999; Ha et al., 2001; Rogers et al., 2000; Wang et al., 1997) and
NO2 (Bobak, 2000; Bobak and Leon, 1999; Ha et al., 2001; Rogers et al., 2000) have been
identified as important predictors of low birth weight. A recent review of the literature on
the effects of air pollution on birth outcomes is summarized in Supplemental Table 7.
Although a number of studies have been published during the last decade, the results
reported in this research are somewhat inconsistent with that reported in three other studies
Bell et al. (2007), Ritz et al. (2007), and Parker et al. (2008)).

Although there has been an increasing interest in quantifying the risk of ambient air
pollution associated with birth outcomes, and many studies have been conducted during the
last decade, our understanding of the effects of air pollution on birth outcomes is still
inconclusive, and major gaps exist in the literature (Woodruff et al., 2009). This paper
empirically documents how uncertainty in exposure estimation (due to increase in distance
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from monitoring stations) can lead to inconclusiveness and inconsistency in the association
between birth outcomes and air pollution. A vast majority of studies conducted in recent
years point to the fact that research design, mismatches in the spatial-temporal resolutions of
exposure and birth outcome data, and selection bias (i.e., restricting the cases included in the
analysis to certain areas and groups), can greatly influence the association between air
pollution and birth outcomes (Parker and Woodruff, 2008; Slama et al., 2008; Woodruff et
al., 2008; Woodruff et al., 2009). The ad-hoc approaches to selecting spatial-temporal
intervals, such as 3 miles or 30 miles (Ostro et al., 2010), are likely to result in greater
uncertainty in exposure computation.

This paper calls for time-space resolved estimates of air pollution data to address uncertainty
in the linkages between air pollution and health outcomes. This, in turn, raises an important
question “how to compute reliable time-space resolved estimates of air pollution exposure”?
There are two potential ways to answer this question. First, identify spatial and temporal
intervals within which robust and reliable estimates of exposure can be estimated, and
restrict the analysis to these intervals only. This can be achieved by using a spatial-temporal
variogram and Kriging (De Iaco et al., 2002; Mendes and Turkman, 2002). Since the
number of monitoring stations is small, this approach is unlikely to address the problem of
sampling bias, because it will eliminate a substantial proportion of population from the
analysis. Second, a hybrid approach that builds on the respective strengths of atmospheric
remote sensing (Kumar et al., 2008; van Donkelaar et al., 2010), chemical transport models
(CTM), and spatial-temporal dynamic modeling (Kumar, 2010), can be used to compute
time-space resolved estimates of air pollution (Supplemental Fig. 4). Satellite remote
sensing provides reliable estimates of aerosol optical depth (AODs) at a fine spatial
resolution, and CTM that is a data-driven method can produce AODc at fine temporal scale.
Integrating these two methods along with spatial-temporal dynamic modeling can produce
time-, space- (and potentially by source- if complete emission inventory data are available)
resolved estimates of air quality at the finest spatial and temporal resolutions at which health
data are available.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• How uncertainty in exposure affect risk estimates

• Mismatch in the spatial scale of health and air pollution data

• Hybrid approaches necessary to compute robust exposure

• Challenges the finding of previous studies
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Fig 1.
concentration of PM10 and PM2.5 monitoring stations and live births in Chicago MSA,
2000-04
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Fig. 2.
Odds of low birth weight (< 2500g) with one standard deviation increase in the daily
average exposure to criteria pollutants.
NOTE: The first four lines of each criteria pollutant include mothers within 3, 6, 9 and 12
miles distance to monitoring stations, respectively, and the fifth line is for county level
aggregated analysis.
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Table 2

Odds of LBW with respect to different socio-economic and demographic covariates.

Variables
LBW (all live births) Crude Odds Ratio ± 95% CI

# of Births (%) Incidence (%) All live births
Live births (with => 37

weeks old)

Total 398120 (100.0) 23103 (5.8) NA

Infant Sex

 Male 203784 (51.2) 10911 (5.35) 0.85±0.022* 0.66±0.029*

 Female (ref) 194336 (48.8) 12192 (6.27) 1

Year of Birth

 2000 (ref) 25059 (6.3) 1833 (7.31) 1 1

 2001 99235 (24.9) 5588 (5.63) 0.76±0.041* 0.87±0.081*

 2002 94142 (23.7) 5281 (5.61) 0.75±0.041* 0.87±0.082*

 2003 92050 (23.1) 5262 (5.72) 0.77±0.042* 0.89±0.083

 2004 87634 (22.0) 5139 (5.86) 0.79±0.044* 0.85±0.081*

Season of Birth

 Fall (ref) 108281 (27.2) 6362 (5.88) 1 1

 Winter 97331 (24.5) 5344 (5.66) 0.96±0.036 0.95±0.059

 Spring 94456 (23.7) 5600 (5.71) 0.97±0.036 0.98±0.059

 Summer 98052 (24.6) 5797 (5.96) 1.01±0.037 1.05±0.062

Material Race/Ethnicity

Non-Hispanic White (ref) 160133 (42.70) 6467 (4.04) 1 1

Non-Hispanic Black 74808 (19.95) 9163 (12.25) 3.03±0.100* 3.67±0.203*

Hispanic 119215 (31.79) 6039 (5.07) 1.25±0.045* 1.43±0.087*

Non-Hispanic Other 20861 (5.56) 1434 (6.87) 1.70±0.100* 2.51±0.222*

Maternal Age at Birth (years)

 18 or younger 27676 (7.0) 2591 (9.36) 1 1

 19–25 120821 (30.4) 7627 (6.31) 0.65±0.030* 0.68±0.049*

 26–34 187853 (47.2) 9229 (4.91) 0.50±0.023* 0.45±0.033*

 35 or older 61770 (15.5) 3656 (5.92) 0.61±0.032* 0.54±0.046*

Maternal Weight Gain

 Less than 25 lbs. gained (ref) 111361 (28.0) 10900 (9.40) 1 1

 25–35 lbs. gained 160170 (40.2) 8304 (5.18) 0.53±0.016* 0.60±0.029*

 More than 35 lbs. gained 121985 (30.6) 3899 (3.20) 0.32±0.012* 0.39±0.023*

Maternal Education

 Less than high school (ref) 96248 (24.2) 6753 (7.02) 1 1

 High school graduate 102780 (25.8) 6813 (6.63) 0.94±0.033* 0.91±0.050*

 Some college 77039 (19.6) 4623 (6.00) 0.85±0.033* 0.74±0.047*
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Variables
LBW (all live births) Crude Odds Ratio ± 95% CI

# of Births (%) Incidence (%) All live births
Live births (with => 37

weeks old)

 College graduate or more 122053 (30.7) 4914 (4.03) 0.56±0.021* 0.45±0.028*

Maternal Country of Birth

 United States (ref) 265474 (66.7) 16915 (6.37) 1 1

 Immigrants 132646 (33.3) 6188 (4.67) 0.72±0.021* 0.79±0.038*

Marital Status

 Married (ref) 254340 (63.9) 11014 (4.33) 1 1

 Unmarried 143780 (36.1) 12089 (8.41) 2.03±0.054* 2.29±0.100*

Parity

 First birth (ref) 138943 (34.9) 9094 (6.55) 1 1

 One or more children 259177 (65.1) 14009 (5.41) 0.82±0.022* 0.72±0.032*

Pregnancy Interval

 First birth 138943 (34.9) 9094 (6.55) 1 1

 Less than 1 year 7334 (1.8) 900 (12.27) 2.00±0.146* 1.26±0.177*

 1 year or more 251843 (63.3) 13109 (5.21) 0.78±0.022* 0.71±0.031*

Prenatal Care (Modified Kessner Index)

 Adequate (ref) 297466 (74.7) 15040 (5.06) 1 1

 Intermediate 72402 (18.2) 5084 (7.02) 1.42±0.047* 1.46±0.077*

 Inadequate 28252 (7.1) 2979 (10.54) 2.21±0.092* 2.04±0.142*

Maternal Smoking During Pregnancy

 No (ref) 375001 (94.2) 20157 (5.38) 1 1

 Yes 23119 (5.8) 2946 (12.74) 2.57±0.106* 3.15±0.194*

Maternal Alcohol Consumption During
Pregnancy

 No (ref) 396301 (99.5) 22846 (5.76) 1 1

 Yes 1819 (0.5) 257 (14.13) 2.69±0.358* 2.85±0.590*

Delivery Method

 Vaginal (ref) 307275 (77.2) 15551 (5.06) 1 1

 Primary C-Section 53698 (13.5) 5350 (9.96) 2.08±0.068* 1.44±0.083*

 Repeat C-Section 37147 (9.3) 2202 (5.93) 1.18±0.054* 0.91±0.073

Maternal Medical

 None (ref) 287689 (72.3) 13230 (4.60) 1 1

 At least one 110431 (27.7) 9873 (8.94) 2.04±0.055* 1.52±0.069*

Congenital Anomalies

 None (ref) 393034 (98.7) 22456 (5.71) 1 1

 At least one 5086 (1.3) 647 (12.72) 2.41±0.201* 2.15±0.307*

*
Significant at 5%; ref = reference category
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Table 3

Low birth weight and the selected covariates.

Covariates

Odds Ratio Regression Coefficient

Low Birth Weight Birth Weight (g)

All Births > 37 weeks All Births > 37 weeks

Medical risk category
1.945*** 1.435*** −65.19*** −5.839***

(±−0.06) (±−0.08) (±−4.25) (±−3.74)

Race category (1=non Hispanic black
1.860*** 1.893*** −156.0*** −122.4***

(±−0.08) (±−0.12) (±−6.35) (±−5.68)

Smoking (0=no, 1=yes)
1.740*** 2.136*** −168.9*** −152.6***

(±−0.08) (±−0.14) (±−7.92) (±−7.08)

Kessner Index (0=adequate, 1=inadequate)
1.287*** 1.185*** −55.33*** −36.11***

(±−0.04) (±−0.06) (±−4.27) (±−3.76)

Marital Status
1.250*** 1.275*** −49.97*** −40.85***

(±−0.04) (±−0.08) (±−4.96) (±−4.61)

Age Groups (1–4; coded in ascending order)
1.051*** 1.025 31.71*** 40.50***

(±−0.02) (±−0.04) (±−2.86) (±−2.45)

Mother’s Education (coded in ascending order)
0.953*** 0.915*** 11.21*** 10.59***

(±−0.02) (±−0.02) (±−2.12) (±−1.96)

Alcohol Consumption (0=no, 1=yes)
1.230*** 1.265** −44.72*** −26.43*

(±−0.18) (±−0.25) (±−30.91) (±−26.95)

ln(% households receiving public assistance in the census tract of mother’s
residence)

1.058*** 1.077*** −13.79*** −12.72***

(±−0.02) (±−0.04) (±−2.90) (±−2.69)

City code (0=Chicago, 1=Outside Chicago)
1.078*** 1.103*** −16.27*** −12.23***

(±−0.04) (±−0.06) (±−5.94) (±−5.55)

Constant
0.0295*** 0.0141*** 3342*** 3352***

(±0.00) (±0.00) (±−9.72) (±−8.72)

Observations 381,905 352,667 381,905 352,667

R-squared NA NA 0.0615 0.0565

***
p<0.01,

**
p<0.05,

*
p<0.1 (95% confidence interval in parentheses); NA = not applicable
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